

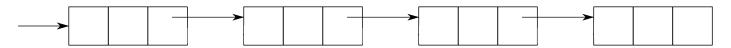
Algorithmen und Datenstrukturen – Übung #4 Dynamische Datenstrukturen

Ramin und Chek-Manh 11.01.2024

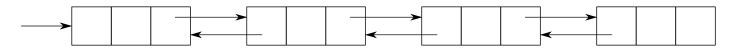
(Zyklisch) Verkettete Listen

Listen

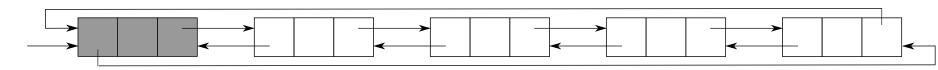
Einfach verkettet:



Doppelt verkettet:

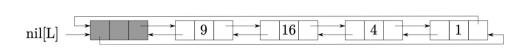


Zyklisch doppelt verkettet (mit Wächter):



Wächter

```
1: function LISTE-DELETE(L, x)
          if pred[x] \neq Nil then
2:
                \operatorname{succ}[\operatorname{pred}[x]] \leftarrow \operatorname{succ}[x]
3:
                                                                                              pred
                                                                                                                 key
                                                                                                                              succ
          else
4:
5:
                head[L] \leftarrow succ[x]
                                                                 head[L]
                                                                                                                 16
          if succ[x] \neq NIL then
6:
                \operatorname{pred}[\operatorname{succ}[x]] \leftarrow \operatorname{pred}[x]
7:
```



- 1: function LIST-DELETE'(L, x)
- 2: $\operatorname{succ}[\operatorname{pred}[x]] \leftarrow \operatorname{succ}[x]$
- 3: $\operatorname{pred}[\operatorname{succ}[x]] \leftarrow \operatorname{pred}[x]$

Laufzeiten in Listen

Operation	Einfach	Doppelt	Zyklisch
Suchen	O(n)	O(n)	O(n)
Einfügen	0(1)	0(1)	0(1)
Löschen	O(n)	0(1)	0(1)
Merge*	0(1)**	0(1)**	0(1)

^{*:} Verschmelze zwei Listen der Größe *n* und *m*.

^{**:} Sofern Adresse des letzten Elements bekannt. Andernfalls $O(\min(n, m))$.

Eingabe: Zusammenhängender Graph G mit höchstens 2 ungeraden Knoten

Ausgabe: Ein Eulerweg, bzw. eine Eulertour in G

- 1:) starte in einem Knoten v(wenn einer mit ungeradem Grad existiert, dort, sonst beliebig)
- 2: verwende Algorithmus 2.7, um einen Weg W von v aus zu bestimmen
- 3: while es existieren unbenutzte Kanten do
 - wähle einen Knoten w aus W mit positivem Grad im Restgraphen verwende Algorithmus 2.7, um einen Weg W' von w aus zu bestimmen verschmelze W und W'

Algorithmus 2.8: Hierholzers Algorithmus zum Finden eines Eulerweges oder einer Eulertour

$$\bigcap O(n+m)$$

$$O(m)$$
?

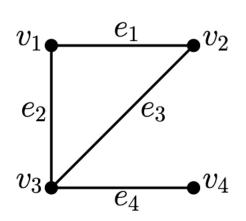
$$\triangle O(n+m)$$
?


```
Eingabe: Graph G
Ausgabe: Ein Weg in G
 1: starte in einem Knoten v_0
    (wenn einer mit ungeradem Grad existiert, dort, sonst beliebig)
 2: i \leftarrow 0
 3: while es gibt eine zu v_i inzidente, unbenutzte Kante do
       wähle eine zu v_i inzidente, unbenutzte Kante \{v_i, v_i\}
       laufe zum Nachbarknoten v_i
       lösche \{v_i, v_i\} aus der Menge der unbenutzten Kanten
    v_{i+1} \leftarrow v_i
      i \leftarrow i + 1
```

Algorithmus 2.7: Algorithmus zum Finden eines Weges in einem Graphen

Können wir einen Weg W in O(|W|) Zeit bestimmen? Ideen?

