LINEAR PROGRAMMING

[V. CH6]: THE SIMPLEX METHOD IN MATRIX NOTATION

Phillip Keldenich Ahmad Moradi

Department of Computer Science Algorithms Department TU Braunschweig

December 19, 2023

LP IN MATRIX NOTATION

SIMPLEX METHOD IN MATRIX NOTATION Primal Simplex Algorithm Dual Simplex Algorithm Two-Phase Methods

STANDARD FORM LP

As usual, we begin our discussion with the standard-form linear programming problem:

$$\begin{array}{ll} \max_{x} & \sum_{j=1}^{n} c_{j} x_{j} \\ \text{subject to} & \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i=1,2,\cdots,m \\ & x_{j} \geq 0, \quad j=1,2,\cdots,n \end{array}$$

STANDARD FORM LP

As usual, we begin our discussion with the standard-form linear programming problem:

$$\begin{array}{ll} \max_{x} & \sum_{j=1}^{n} c_{j} x_{j} \\ \text{subject to} & \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i=1,2,\cdots,m \\ & x_{j} \geq 0, \quad j=1,2,\cdots,n \end{array}$$

It is convenient to introduce slack variables as follows:

$$\frac{x_{n+i}}{x_{n+i}} = b_i - \sum_{j=1}^n a_{ij} x_j, \qquad i = 1, \dots, m$$

 w_i renamed as x_{n+i}

MATRIX FORM

With these slack variables, we now write our problem in matrix form:

$$\max_{x} c^{T} x$$

subject to $Ax = b$
 $x \ge 0$

where

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & 1 & & \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & 1 & & \\ \vdots & \vdots & \ddots & \vdots & & \ddots & \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} & & & 1 \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}, c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \\ 0 \\ \vdots \\ 0 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ x_{n+1} \\ \vdots \\ x_{n+m} \end{pmatrix}$$

SEPARATING BASIC AND NON-BASIC PARTS

Consider an iteration of the Simplex algorithm where ${\cal B}$ and ${\cal N}$ are the set of basic and non-basic indices.

The *i*th component of *Ax* can be broken up into a *basic* and a *nonbasic* part:

$$\sum_{j=1}^{n+m} a_{ij}x_j = \sum_{j\in\mathcal{B}} a_{ij}x_j + \sum_{j\in\mathcal{N}} a_{ij}x_j.$$

SEPARATING BASIC AND NON-BASIC PARTS

Consider an iteration of the Simplex algorithm where ${\cal B}$ and ${\cal N}$ are the set of basic and non-basic indices.

The *i*th component of *Ax* can be broken up into a *basic* and a *nonbasic* part:

$$\sum_{j=1}^{n+m} a_{ij}x_j = \sum_{j \in \mathcal{B}} a_{ij}x_j + \sum_{j \in \mathcal{N}} a_{ij}x_j.$$

To break up the matrix product *Ax* analogously:

- Let *B* denote an $m \times m$ matrix whose columns are indexed by \mathcal{B} .
- Similarly, let N denote an $m \times n$ matrix whose columns are indexed by \mathcal{N} .

SEPARATING BASIC AND NON-BASIC PARTS

Consider an iteration of the Simplex algorithm where ${\cal B}$ and ${\cal N}$ are the set of basic and non-basic indices.

The *i*th component of *Ax* can be broken up into a *basic* and a *nonbasic* part:

$$\sum_{j=1}^{n+m} a_{ij}x_j = \sum_{j \in \mathcal{B}} a_{ij}x_j + \sum_{j \in \mathcal{N}} a_{ij}x_j.$$

To break up the matrix product Ax analogously:

- Let *B* denote an $m \times m$ matrix whose columns are indexed by \mathcal{B} .
- Similarly, let N denote an $m \times n$ matrix whose columns are indexed by \mathcal{N} .

Now, one could write *A* and *x* in a partitioned-matrix form as:

$$A = \begin{bmatrix} B & N \end{bmatrix}, x = \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix}$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

SEPARATING BASIC AND NON-BASIC PARTS

Consider an iteration of the Simplex algorithm where ${\cal B}$ and ${\cal N}$ are the set of basic and non-basic indices.

