

Algorithmen und Datenstrukturen – Übung #2

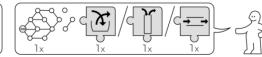
BFS, DFS und Wachstum von Funktionen

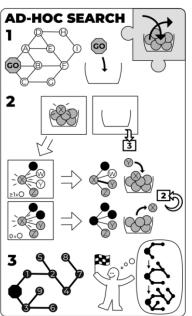
Ramin Kosfeld & Chek-Manh Loi 30.11.2023

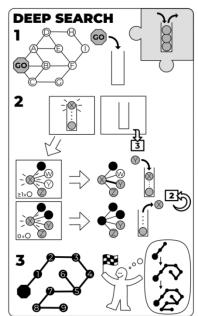
Suche in Graphen

GRÅPH SKÄN

idea-instructions.com/graph-scan/ v1.2, CC by-nc-sa 4.0



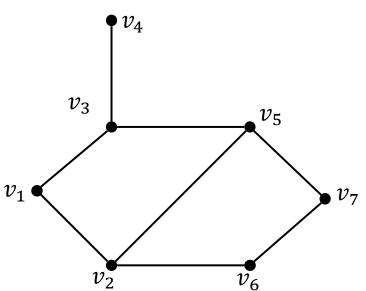


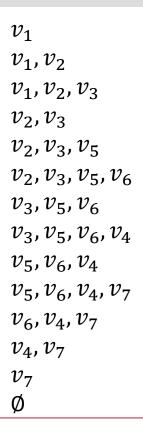




Breitensuche

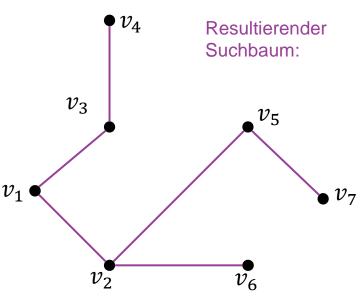
Benutze Warteschlange Prinzip: First-in-first-out

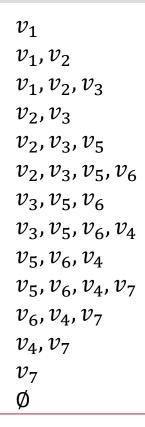




Breitensuche

Benutze Warteschlange Prinzip: First-in-first-out

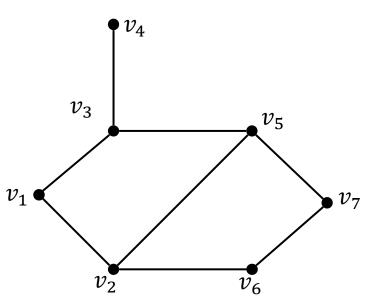


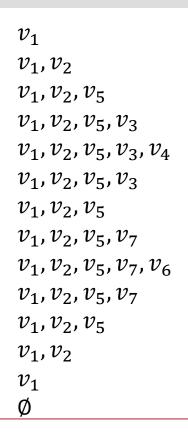


Tiefensuche

Benutze Stapel

Prinzip: Last-in-first-out

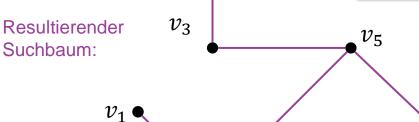




Tiefensuche

Benutze Stapel Prinzip: Last-in-first-out

Suchbaum:



 v_6

 v_4

Beliebte Fehler

- Leere Menge am Ende vergessen
- Nicht jede Änderung angegeben
- Suchbaum nicht angegeben

