

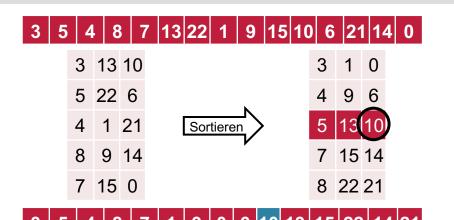
Algorithmen und Datenstrukturen – Übung #6

Quicksort, Mediane, kd-Bäume

Ramin Kosfeld & Chek-Manh Loi 01.02.2024

Heute

- Quicksort
- Mediane
 - Algorithmus
 - Laufzeit
- kd-Trees



 p_4

 p_7

Bisherige Sortierverfahren

Algorithmus

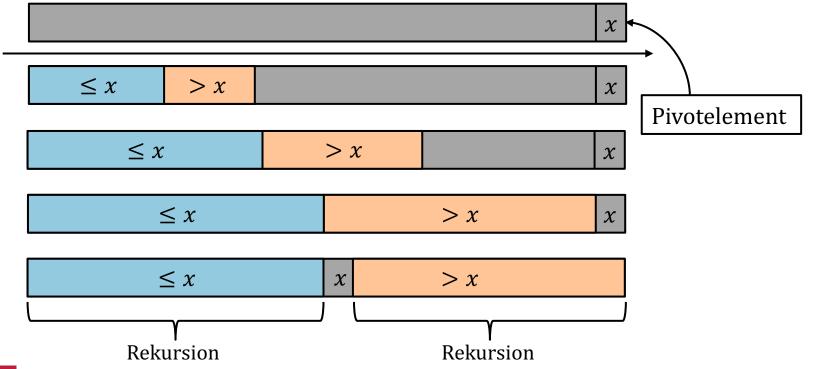
Laufzeit

Idee

Bisherige Sortierverfahren

Algorithmus	Laufzeit	Idee				
Mergesort	$O(n \log n)$	Sortiere Teilarrays und merge sie. Beginne mit kleinstem Teilarray (z.B. der Größe 1)				
Bubblesort (P-Blatt 4)	$O(n^2)$	Iteriere n -mal über das Array und vertausche falsch-stehende benachbarte Objekte.				
Heapsort (5. Große Übung)	$O(n \log n)$	Betrachte Array als Heap, entferne iterativ das größte Element und stelle die Heap-Eigenschaft wieder her.				
Quicksort	$O(n^2)$	Pivotisiere und sortiere rekursiv auf beiden Teilarrays weiter.				
Radixsort $O(d(n+k))$		Sortiere Zahlen iterativ nach d Ziffern mit Werten 1 bis k .				
Selectionsort $O(n^2)$		Setze das i -t kleinste Element in der i -ten Iteration an die i -te Stelle				
Insertionsort	$O(n^2)$	Setze das i -te Element des Arrays in $A[1] \dots A[i]$ an die richtige Stelle.				

Quicksort - Prinzip



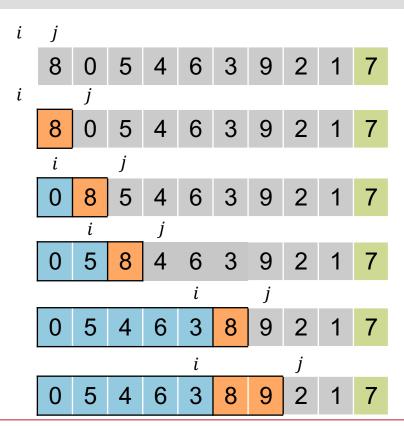
Quicksort - Partition

Pivotelement *x*

Letztes Element im Array

Zwei Zeiger

- *i*: Letzte Position mit Zahlen $\leq x$
- *j*: Erste Position mit nicht verglichenen Elementen



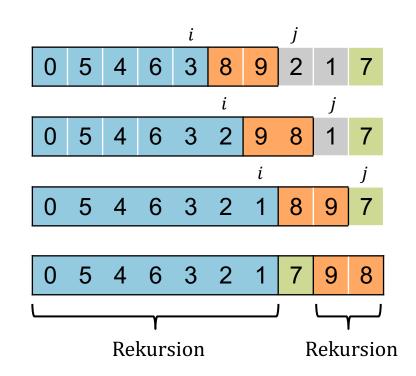
Quicksort - Partition

Pivotelement x

Letztes Element im Array

Zwei Zeiger

- i: Letzte Position mit Zahlen < x
- *j*: Erste Position mit nicht verglichenen Elementen