The *i*th component of *Ax* can be broken up into a *basic* and a *nonbasic* part:

$$\sum_{j=1}^{n+m} a_{ij}x_j = \sum_{j \in \mathcal{B}} a_{ij}x_j + \sum_{j \in \mathcal{N}} a_{ij}x_j.$$

To break up the matrix product Ax analogously:

- Let *B* denote an $m \times m$ matrix whose columns are indexed by \mathcal{B} .
- Similarly, let N denote an $m \times n$ matrix whose columns are indexed by \mathcal{N} .

Now, one could write *A* and *x* in a partitioned-matrix form as:

$$A = \begin{bmatrix} B & N \end{bmatrix}, x = \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix}$$

This is a rearrangement (relabeling of the variables) so that basic columns/variables are listed first, followed by the nonbasic columns/variables. So technically, the equality is not correct.

SIMPLIFYING

Now, we can write:

$$Ax = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix} = Bx_{\mathcal{B}} + Nx_{\mathcal{N}}.$$

Check that this equality holds (and matrices have the right format).

SIMPLIFYING

Now, we can write:

$$Ax = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix} = Bx_{\mathcal{B}} + Nx_{\mathcal{N}}.$$

Check that this equality holds (and matrices have the right format). Similar partitioning on *c* gives:

$$c^{T}x = \begin{bmatrix} c_{\mathcal{B}} \\ c_{\mathcal{N}} \end{bmatrix}^{T} \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix} = c_{\mathcal{B}}^{T}x_{\mathcal{B}} + c_{\mathcal{N}}^{T}x_{\mathcal{N}}.$$

SIMPLIFYING

Now, we can write:

$$Ax = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix} = Bx_{\mathcal{B}} + Nx_{\mathcal{N}}.$$

Check that this equality holds (and matrices have the right format). Similar partitioning on c gives:

$$c^{T}x = \begin{bmatrix} c_{\mathcal{B}} \\ c_{\mathcal{N}} \end{bmatrix}^{T} \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix} = c_{\mathcal{B}}^{T}x_{\mathcal{B}} + c_{\mathcal{N}}^{T}x_{\mathcal{N}}.$$

Example: Write the following LP in matrix form, then calculate the above values for $\mathcal{B} = \{1, 2\}$

$$\max_{x} 3x_{1} + 4x_{2} - 2x_{3}$$
subject to
$$x_{1} + 0.5x_{2} - 5x_{3} \le 2$$

$$2x_{1} - x_{2} + 3x_{3} \le 3$$

$$x_{1}, x_{2}, x_{3} \ge 0$$

SIMPLEX METHOD IN MATRIX NOTATION

LP IN MATRIX NOTATION

SIMPLEX METHOD IN MATRIX NOTATION

Primal Simplex Algorithm Dual Simplex Algorithm Two-Phase Methods

DICTIONARIES IN MATRIX FORM: BASIC VARIABLES

A dictionary has the property that the

basic variables are written as functions of the nonbasic variables.

In matrix notation, we see that the constraint equations Ax = b can be written as

 $Bx_{\mathcal{B}} + Nx_{\mathcal{N}} = b.$

DICTIONARIES IN MATRIX FORM: BASIC VARIABLES

A dictionary has the property that the

basic variables are written as functions of the nonbasic variables.

In matrix notation, we see that the constraint equations Ax = b can be written as

$$Bx_{\mathcal{B}} + Nx_{\mathcal{N}} = b.$$

 $x_{\mathcal{B}}$ can be written as a function of the nonbasic variables $x_{\mathcal{N}}$ iff the matrix B is *invertible*,

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Nx_{\mathcal{N}}.$$

DICTIONARIES IN MATRIX FORM: BASIC VARIABLES

A dictionary has the property that the

basic variables are written as functions of the nonbasic variables.

In matrix notation, we see that the constraint equations Ax = b can be written as

$$Bx_{\mathcal{B}} + Nx_{\mathcal{N}} = b.$$

 $x_{\mathcal{B}}$ can be written as a function of the nonbasic variables $x_{\mathcal{N}}$ iff the matrix B is *invertible*,

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Nx_{\mathcal{N}}.$$

The fact that *B* must be invertible means that its *m* column vectors are linearly independent and therefore form a basis for \mathbb{R}^m . This is why the basic variables are called *basic*.