 v_7

Nicht den kleinsten Index beachtet

 v_1, v_2, v_5, v_3, v_4 v_1, v_2, v_5, v_3

 v_1, v_2, v_5

 v_1, v_2, v_5, v_7

 v_1, v_2, v_5, v_7, v_6

 v_1, v_2, v_5, v_7

 v_1, v_2, v_5

 v_1, v_2

 v_1

Six Degrees of Kevin Bacon

Finde kürzesten Weg von einem Schauspieler über Filme zu Kevin Bacon

Finde kürzesten Weg von einer Seite über enthaltene Links zu einer anderen

Six Degrees of Kevin Bacon

Finde kürzesten Weg von einem Schauspieler über Filme zu Kevin Bacon

Ungerichteter Graph

Hin- und Rückweg sind gleich lang

vs. Six Degrees of Wikipedia

Finde kürzesten Weg von einer Seite über enthaltene Links zu einer anderen

Gerichteter Graph

Hin- und Rückweg können unterschiedlich lang sein

Labyrinthe

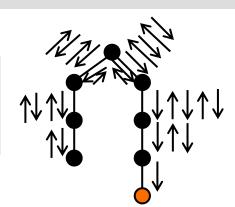
Zeit für ein Labyrinth

Wie oft muss man durch die Gänge des Labyrinths laufen, wenn man...

- 1. BFS, oder
- 2. DFS nutzt?

BFS - Worst-Case

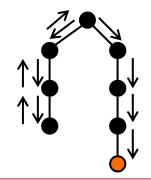
 $\Omega(n^2)$ mal über Kanten laufen!



DFS schafft das schneller!

Man kann zeigen:

- Jede Kante wird maximal zwei Mal benutzt.
- Man benötigt maximal 2n-1 Schritte
- Es gibt Bäume, bei denen 2n-1 Schritte benötigt werden



Wachstum von Funktionen

Wir arbeiten mit Pseudocode

- Die genaue Laufzeit und Speicherbedarf sind stark von der Implementierung abhängig
- Gerade, wenn wir nur mit Pseudocode arbeiten, ist es *überhaupt nicht* sinnvoll, eine genaue Funktion anzugeben
- → Wir wollen nur eine grobe Abschätzung, eine Reduzierung auf das Wesentliche (eine Abschätzung, die für alle korrekten Implementierungen gilt!)
- → In welcher Ordnung wächst die entsprechende Funktion?

Die Idee

Laufzeit und Speicherbedarf sind Funktionen. Wir wollen also Funktionen untersuchen, ...

Unabhängig von konstanten Faktoren

- die kennen wir *eh nicht*

Betrachte die Entwicklung auf lange Sicht

- für *immer größere* Eingaben

→ Ordne so das Wachstum der Funktion in eine Klasse ein

Preliminaries

Betrachte Laufzeit / Speicher etc. als Funktion $T: \mathbb{N} \to \mathbb{R}^+$

 \rightarrow Die Funktion ist abhängig von der *Größe der Eingabe* n.

Verschiedene Systeme liefern verschiedene Laufzeiten, z.B. $T_1(n)$ und $T_2(n)$.

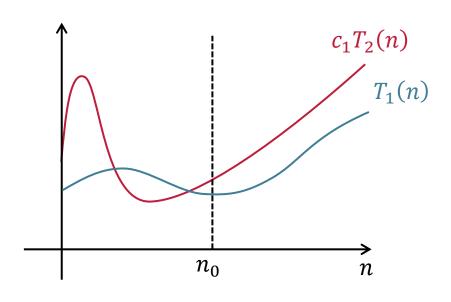
O-Notation

Definition:

Es gibt Konstanten $n_0 \in \mathbb{N}$ und $c_1 \in \mathbb{R}^+$, sodass für alle $n \ge n_0$ gilt:

$$0 \le T_1(n) \le c_1 T_2(n)$$

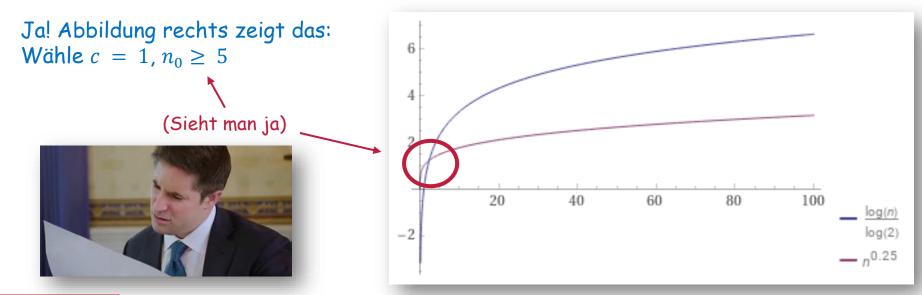
$$T_1(n) \in \mathcal{O}(T_2(n))$$



" T_1 wächst (asymptotisch) höchstens so schnell wie T_2 "