Benutze Adjazenzliste und Doppelt-Verkettete Listen.



 v_1 :

 v_2, v_3

 v_2 :

 v_3, v_1

 v_3 :

 v_1, v_2, v_4

 v_4 :

 v_3

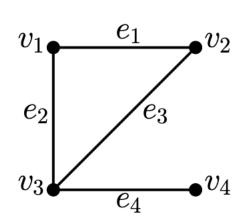
Benutze Adjazenzliste und Doppelt-Verkettete Listen.

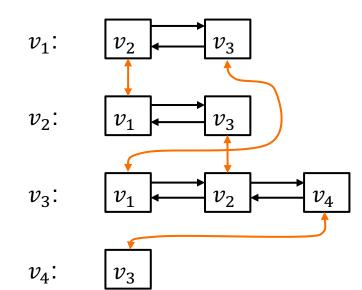
Verwende zusätzliche Pointer für gleiche Kante.

<i>v</i> ₁ :	v_2, v_3	v_1 : v_2 v_3
<i>v</i> ₂ :	v_3 , v_1	v_2 : v_1 v_3
<i>v</i> ₃ :	v_1, v_2, v_4	v_3 : v_1 v_2 v_4
v_4 :	v_3	v_4 : v_3

Benutze Adjazenzliste und Doppelt-Verkettete Listen.

Verwende zusätzliche Pointer für gleiche Kante.

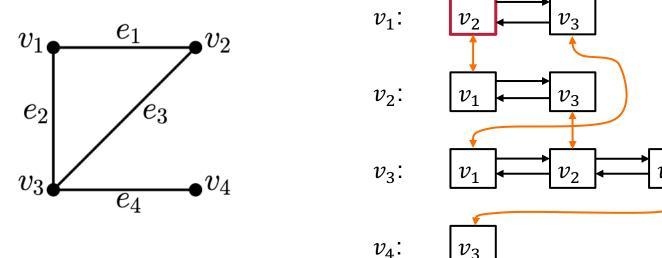




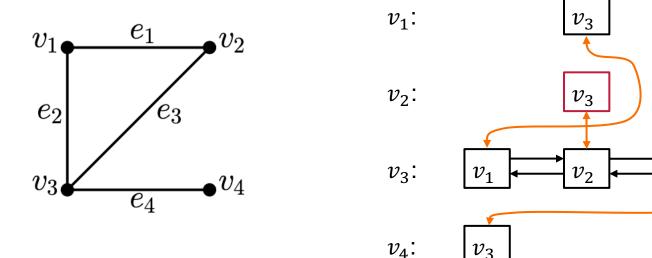
Starte bei v_1 und gehe zum nächsten Knoten.

Lösche die Kante aus der Adjazenzliste.

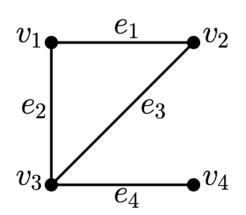
Alle Operationen kosten O(1) Zeit.

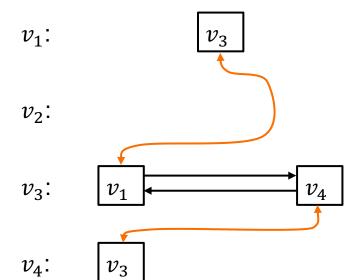


Starte bei v_1 und gehe zum nächsten Knoten. Lösche die Kante aus der Adjazenzliste. Alle Operationen kosten O(1) Zeit.



Starte bei v_1 und gehe zum nächsten Knoten. Lösche die Kante aus der Adjazenzliste. Alle Operationen kosten O(1) Zeit.





Eingabe: Zusammenhängender Graph G mit höchstens 2 ungeraden Knoten

Ausgabe: Ein Eulerweg, bzw. eine Eulertour in G

- 1:) starte in einem Knoten v(wenn einer mit ungeradem Grad existiert, dort, sonst beliebig)
- 2: verwende Algorithmus 2.7, um einen Weg W von v aus zu bestimmen
- 3: while es existieren unbenutzte Kanten do
 - wähle einen Knoten w aus W mit positivem Grad im Restgraphen verwende Algorithmus 2.7, um einen Weg W' von w aus zu bestimmen verschmelze W und W'