Quicksort - Laufzeit

	Best-Case	Average-Case	Worst-Case
Quicksort			

Rekursionsgleichung Worst-Case:

$$T(n) =$$

Rekursionsgleichung Best-Case:

$$T(n) =$$

Quicksort - Laufzeit

	Best-Case	Average-Case	Worst-Case		
Quicksort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$		

Rekursionsgleichung Worst-Case:

$$T(n) = T(n-1) + \Theta(n) \Rightarrow T(n) \in \Theta\left(\sum_{i=1}^{n} i\right) = \Theta(n^2)$$

Rekursionsgleichung Best-Case:

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \Rightarrow T(n) \in \Theta(n \log n)$$

Mediane

Mediane - Definition

Rang-*k* Element *m* in *X*:

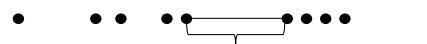
$$|\{x \in X : x \le m\}| \ge k$$

$$|\{x \in X : x \ge m\}| \ge n - k + 1$$

Für einen Median *m* in *X* gilt:

$$|\{x \in X : x < m\}| \le \left\lfloor \frac{n}{2} \right\rfloor$$

$$|\{x \in X : x > m\}| \le \left|\frac{n}{2}\right|$$



Jeder Punkt in diesem Bereich ist ein Median!

Bei $X = \{1,2,3,4,5,6,7,8\}$ sind sowohl 4 als auch 5 ein Median.

Mediane - Definition

Rang-*k* Element *m* in *X*:

$$|\{x \in X : x \le m\}| \ge k$$

$$|\{x \in X : x \ge m\}| \ge n - k + 1$$

Für einen Median m in X gilt:

$$|\{x \in X : x < m\}| \le \left\lfloor \frac{n}{2} \right\rfloor$$

$$|\{x \in X : x > m\}| \le \left|\frac{n}{2}\right|$$

Bei $X = \{1,3,5,7,9\}$ ist die 5 der Median und 5 der Durchschnitt.

Bei $X = \{1,3,5,7,984\}$ ist die 5 der Median und 200 der Durchschnitt.

Der Median *m* minimiert

$$\sum_{x \in X} |x - m|$$

Der Durchschnitt *D* minimiert

$$\sum_{x \in X} (x - D)^2$$

Mediane – Algorithmus (I)

Naive Idee

Sortieren und das Element an der kten Stelle ausgeben

Laufzeit: $\Theta(n \log n)$

Geht das besser?

Nutze das Prinzip von Quicksort

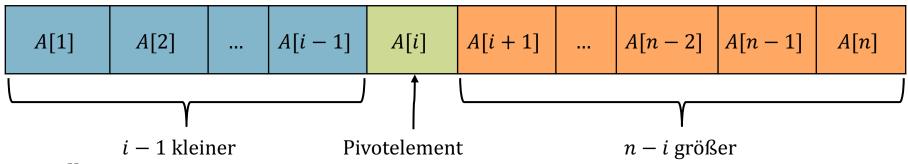
Pivotisiere und arbeite rekursiv auf **einem** Teil weiter

Dazu stellen sich die Fragen:

- 1. Auf welchem Teilarray geht es weiter?
- 2. Ist das schneller als $\Theta(n \log n)$?

Mediane - Algorithmus (II)

1. Auf welchem Teilarray geht es weiter? Nach Pivotisierung:



3 Fälle:

- 1. Falls k < i, such e im linken Teilarray nach dem k-ten Element.
- 2. Falls k = i, dann haben wir das k-te Element gefunden!
- 3. Falls k > i, such eim rechten Teilarray nach dem (k i)-ten Element.