Wie zeigen wir Zugehörigkeit?

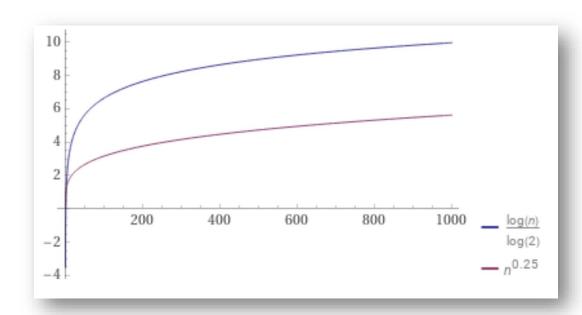
 $Ist n^{0.25} \in O(\log_2 n)?$



Wie zeigen wir Zugehörigkeit?

Ist $n^{0.25} \in O(\log_2 n)$?

Ja! Abbildung rechts zeigt das: Wähle $c = 1, n_0 \ge 5$



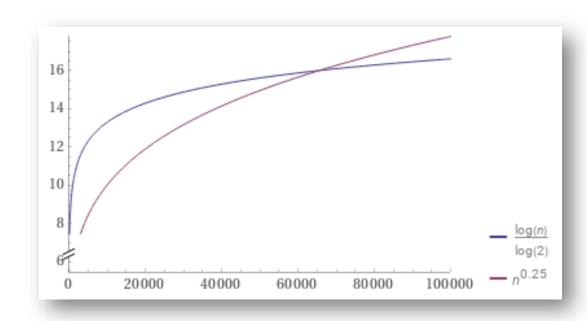
Wie zeigen wir Zugehörigkeit?

 $\operatorname{lst} n^{0.25} \in O(\log_2 n)?$

Ja! Abbildung rechts zeigt das: Wähle c=1, $n_0 \ge 5$

Auch wenn es für kleine n gut aussieht, kann es für große n anders sein!

Letztendlich muss eine Allaussage bewiesen werden: "Für alle $n \geq n_0$ "



Eine bessere Möglichkeit:

Zeige
$$4n^2 + 12n - 15 \in \mathcal{O}(n^2)$$

Bestimme n_0 und c_1 , sodass für alle $n \ge n_0$ gilt: $0 \le 4n^2 + 12n - 15 \le c_2 \cdot n^2$

Suche nach c_1

$$4n^2 + 12n - 15 \le$$

Also: $4n^2 + 12n - 15 \le 16n^2$ für $n \ge 1$.

Die Aussagen oben gelten ab $n_0 = 1$.

Also haben wir mit $c_1 = 16$ und $n_0 = 1$ Werte für die Konstanten gefunden, für die die Definition gilt.

Eine bessere Möglichkeit:

Zeige
$$4n^2 + 12n - 15 \in \mathcal{O}(n^2)$$

Bestimme n_0 und c_1 , sodass für alle $n \ge n_0$ gilt: $0 \le 4n^2 + 12n - 15 \le c_2 \cdot n^2$

Suche nach c_1

$$4n^2 + 12n - 15 \le 4n^2 + 12n \le 4n^2 + 12n^2 = 16n^2$$
 für $n \ge 1$.

Also: $4n^2 + 12n - 15 \le 16n^2$ für $n \ge 1$.

Die Aussagen oben gelten ab $n_0 = 1$.

Also haben wir mit $c_1 = 16$ und $n_0 = 1$ Werte für die Konstanten gefunden, für die die Definition gilt.