Algorithmus 2.8: Hierholzers Algorithmus zum Finden eines Eulerweges oder einer Eulertour

$$O(n+m)$$

$$\bigcap O(|W|)$$

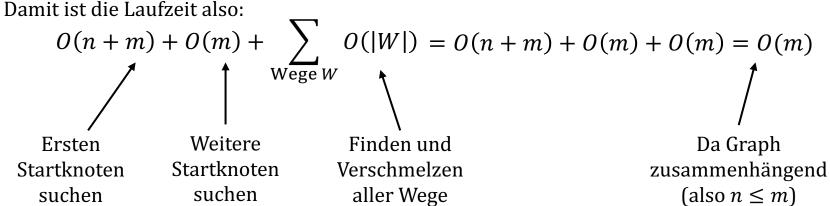
$$\triangle O(n+m)$$
?

$$O(n+m)$$
 $\bigcirc O(|W|)$ $\triangle O(n+m)$? $\bigcirc O(|W|+|W'|)$?

Nutze für die Eulertour/den Eulerweg auch eine zyklische doppelt-verkettete Liste.

Damit:

- Kosten für das Verschmelzen: *O*(1)
- Nächsten Startknoten suchen: O(m) über alle Iterationen



Vergleich zu Fleury

Algorithmus	Hierholzer		Fleury (mit Optimierungen)¹
Laufzeit	O(m)	$O(m^2)$	$O(m(\log m)^3\log\log m)$

Binäre Suchbäume

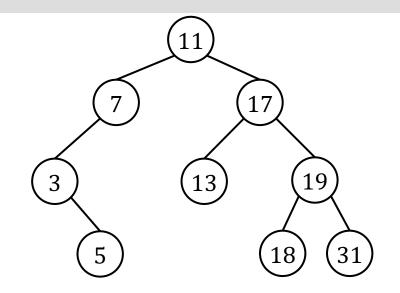
Bin. Suchbäume

Anstatt einen Nachfolger (Liste), benutze zwei:

- Ein linkes Kind (l[v])
- Ein rechtes Kind (r[v])

Verwalte zudem eine Totalordnung der Elemente:

- Schlüssel im linken Teilbaum sind kleiner
- Schlüssel im rechten Teilbaum sind größer



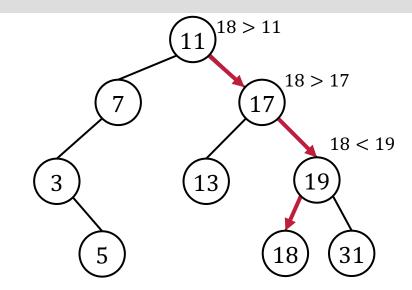
Beispiel:

Füge folgende Sequenz von Zahlen in einen bin. Suchbaum ein:

11, 17, 13, 19, 7, 3, 31, 18, 5

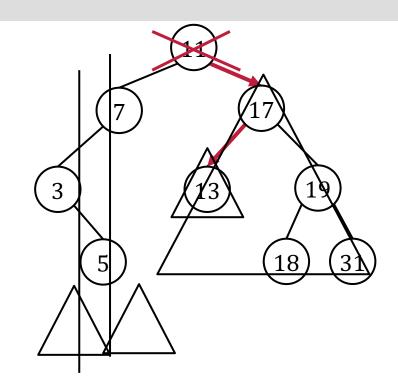
Operationen

- Insert (eben gesehen)
- Search
 - search(18)



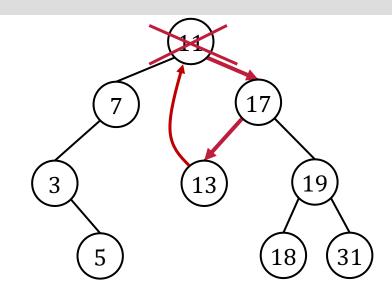
Operationen

- Insert (eben gesehen)
- Search
 - search(18)
- Vorgänger (pred)/Nachfolger (succ)
 - pred(5) =
 - pred(17) =
 - $\operatorname{succ}(11) =$
 - $\operatorname{succ}(5) =$
- Delete
 - delete (11)



Operationen

- Insert (eben gesehen)
- Search
 - search(18)
- Vorgänger (pred)/Nachfolger (succ)
 - pred(5) = 3
 - pred(17) = 13
 - succ(11) = 13
 - $\operatorname{succ}(5) = 7$
- Delete
 - delete (11)



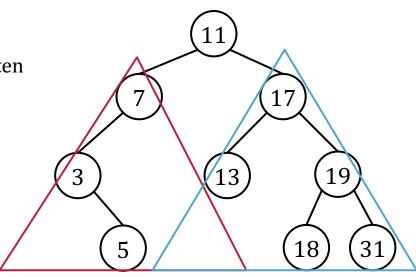
Traversierung

Wie durchläuft man einen binären Suchbaum?