DICTIONARIES IN MATRIX FORM: OBJECTIVE

Similarly, the objective function can be written as

$$\begin{aligned} \zeta &= c_{\mathcal{B}}^T x_{\mathcal{B}} + c_{\mathcal{N}}^T x_{\mathcal{N}} \\ &= c_{\mathcal{B}}^T \left(B^{-1} b - B^{-1} N x_{\mathcal{N}} \right) + c_{\mathcal{N}}^T x_{\mathcal{N}} \\ &= c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}} \end{aligned}$$

DICTIONARIES IN MATRIX FORM: OBJECTIVE

Similarly, the objective function can be written as

$$\begin{aligned} \zeta &= c_{\mathcal{B}}^T x_{\mathcal{B}} + c_{\mathcal{N}}^T x_{\mathcal{N}} \\ &= c_{\mathcal{B}}^T \left(B^{-1} b - B^{-1} N x_{\mathcal{N}} \right) + c_{\mathcal{N}}^T x_{\mathcal{N}} \\ &= c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}} \end{aligned}$$

Putting all together, we can write the dictionary associated with basis $\mathcal B$ as

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

DICTIONARIES IN MATRIX FORM

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

Comparing against the component-form notation, we make the following identifications:

$$c_{\mathcal{B}}^{T}B^{-1}b = \bar{\zeta}$$
$$c_{\mathcal{N}} - (B^{-1}N)^{T}c_{\mathcal{B}} = [\bar{c}_{j}]$$
$$B^{-1}b = [\bar{b}_{i}]$$
$$B^{-1}N = [\bar{a}_{ij}]$$

bracketed expressions on the right denote vectors and matrices with the index *i* running over \mathcal{B} and the index *j* running over \mathcal{N} .

MATRIX FORM: BASIC SOLUTIONS

Recall: We rewrote dictionaries in matrix form as

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

The basic solution associated with this dictionary is obtained by setting x_N equal to zero.

$$x_{\mathcal{N}}^* = 0, \quad x_{\mathcal{B}}^* = B^{-1}b$$

MATRIX FORM: BASIC SOLUTIONS

Recall: We rewrote dictionaries in matrix form as

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

The basic solution associated with this dictionary is obtained by setting x_N equal to zero.

$$x_{\mathcal{N}}^* = 0, \quad x_{\mathcal{B}}^* = B^{-1}b$$

Insight:

The basic solution $x_{\mathcal{B}}^*$ for a given \mathcal{B} is simply obtained by solving the linear system $Bx_{\mathcal{B}} = b!$ All other variables are simply set to 0.

MATRIX FORM: BASIC SOLUTIONS

Recall: We rewrote dictionaries in matrix form as

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

The basic solution associated with this dictionary is obtained by setting x_N equal to zero.

$$x_{\mathcal{N}}^* = 0, \quad x_{\mathcal{B}}^* = B^{-1}b$$

Insight:

The basic solution $x_{\mathcal{B}}^*$ for a given \mathcal{B} is simply obtained by solving the linear system $Bx_{\mathcal{B}} = b!$ All other variables are simply set to 0.

Solving $Bx_{\mathcal{B}} = b$ for some *b* may give us a feasible (or infeasible) solution: $x_{\mathcal{B}}^*$ might be negative!

EXAMPLE TIME

As an example, consider the same LP

\max_x	$3x_1 +$	$4x_2 -$	$2x_3$
subject to	$x_1 + $	$0.5x_2 - $	$5x_3 \le 2$
	$2x_1 - $	$x_2 +$	$3x_3 \leq 3$
	$x_1,$	$x_2,$	$x_3 \ge 0$

Write the initial dictionary. Do first pivot. You get a new basis $\mathcal{B} = \{2, 5\}$. Compute different part of this dictionary in matrix form and compare.

TOWARDS DUAL SIMPLEX

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b \qquad -B^{-1} N x_{\mathcal{N}}$$

To write the associated dual dictionary using the negative transpose property, it is important to correctly associate *complementary pairs of variables*.