Damit ist $4n^2 + 12n - 15 \in \mathcal{O}(n^2)$.

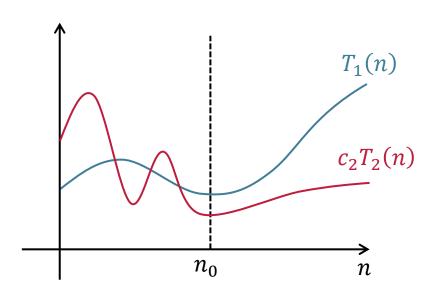
Ω -Notation

Definition:

Es gibt Konstanten $n_0 \in \mathbb{N}$ und $c_2 \in \mathbb{R}^+$, sodass für alle $n \ge n_0$ gilt:

$$T_1(n) \ge c_2 T_2(n) \ge 0$$

$$T_1(n) \in \Omega(T_2(n))$$



" T_1 wächst (asymptotisch) mindestens so schnell wie T_2 "

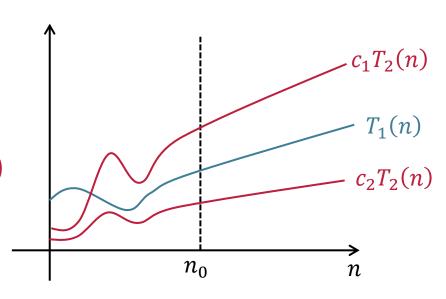
O-Notation

Definition:

Es gibt Konstanten $n_0 \in \mathbb{N}$ und $c_1, c_2 \in \mathbb{R}^+$, sodass für alle $n \ge n_0$ gilt:

$$0 \le c_2 T_2(n) \le T_1(n) \le c_1 T_2(n)$$

$$T_1(n) \in \Theta(T_2(n))$$



" T_1 wächst (asymptotisch) genau so schnell wie T_2 "

Zusammengefasst

Achtung:

 \mathcal{O} , Ω und Θ sind *Mengen* (von Funktionen)!

Wir haben folgende drei Definitionen gesehen:

O-Notation:

Es gibt Konstanten $n_0 \in \mathbb{N}$ und $c_1 \in \mathbb{R}^+$, sodass für alle $n \ge n_0$ gilt: $0 \le T_1(n) \le c_1 T_2(n) \Leftrightarrow T_1(n) \in \mathcal{O}\big(T_2(n)\big)$

Ω -Notation:

Es gibt Konstanten $n_0 \in \mathbb{N}$ und $c_2 \in \mathbb{R}^+$, sodass für alle $n \ge n_0$ gilt: $T_1(n) \ge c_2 T_2(n) \ge 0 \Leftrightarrow T_1(n) \in \Omega \big(T_2(n) \big)$

Θ-Notation:

Es gibt Konstanten $n_0 \in \mathbb{N}$ und $c_1, c_2 \in \mathbb{R}^+$, sodass für alle $n \ge n_0$ gilt: $0 \le c_2 T_2(n) \le T_1(n) \le c_1 T_2(n) \Leftrightarrow T_1(n) \in \Theta(T_2(n))$

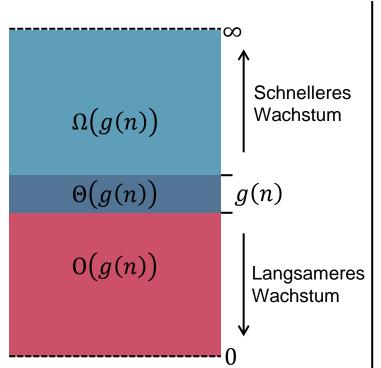
→ "Landau-Symbole"