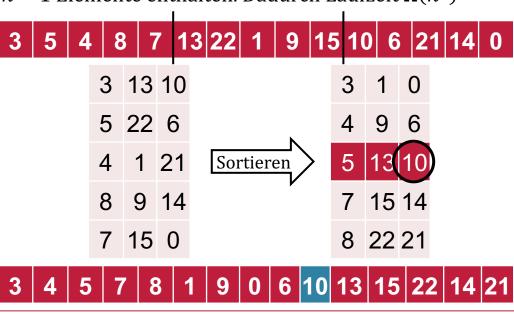
Mediane - Algorithmus (III)

2. Ist das schneller als $\Theta(n \log n)$?

Wie bei Quicksort kann größeres Teilarray n-1 Elemente enthalten. Dadurch Laufzeit $\Omega(n^2)$

Idee: Wähle besseres Pivotelement

- 1. Teile Zahlen in 5er Gruppen
- 2. Bestimme Median in jeder Gruppe
- 3. Bestimme Median der Mediane *m*
- 4. Benutze *m* als Pivotelement



Mediane - Analyse

Wie viele Zahlen gibt es, die größer/kleiner als *m* sind?

Sortiere die t 5er Gruppen **gedanklich** nach deren Median

$\leq m$	$\leq m$	$\leq m$	$\leq m$	m	$\geq m$				

Mediane - Analyse

Wie viele Zahlen gibt es, die größer/kleiner als *m* sind?

Sortiere die t 5er Gruppen **gedanklich** nach deren Median

$\leq m$									
$\leq m$									
$\leq m$	$\leq m$	$\leq m$	$\leq m$	m	$\geq m$				

Der rote Bereich enthält nur Elemente, die höchstens *m* sind. Wie viele sind das?

Mediane - Analyse

$\leq m$									
$\leq m$									
$\leq m$	$\leq m$	$\leq m$	$\leq m$	m	$\geq m$				

Der rote Bereich enthält nur Elemente, die höchstens *m* sind. Wie viele sind das?

Nehmen wir an wir haben t Gruppen, so ist der Median m in der $\left\lceil \frac{t}{2} \right\rceil$ -ten Gruppe.

Bei 5er Gruppen, sind pro Gruppe mindestens 3 Elemente $\leq m$.

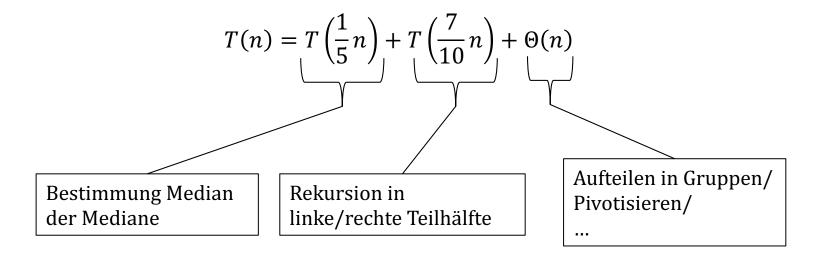
Entsprechend gibt es mindestens $3 \cdot \left[\frac{t}{2}\right]$ viele Elemente $\leq m$.

Damit gibt es maximal $n-3 \cdot \left[\frac{t}{2}\right] \le n-\frac{3}{2}t \le n-\frac{3}{2} \cdot \frac{n}{5} = \frac{7}{10}n$ Elemente größer als m.

Analog: Maximal $\frac{7}{10}n$ Elemente kleiner als m.

Mediane - Laufzeit

Wir haben also als Laufzeit:



Mediane - Laufzeit

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{1}{10}n\right) + \Theta(n)$$

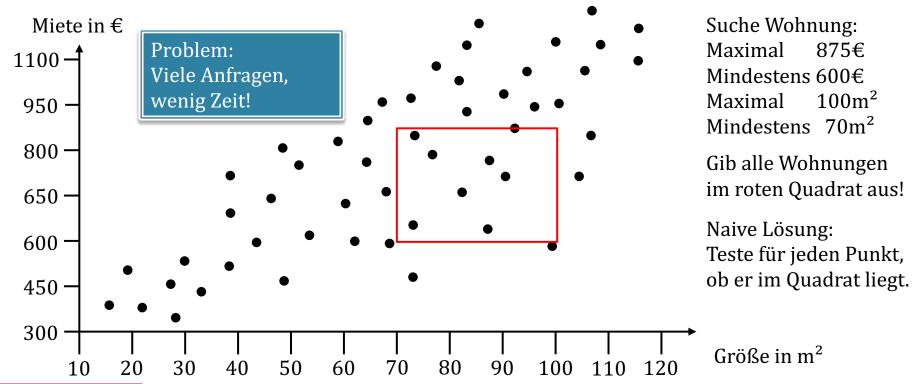
Mastertheorem

$$m = 2$$
, $k = 1$, $\alpha_1 = \sqrt{\frac{1}{5}} \alpha_2 = \sqrt{\frac{7}{10}}$