Recall that, we have appended the primal slack variables to the end of the original variables:

$$(x_1,\ldots,x_n,w_1,\ldots,w_m) \rightarrow (x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})$$

Recall that,

- dual slacks are complementary to the primal originals, and
- dual originals are complementary to the primal slacks

using similar index for complementary variables,

$$(z_1,\ldots,z_n,y_1,\ldots,y_m) \rightarrow (z_1,\ldots,z_n,z_{n+1},\ldots,z_{n+m})$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

DUAL DICTIONARY: NEGATIVE TRANSPOSE PROPERTY

Primal dictionary in matrix form:

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

DUAL DICTIONARY: NEGATIVE TRANSPOSE PROPERTY

Primal dictionary in matrix form:

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

and the corresponding dual dictionary:

$$-\xi = -c_{\mathcal{B}}^T B^{-1} b \qquad - (B^{-1}b)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = \left((B^{-1}N)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right) + (B^{-1}N)^T z_{\mathcal{B}}$$

DUAL DICTIONARY: NEGATIVE TRANSPOSE PROPERTY

Primal dictionary in matrix form:

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

and the corresponding dual dictionary:

$$-\xi = -c_{\mathcal{B}}^T B^{-1}b \qquad - (B^{-1}b)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = \left((B^{-1}N)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right) + (B^{-1}N)^T z_{\mathcal{B}}$$

The dual solution associated with this is obtained by setting $z_{\mathcal{B}}$ equal to zero:

$$z_{\mathcal{B}}^* = 0, \quad z_{\mathcal{N}}^* = \left(B^{-1}N\right)^T c_{\mathcal{B}} - c_{\mathcal{N}}$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

SUCCINCT PRIMAL AND DUAL DICTIONARY

Using the shorthands

$$\begin{aligned} z^*_{\mathcal{N}} &= \left(B^{-1}N\right)^T c_{\mathcal{B}} - c_{\mathcal{N}}, \\ x^*_{\mathcal{B}} &= B^{-1}b \text{ and} \\ \zeta^* &= c^T_{\mathcal{B}}B^{-1}b, \end{aligned}$$

we write the primal dictionary as

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

and dual dictionary as

$$-\xi = -\zeta^* - (x_{\mathcal{B}}^*)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = z_{\mathcal{N}}^* + (B^{-1}N)^T z_{\mathcal{B}}$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

Assumptions: Given initial \mathcal{B} with m elements, B invertible, $x_{\mathcal{B}}^* = B^{-1}b \ge 0$. Let us discuss the details of a single Simplex iteration (move to adjacent basis) in matrix notation.

STEP 1. Check for optimality

if $z_N^* \ge 0$ stop // Primal feasibility and complementary is already maintained, just check dual feasibility.

STEP 2. Select entering variable

Else: pick $j \in \mathcal{N}$ with $z_j^* < 0$. *|| variable* x_j *is the entering variable.*

Primal Dictionary

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

Dual Dictionary

$$-\xi = -\zeta^* - (x_{\mathcal{B}}^*)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = z_{\mathcal{N}}^* + (B^{-1}N)^T z_{\mathcal{B}}$$

STEP 3. Compute primal step direction $\Delta x_{\mathcal{B}}$

Having selected the entering variable, we let

 $x_{\mathcal{N}} = te_j$

where e_j denote the unit vector that is zero in every component except for a one in the position associated with index j,

$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1}Nte_j$$

Hence, the step direction $\Delta x_{\mathcal{B}}$ for the primal basic variables is given by

$$\Delta x_{\mathcal{B}} = B^{-1} N e_{j}$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

STEP 4. Compute primal step length t

We wish to pick the largest $t \ge 0$ for which

$$x_{\mathcal{B}}^* \ge t\Delta x_{\mathcal{B}}.$$

(every component of $x_{\mathcal{B}}$ remains nonnegative)

Since, for each $i \in \mathcal{B}^*, x_i^* \ge 0$ and $t \ge 0$

$$\frac{1}{t} \geq \frac{\Delta x_i}{x_i^*}, \quad \forall i \in \mathcal{B}$$

Hence, the largest t for which all of the inequalities hold is given by

$$t = \left(\max_{i \in \mathcal{B}} \frac{\Delta x_i}{x_i^*}\right)^{-1} /\!\!/ \text{ convention for } \frac{0}{0} \text{ is to set such ratios to } 0$$

if $t \leq 0$ stop *// primal is unbounded*

STEP 5. Select leaving variable The leaving variable is chosen as any variable $x_i, i \in B$, for which the maximum in the calculation of t is obtained.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

Primal Dictionary

Dual Dictionary

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

$$\begin{aligned} -\xi &= -\zeta^* - \left(x_{\mathcal{B}}^*\right)^T z_{\mathcal{B}} \\ z_{\mathcal{N}} &= z_{\mathcal{N}}^* + \left(B^{-1}N\right)^T z_{\mathcal{B}} \end{aligned}$$

Essentially all that remains is to explain changes to the objective function.