Rechenregeln

Ganz grundsätzlich gelten diese Beobachtungen:

$$f \in \mathcal{O}(g) \Leftrightarrow c \cdot f \in \mathcal{O}(g) \text{ für } c \in \mathbb{R}^+$$
 $f \in \mathcal{O}(g) \Leftrightarrow g \in \Omega(f)$
 $f \in \mathcal{O}(g) \Leftrightarrow f \in \mathcal{O}(g) \land f \in \Omega(g)$
 $f \in \mathcal{O}(g) \Leftrightarrow g \in \mathcal{O}(f)$

Relationen zwischen Klassen - Eine grafische Darstellung



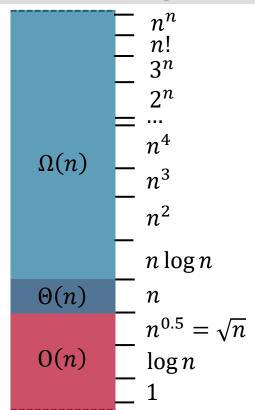
Wir können sogar Klassen miteinander vergleichen. Beispiel:

$$\Theta(n^2) \subsetneq \Omega(n)$$

Zum Merken: Wächst die Funktion schneller, wächst der *O*-Bereich und der Ω-Bereich schrumpft.



Relationen zwischen Klassen - Eine grafische Darstellung



Relationen zwischen Klassen – Eine Tabelle

Bedingung	Klasse Klasse	O(g(n))	$\Thetaig(g(n)ig)$	$\Omegaig(g(n)ig)$	
$f(n) \in o(a(n))$	O(f(n))	Ç	X	Х	
$f(n) \in o(g(n))$ $(o(g(n)) = o(g(n)) \setminus \Theta(g(n)))$	$\Theta(f(n))$	Ç	X	Х	
"Klein-o-Notation"	$\Omega(f(n))$	X	⊋	⊋	
	O(f(n))	Ш	⊋	X	
$f(n) \in \Theta(g(n))$	$\Theta(f(n))$	Ç	=	U ļ	
	$\Omega(f(n))$	X	⊋	II	
$f(n) \in \omega(a(n))$	O(f(n))	⊋	⊋	X	
$f(n) \in \omega(g(n))$ $(\omega(g(n)) := \Omega(g(n)) \setminus \Theta(g(n)))$	$\Theta(f(n))$	X	X	Ļ	
"Klein-ω-Notation"	$\Omega(f(n))$	X	X	Ç	

Zeige
$$4n^2 + 12n - 15 \in \Theta(n^2)$$

Bestimme n_0 , c_1 , c_2 , sodass für alle $n \ge n_0$ gilt: $0 \le c_1 \cdot n^2 \le 4n^2 + 12n - 15 \le c_2 \cdot n^2$

Suche nach c_2

$$4n^2 + 12n - 15$$

Suche nach c_1

$$4n^2 + 12n - 15$$

Zeige
$$4n^2 + 12n - 15 \in \Theta(n^2)$$

Bestimme n_0 , c_1 , c_2 , sodass für alle $n \ge n_0$ gilt: $0 \le c_1 \cdot n^2 \le 4n^2 + 12n - 15 \le c_2 \cdot n^2$

Suche nach c_2

$$4n^2 + 12n - 15 \le 4n^2 + 12n \le 4n^2 + 12n^2 = 16n^2$$
 für $n \ge 1$.

Suche nach c_1

$$4n^2 + 12n - 15 \ge 4n^2 - 15 \stackrel{n \ge 4}{\ge} 4n^2 - n^2 = 3n^2 \text{ für } n \ge 4.$$

Beide Ungleichungen gelten ab $n_0 = 4$. Also $c_1 = 3$, $c_2 = 16$ und $n_0 = 4$.

Zeige oder widerlege: $2^n \in \Theta(3^n)$

Zunächst: $2^n \in \mathcal{O}(3^n)$, denn $2^n \le (2+1)^n = 3^n$.

Aber: $2^n \notin \Omega(3^n)!$

Ansonsten gäbe es eine Konstante c_1 mit

$$2^n \ge c_1 \cdot 3^n$$
, also $\frac{2^n}{3^n} \ge c_1$

Aber: $\frac{2^n}{3^n} = \left(\frac{2}{3}\right)^n$ und $\lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$, d.h. dieses c_1 kann nicht existieren!