$$\sum_{i=1}^{2} \alpha_i^1 = \left(\frac{1}{5}\right)^1 + \left(\frac{7}{10}\right)^1 = \frac{2}{10} + \frac{7}{10} = \frac{9}{10} < 1 \rightarrow \text{Fall 1} \qquad \Longrightarrow T(n) \in \Theta(n)$$

kd-Bäume

Motivation - Die Wohnungssuche



kd-Bäume - Konstruktion/Preprocessing

Idee: Konstruiere binären Suchbaum. Suche dabei abwechselnd nach x- und y-Koordinate.

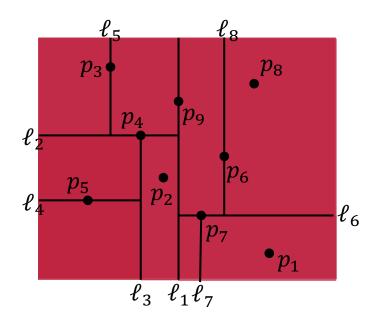
Algorithmus BuildKDTREE

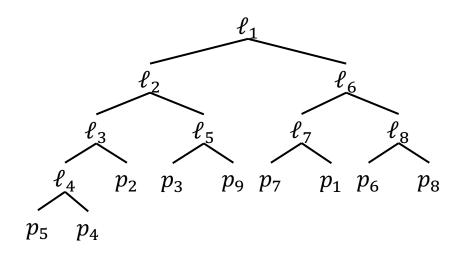
Eingabe: Punktmenge *P*, Rekursionstiefe *depth*

Ausgabe: Wurzel eines k-d-Baums

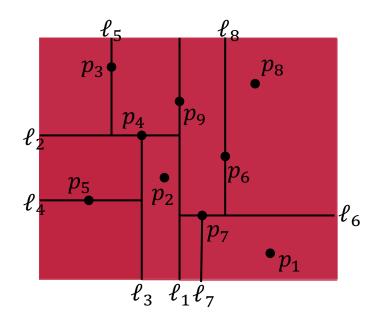
- 1. **if** (|P| = 1)
- 2. **return** Blatt mit diesem Punkt
- 3. **else if** (*depth* ist gerade)
- 4. Teile in zwei Teilmengen $P_1 (\leq \ell)$ und $P_2 (> \ell)$ an vertikaler Median-Linie ℓ
- 5. **else**
- 6. Teile in zwei Teilmengen P_1 ($\leq \ell$) und P_2 ($> \ell$) an horizontaler Median-Linie ℓ
- 7. Setze $v_{left} := BUILDKDTREE(P_1, depth+1)$
- 8. Setze $v_{right} := BUILDKDTREE(P_2, depth+1)$
- 9. Erzeuge Knoten v für ℓ mit v_{left} und v_{right} als Kinderknoten
- 10. return v

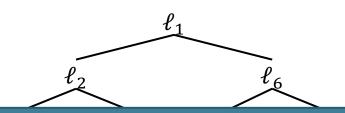
kd-Bäume - Beispiel





kd-Bäume - Beispiel





Laufzeit des Algorithmus ist $O(n \log n)$

Beweis

- (1) Median-Linien können in O(n) Zeit gefunden werden.
- (2) Rekursionsgleichung für die Laufzeit ist also

 $T(n) = O(n) + 2T\left(\left\lceil \frac{n}{2}\right\rceil\right)$

Nach Mastertheorem ist das $O(n \log n)$.

kd-Bäume – Search Query

Algorithmus SEARCHKDTREE

Eingabe: Wurzel *v* eines (Teil-)baums, Rechteck *R*

Ausgabe: Knoten unterhalb v, die in R liegen

- 1. **if** (v ist ein Blatt)
- 2. Gib v aus, falls v in R
- 3. **else**
- 4. **if** (Region(l(v)) ganz in R)
- 5. REPORTSUBTREE(l(v))
- 6. **else if** (Region(l(v)) schneidet R)
- 7. SEARCHKDTREE(l(v), R)
- 8. **if** (Region(r(v)) ganz in R)
- 9. REPORT SUBTREE (r(v))
- 10. **else if** (Region(r(v)) schneidet R)
- 11. SEARCHKDTREE(r(v), R)

kd-Bäume – Search Query

Laufzeit ist $O(\sqrt{n} + x)$, wobei x die Anzahl an ausgegebenen Elementen ist.