STEP 6. Compute dual step direction Δz_N

Since in dual dictionary z_i is the entering variable, we see that

$$\Delta z_{\mathcal{N}} = -\left(B^{-1}N\right)^T e_i$$

STEP 7. Compute dual step length s

Since we know that *j* is the leaving variable in the dual dictionary,

$$s = \frac{z_j^*}{\Delta z_j}$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

Primal Dictionary

Dual Dictionary

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

$$-\xi = -\zeta^* - (x_{\mathcal{B}}^*)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = z_{\mathcal{N}}^* + (B^{-1}N)^T z_{\mathcal{B}}$$

We now have everything we need to update the data in the dictionary:

STEP 8. Update current primal and dual solutions

$$\begin{aligned} x_j^* &\leftarrow t \\ x_{\mathcal{B}}^* &\leftarrow x_{\mathcal{B}}^* - t\Delta x_{\mathcal{B}} \end{aligned}$$

$$\begin{aligned} z_i^* &\leftarrow s \\ z_{\mathcal{N}}^* &\leftarrow z_{\mathcal{N}}^* - s\Delta z_{\mathcal{N}} \end{aligned}$$

STEP 9. Update basis

$$\mathcal{B} \leftarrow (\mathcal{B} \setminus \{i\}) \cup \{j\}$$

As an example, let us solve the following LP:

$$\begin{array}{rcl}
\max_{x} & 4x_{1} + & 3x_{2} \\
\text{subject to} & x_{1} - & x_{2} \leq 1 \\
& 2x_{1} - & x_{2} \leq 3 \\
& + & x_{2} \leq 5 \\
& x_{1}, & x_{2} \geq 0
\end{array}$$

Lets now derive *Dual simplex* in matrix notation.

RECALL: Dual Simplex is to apply simplex to the dual LP but (indirectly) on a sequence of primal pivots

Here, instead of assuming that the primal dictionary is feasible ($x_B \ge 0$), we now assume that the dual dictionary is feasible ($z_N \ge 0$) and perform the analogous steps

Primal Dictionary

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

STEP 1. Check for optimality

 $\text{if} \ x^*_{\mathcal{B}} \geq 0 \ \text{stop} \\$

STEP 2. Select Entering Variable

Else: pick $i \in \mathcal{B}$ with $x_i^* < 0$. $|| variable z_i is the entering variable.$

STEP 3. Compute Dual Step Direction Δz_N

$$\Delta z_{\mathcal{B}} = -\left(B^{-1}N\right)^T e_i$$

STEP 4. Compute Dual Step Length, s

$$s = \left(\max_{j \in \mathcal{N}} \frac{\Delta z_j}{z_j^*}\right)^{-1}$$

if $s \leq 0$ stop *|| dual is unbounded, primal infeasible* Dual Dictionary

$$\begin{vmatrix} -\xi &= -\zeta^* - (x_{\mathcal{B}}^*)^T z_{\mathcal{B}} \\ z_{\mathcal{N}} &= z_{\mathcal{N}}^* + (B^{-1}N)^T z_{\mathcal{B}} \end{vmatrix}$$

STEP 5. Select Leaving Variable Pick z_j , where the maximum obtained.

STEP 6. Compute Primal Step Direction $\Delta x_{\mathcal{B}}$ $\Delta x_{\mathcal{B}} = B^{-1} N e_j$

STEP 7. Compute Primal Step Length, t

$$t = \frac{x_i^*}{\Delta x_i}$$

STEP 8. Update Current Primal and Dual Solutions $z_i^* \leftarrow s \qquad x_j^* \leftarrow t$ $z_N^* \leftarrow z_N^* - s\Delta z_N \qquad x_B^* \leftarrow x_B^* - t\Delta x_B$

STEP 9. Update Basis $\mathcal{B} \leftarrow (\mathcal{B} \setminus \{i\}) \cup \{j\}$