Man unterscheidet unter anderem drei Möglichkeiten

- Inorder (Links, Wurzel, Rechts)
 - 3, 5, 7, 11, 13, 17, 18, 19, 31
- Preorder (Wurzel, Links, Rechts)
 - 11, 7, 3, 5, 17, 13, 19, 18, 31
- Postorder (Links, Rechts, Wurzel)
 - 5, 3, 7, 13, 18, 31, 19, 17, 11

$$h(W) = \max(h(L), h(R)) + 1$$



Traversierung

Inorder

Dank der Baumstruktur kann man das ganz einfach als Algorithmus aufschreiben.

```
function INORDER(v)function POSTORDER(v)function PREORDER(v)if (v \neq \text{NIL})if (v \neq \text{NIL})if (v \neq \text{NIL})INORDER(l(v))POSTORDER(l(v))print S(v)INORDER(r(v))PREORDER(l(v))INORDER(r(v))PREORDER(l(v))
```

Postorder

Preorder

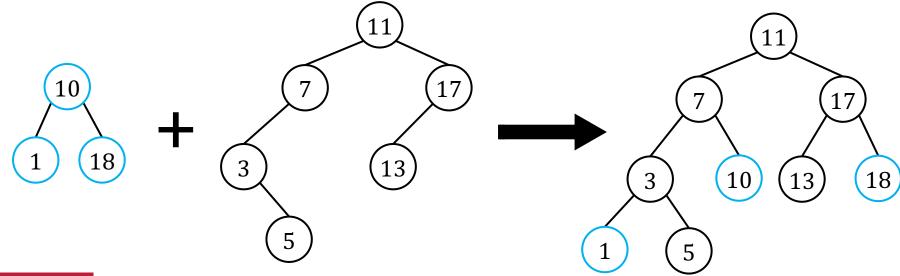
Verschmelzen von binären Suchbäumen

Merge - Das Problem

Gegeben: Zwei binäre Suchbäume mit *n* bzw. *m* Elementen.

Aufgabe: Konstruiere daraus einen Suchbaum mit n + m Elementen.

Wie (schnell) geht das?

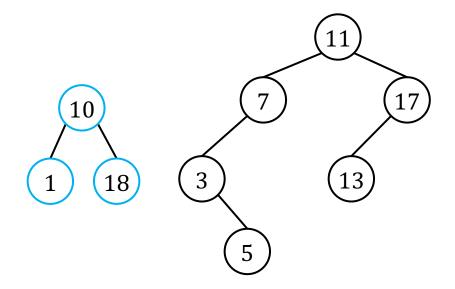


Idee



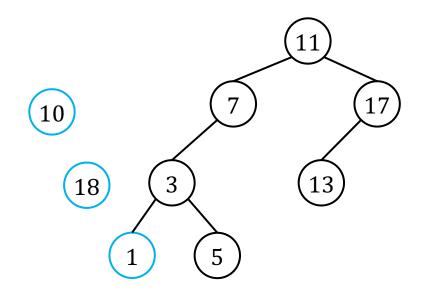
Idee

Für jeden Schlüssel *S* im ersten Suchbaum: Füge *S* in den zweiten Suchbaum ein.



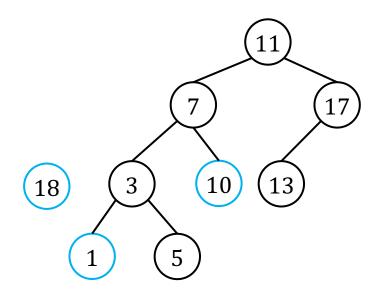
Idee

Für jeden Schlüssel *S* im ersten Suchbaum: Füge *S* in den zweiten Suchbaum ein.



Idee

Für jeden Schlüssel *S* im ersten Suchbaum: Füge *S* in den zweiten Suchbaum ein.