Das nennt sich *output-sensitiv*, d.h. die Laufzeit ist von der Größe des Outputs abhängig.

Beweisidee:

Wie viele *geschnittene* Regionen müssen betrachtet werden? Man kann die Rekursionsgleichung aufstellen:

$$Q(n) = 2 + 2Q\left(\frac{n}{4}\right).$$

Also $Q(n) \in O(\sqrt{n})$. So viele Elemente können geprüft werden, die nicht in R liegen. Die O(x) sind die Elemente in R.

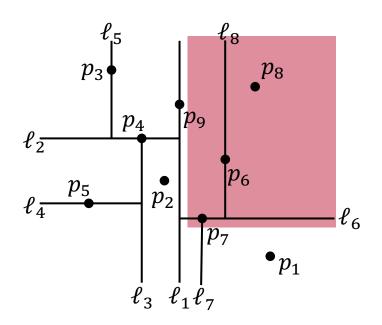
Algorithmus SearchKDTree

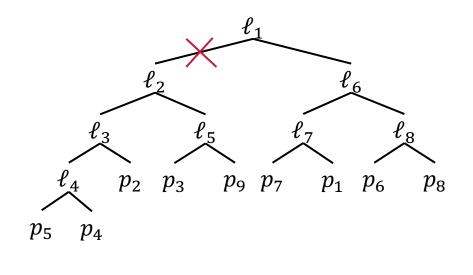
Eingabe: Wurzel *v* eines (Teil-)baums, Rechteck *R*

Ausgabe: Knoten unterhalb v, die in R liegen

- 1. **if** (v ist ein Blatt)
- 2. Gib v aus, falls v in R
- 3. **else**
- 4. **if** (Region(l(v)) ganz in R)
- 5. REPORTSUBTREE(l(v))
- 6. **else if** (Region(l(v)) schneidet R)
- 7. SEARCHKDTREE(l(v), R)
- 8. **if** (Region(r(v)) ganz in R)
- 9. REPORTSUBTREE(r(v))
- 10. **else if** (Region(r(v)) schneidet R)
- 11. SEARCHKDTREE(r(v), R)

kd-Bäume - Beispiel





Welche Punkte liegen im Rechteck?

Antwort: p_7 p_6 p_8

kd-Bäume - Höhere Dimensionen

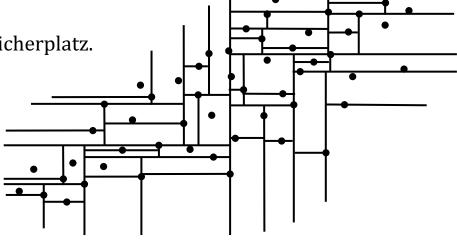
Bisher nur 1D und 2D betrachtet. Laufzeiten für $k \ge 2$ Dimensionen:

• BuildKDTree: $O(n \log n)$

• SearchKDTree: $O(n^{1-\frac{1}{k}} + x)$, um x Elemente auszugeben

• FindNearestNeighbor: $O(\log n)$ im Durchschnitt

Weiterer Vorteil: Sie benötigen nur O(n) Speicherplatz.



Klausur

Klausurinformationen

Tag:

13.02.2024

Zeit:

zwischen 08:30 Uhr und 10:30 Uhr (Dauer 2 Stunden)

Raum:

wird am 12.02.2024 bekanntgegeben

Mitbringen:

Studiausweis, Stift (blauer / schwarzer Kugelschreiber)

Klausurvorbereitung

Skript:

Gutes unterstützendes Material

Alte Klausuren:

Guter Überblick, was zu erwarten ist

Training!

Hausaufgaben, Kopfrechnen, ...

Tutoren:

Fragen an die Tutoren