Primal Simplex	Dual Simplex	
Suppose $x_{\mathcal{B}}^* \ge 0$	Suppose $z^*_{\mathcal{N}} \geq 0$	
while $(z_N^* \not\geq 0)$ {	while $(x_{\mathcal{B}}^* \not\geq 0)$ {	
pick $j \in \{j \in \mathcal{N} : z_j^* < 0\}$	pick $i \in \{i \in \mathcal{B} : x_i^* < 0\}$	
$\Delta x_{\mathcal{B}} = B^{-1} N e_j$	$\Delta z_{\mathcal{N}} = -(B^{-1}N)^T e_i$	
$t = \left(\max_{i \in \mathcal{B}} \frac{\Delta x_i}{x_i^*}\right)^{-1}$	$s = \left(\max_{j \in \mathcal{N}} \frac{\Delta z_j}{z_j^*} \right)^{-1}$	
pick $i \in \operatorname{argmax}_{i \in \mathcal{B}} \frac{\Delta x_i}{x_i^*}$	pick $j \in \operatorname{argmax}_{j \in \mathcal{N}} \frac{\Delta z_j}{z_i^*}$	
$\Delta z_{\mathcal{N}} = -(B^{-1}N)^T e_i$	$\Delta x_{\mathcal{B}} = B^{-1} N e_j$	
$s = \frac{z_j}{\Delta z_j}$	$t = \frac{x_i^*}{\Delta x_i}$	
$x_j^* \leftarrow t$	$x_j^* \leftarrow t$	
$x^*_{\mathcal{B}} \leftarrow x^*_{\mathcal{B}} - t\Delta x_{\mathcal{B}}$	$x_{\mathcal{B}}^* \leftarrow x_{\mathcal{B}}^* - t\Delta x_{\mathcal{B}}$	
$z_i^* \leftarrow s$	$z_i^* \leftarrow s$	
$z_{\mathcal{N}}^{*} \leftarrow z_{\mathcal{N}}^{*} - s\Delta z_{\mathcal{N}}$	$z_{\mathcal{N}}^{*} \leftarrow z_{\mathcal{N}}^{*} - s\Delta z_{\mathcal{N}}$	
$\mathcal{B} \leftarrow \mathcal{B} \setminus \{i\} \cup \{j\}$	$\mathcal{B} \leftarrow \mathcal{B} \setminus \{i\} \cup \{j\}$	
}	}	

Initially we set

$$\mathcal{N} = \{1, 2, \dots, n\}$$
, $\mathcal{B} = \{n + 1, n + 2, \dots, n + m\}$

So we have

$$N = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \quad , \quad B = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

and

$$c_{\mathcal{N}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \quad , \quad c_{\mathcal{B}} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Substituting these expressions into the definitions of $x^*_{\mathcal{B}}, z^*_{\mathcal{N}}$ and ζ^* , we find that

$$x_{\mathcal{B}}^* = B^{-1}b = b$$
 , $z_{\mathcal{N}}^* = (B^{-1}N)^T c_{\mathcal{B}} - c_{\mathcal{N}} = -c_{\mathcal{N}}$, $\zeta^* = 0$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

$$x_{\mathcal{B}}^* = B^{-1}b = b$$
 , $z_{\mathcal{N}}^* = (B^{-1}N)^T c_{\mathcal{B}} - c_{\mathcal{N}} = -c_{\mathcal{N}}$, $\zeta^* = 0$

Hence, the initial primal dictionary reads

$$\zeta = c_{\mathcal{N}}^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = b - N x_{\mathcal{N}}$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

$$\zeta = c_{\mathcal{N}}^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = b - N x_{\mathcal{N}}$$

If $b \ge 0$ and $c \le 0$ *// primal feasibility* + optimality observed \Rightarrow stop

If $b \ge 0$ and $c \le 0$ // primal feasibility observed \Rightarrow start with primal simplex

If $b \not\geq 0$ and $c \leq 0$ //dual feasibility observed \Rightarrow start with dual simplex

If $b \not\geq 0$ and $c \not\leq 0$ *// we need to do a Phase I*

$$\zeta = c_{\mathcal{N}}^T x_{\mathcal{N}} x_{\mathcal{B}} = b - N x_{\mathcal{N}}$$

If $b \not\geq 0$ and $c \not\leq 0$

- a Phase I could be :
- → Define the *auxiliary problem*, as in Ch. 2, and apply primal simplex. // In Phase II, proceed with primal simplex.
- → Replace c_N with a *non-positive* one and apply dual simplex. // In Phase II, proceed with primal simplex.
- → Replace b with a non-negative one and apply primal simplex. // In Phase II, proceed with dual simplex.