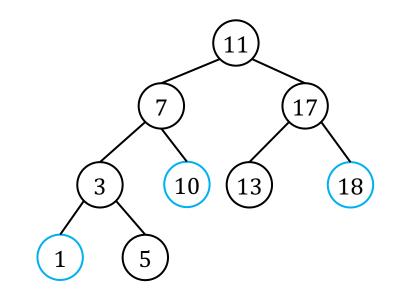
Idee

Für jeden Schlüssel *S* im ersten Suchbaum: Füge *S* in den zweiten Suchbaum ein.

Laufzeit

Jeder Schlüssel n muss in den zweiten Suchbaum der Höhe h_m eingefügt werden.

Entsprechend erhalten wir $O(n \cdot h_m)$, sowie $O(n \cdot m)$ im Worst-Case.

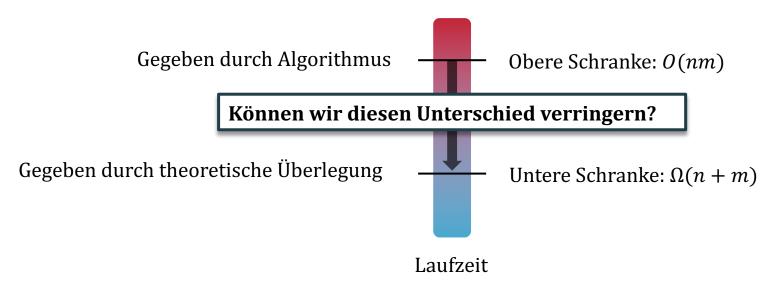


Ist das eine gute Laufzeit?

Ist das eine gute Laufzeit?

Wie lange braucht man mindestens?

Jeder Schlüssel muss mindestens einmal betrachtet werden. $\rightarrow \Omega(n+m)$



Ideen?

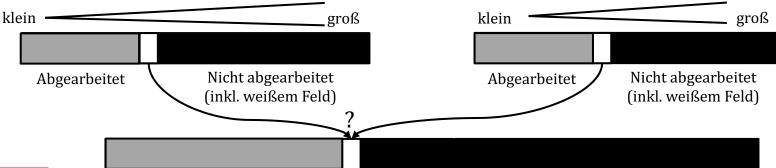
Merge – Alternative

Probieren wir folgende Strategie:

- 1. Transformiere beide Suchbäume in sortierte Arrays (durch inorder Traversierung).
- 2. Verschmelze beide Arrays in ein sortiertes Array.
- 3. Konstruiere aus dem sortierten Array einen Suchbaum.

Punkt 1 benötigt offensichtlich O(n + m) Zeit.

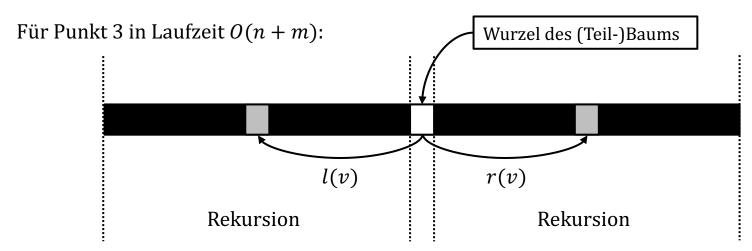
Für Punkt 2 benötigen wir O(n + m) Zeit:



Merge – Alternative

Probieren wir folgende Strategie:

- 1. Transformiere beide Suchbäume in sortierte Arrays (durch inorder Traversierung).
- 2. Verschmelze beide Arrays in ein sortiertes Array.
- 3. Konstruiere aus dem sortierten Array einen Suchbaum.



Einen binären Baum aus einem Array bauen

function BUILD_FROM_ARRAY
$$(A, p, r)$$

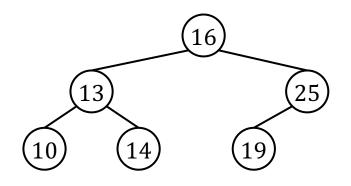
if $(p > r)$

return NIL

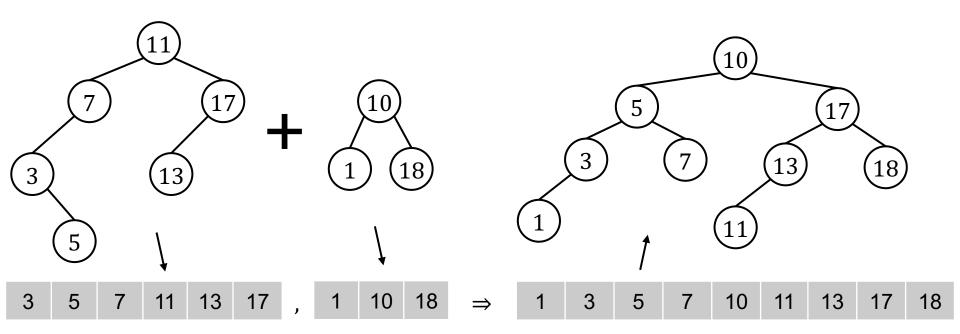
 $q = \left\lceil \frac{p+r}{2} \right\rceil$
 $root = \text{Tree}(A(q))$
 $l[root] = \text{BUILD_FROM_ARRAY}(A, p, q - 1)$
 $r[root] = \text{BUILD_FROM_ARRAY}(A, q + 1, r)$

return $root$

$$A = \{10, 13, 14, 16, 19, 25\}$$



Merge - Beispiel



Zusammenfassung: Laufzeiten in binären Suchbäumen

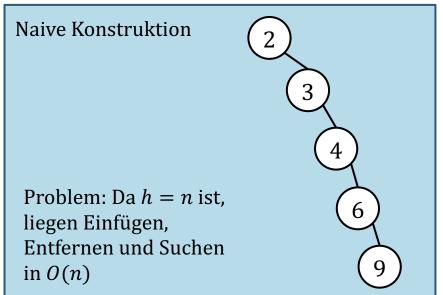
Zusammenfassung: Laufzeiten in binären Suchbäumen

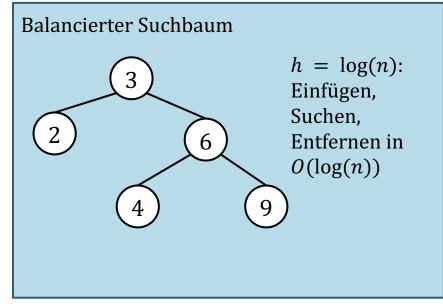
Operation	Laufzeit
Suchen	O(h)
Einfügen	O(h)
Löschen	O(h)
Traversierung	O(n)
Merge	O(n+m)

Balancierte Suchbäume - Motivation

Wir wissen: Einfügen, Entfernen und Suchen in binären Suchbäumen geht in O(h).

Konstruiere den folgenden Suchbaum durch Einfügen von 2, 3, 4, 6, 9:



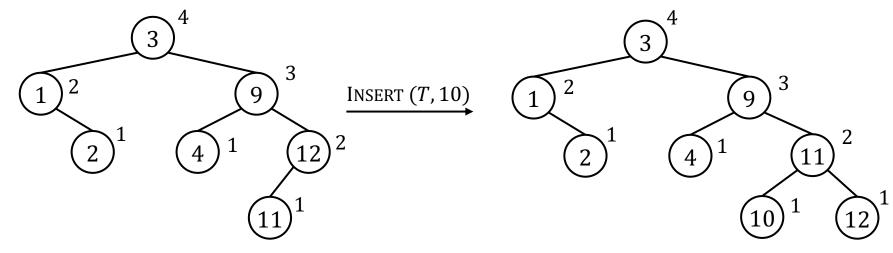


AVL-Bäume

AVL-Bäume – Definition

Ein AVL-Baum besitzt folgenden Eigenschaften:

- Er ist ein binärer Suchbaum.
- Höhe des linken und rechten Teilbaums jeden Knotens unterscheidet sich um maximal 1.



AVL-Bäume – Operationen

Operationen für binäre Suchbäume funktionieren auch für AVL-Bäume, d.h. wir können:

- Insert
- Delete
- Minimum/Maximum
- Predecessor/Successor
- ...

ausführen.

Um die Balancierung zu erhalten, müssen nur Operationen verändert werden, die die Struktur des Baumes verändern.

Das sind Insert und Delete.

AVL-Bäume

Bei Insert und Delete stellen sich nun folgende Fragen:

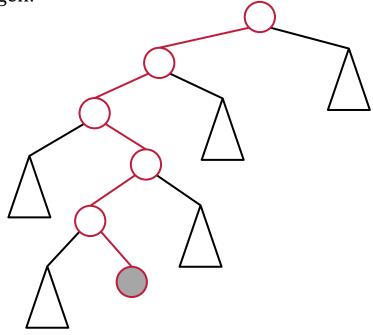
- 1. Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?

AVL-Bäume

Bei Insert und Delete stellen sich nun folgende Fragen:

- 1. Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?

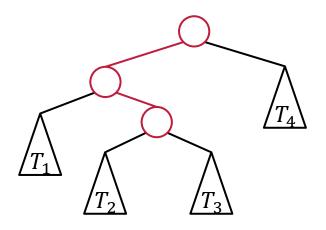
Nur Knoten, die auf dem Pfad von der Wurzel zum eingefügten/gelöschten Knoten liegen können unbalanciert werden.



Bei Insert und Delete stellen sich nun folgende Fragen:

- 1. Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?

Betrachte den unbalancierten Knoten *z*, sein Kind *y* und dessen Kind *x*.

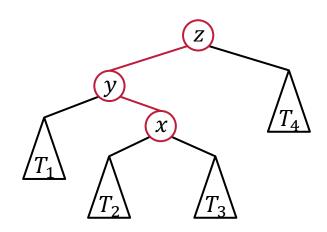


Bei Insert und Delete stellen sich nun folgende Fragen:

- 1. Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?

Betrachte den unbalancierten Knoten *z*, sein Kind *y* und dessen Kind *x*.

Sortiere Elemente aufsteigend und rotiere entsprechend.



Bei Insert und Delete stellen sich nun folgende Fragen:

- Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?

Betrachte den unbalancierten Knoten *z*, sein Kind *y* und dessen Kind *x*.

Sortiere Elemente aufsteigend und rotiere entsprechend.

Mittleres Element

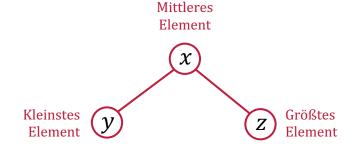
Bei Insert und Delete stellen sich nun folgende Fragen:

- 1. Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?

Betrachte den unbalancierten Knoten *z*, sein Kind *y* und dessen Kind *x*.

Sortiere Elemente aufsteigend und rotiere entsprechend.

Die Teilbäume T_1 , ... T_4 werden wieder an den neuen, rotierten Baum angehängt.



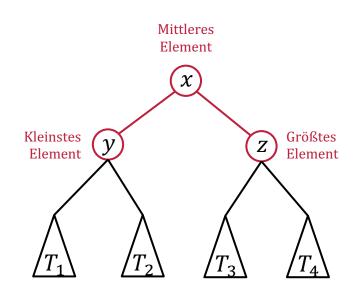
Bei Insert und Delete stellen sich nun folgende Fragen:

- 1. Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?

Betrachte den unbalancierten Knoten *z*, sein Kind *y* und dessen Kind *x*.

Sortiere Elemente aufsteigend und rotiere entsprechend.

Die Teilbäume T_1 , ... T_4 werden wieder an den neuen, rotierten Baum angehängt.



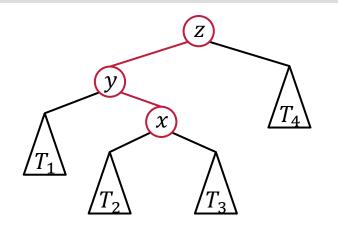
Bei Insert und Delete stellen sich nun folgende Fragen:

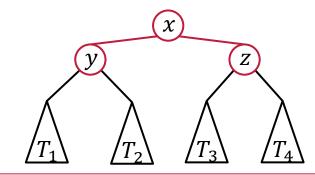
- 1. Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- Welche Regeln sollte man berücksichtigen?

Betrachte den unbalancierten Knoten *z*, sein Kind *y* und dessen Kind *x*.

Sortiere Elemente aufsteigend und rotiere entsprechend.

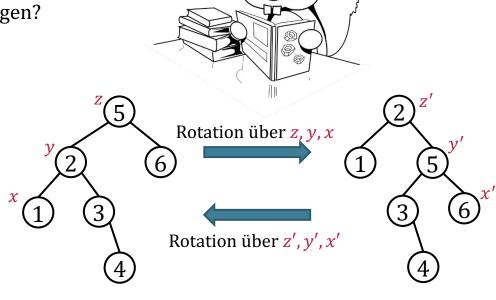
Die Teilbäume T_1 , ... T_4 werden wieder an den neuen, rotierten Baum angehängt.





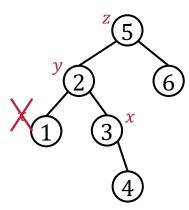
Bei Insert und Delete stellen sich nun folgende Fragen:

- Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?



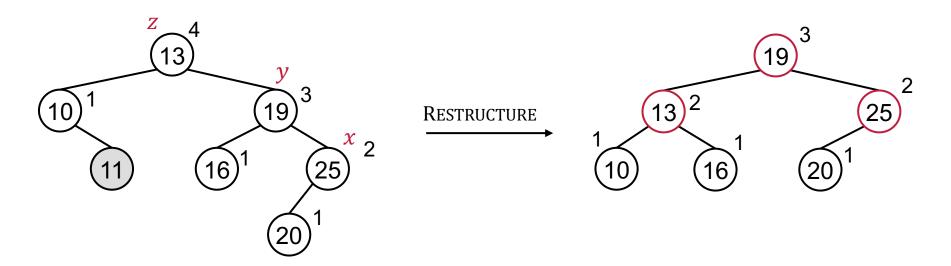
Bei Insert und Delete stellen sich nun folgende Fragen:

- 1. Welche Knoten werden unbalanciert?
- 2. Wie stellt man die Balance wieder her?
- 3. Welche Regeln sollte man berücksichtigen?
- 1. Starte bei tiefstem unbalancierten Knoten: Das ist z.
- 2. Wähle Kinder (x, y) nach deren Höhe aus.



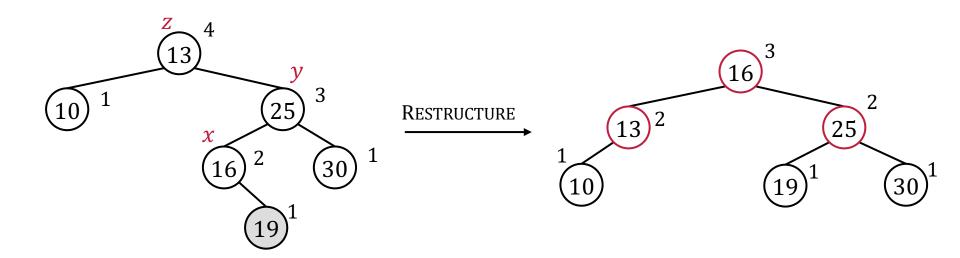
AVL-Bäume – Beispiele

DELETE(T, 11)



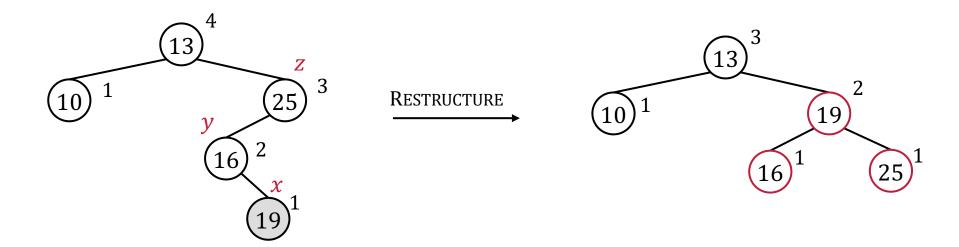
AVL-Bäume – Beispiele

INSERT(T, 19)



AVL-Bäume – Beispiele

INSERT(T, 19)



AVL Restructure - Zusammenfassung

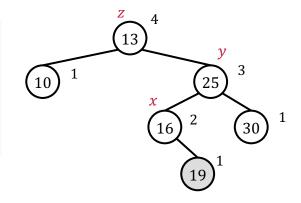
Ist nach Insert oder Delete die AVL-Eigenschaft verletzt, kann diese mit Restructure wiederhergestellt werden.

Nach Insert reicht ein Restructure-Aufruf, um die Höhenbalanciertheit wiederherzustellen.

Nach Delete können mehrere (genauer gesagt $O(\log n)$ viele) Aufrufe von Restructure nötig sein.

RESTRUCTURE verlangt drei Knoten x, y und z als Argumente:

- Starte beim tiefsten unbalancierten Knoten: Das ist z.
- Das Kind von z mit größerer Höhe ist y.
- Das Kind von y mit größerer Höhe ist x.



Fragen?