⇒ Aussage widerlegt.

 $\log_2 n \in \mathcal{O}(n)$

Satz (1): Für jedes c>0 gibt es ein n_0 , sodass für alle $n\geq n_0$ gilt: $\log_2 n\leq c\cdot n$

Beweisidee: Zeige, dass $\lim_{n\to\infty}\frac{\log_2 n}{n}=0$, d.h. für wachsendes n kommen wir beliebig nah an 0 heran. D.h. wir können n_0 so wählen, dass $\frac{\log_2 n}{n}\leq c$ für alle $n\geq n_0$ gilt.

Satz (1): Für jedes c > 0 gibt es ein n_0 , sodass für alle $n \ge n_0$ gilt: $\log_2 n \le c \cdot n$

Satz (2): Seien
$$a, b \in \mathbb{R}^+$$
. Dann gilt $\log_2^a n \in \mathcal{O}(n^b)$.

$$\log_2^a n = (\log_2 n)^a$$

Beweis: Wir setzen c = 1. Wir zeigen, dass ab einem n_0 gilt:

$$\log_{2}^{a} n \leq n^{b}$$

$$\Leftrightarrow \qquad \log_{2} \log_{2}^{a} n \leq \log_{2} n^{b}$$

$$\Leftrightarrow \qquad a \cdot \log_{2} \log_{2} n \leq b \cdot \log_{2} n$$

$$\Leftrightarrow \qquad \log_{2} n \leq \frac{b}{a} m$$

Da $a, b \in \mathbb{R}^+$ ist auch $\frac{b}{a} \in \mathbb{R}^+$. Nach Satz (1) oben ist die letzte Ungleichung ab einem n_0 wahr. Da wir Äquivalenzumformungen benutzt haben, können wir die Lösungskette von unten nach oben gehen.

Codierungsgrößen

Codierungsgrößen

Wie viel Speicher brauchen wir, um Dinge im Speicher darzustellen?

Speicherbedarf einschätzen

Eingabegröße bestimmen

$$speicher(n) \in \mathcal{O}(n^2)$$

Wir geben Laufzeit- / Speicherverhalten immer in Abhängigkeit von der Größe der Eingabe an

Codierungsgröße - Zahlen

Dezimal

27

b-adische Notation

- Dezimal (10-adisch)
- Binär (2-adisch)
- Oktal (8-adisch)
- Hexadezimal (16-adisch)

Codierungsgröße - Zahlen

Dezimal	Unär	Binär	Oktal	Hexadezimal
27	шшшшшш	11011	33	1B

b-adische Notation

- Dezimal (10-adisch)
- Binär (2-adisch)
- Oktal (8-adisch)
- Hexadezimal (16-adisch)
- Allgemein: $a_m a_{m-1} \dots a_1 a_0$, $a_{-1} a_{-2} \dots a_{-\infty}$ wobei $n = \sum_{i=-\infty}^m a_i b^i$ und $0 \le a < b$

Codierungsgröße - Zahlen

Dezimal	Unär	Binär	Oktal	Hexadezimal
27	шшшшшш	11011		

b-adische

- Dezin
- Binär
- Oktal
- Hexade

-WIDCII)

TL;DR: Codierungsgrößen

Ganze Zahlen belegen logarithmisch viel Speicher (zur maximalen Zahlengröße)

Allgemein: $a_m a_{m-1} \dots a_1 a_0$, $a_{-1} a_{-2} \dots a_{-\infty}$ wobei $n = \sum_{i=-\infty}^m a_i b^i$ und $0 \le a < b$

Codierungsgröße - Beispiele

• Zeichenketten/Strings $S: \approx |S| \cdot \log N$ für N mögliche Zeichen.

"(>o.o)>einfach_orangensaft<(o.o<)"

Beispiel ASCII-Zeichen

7 bits pro Symbol → 128 mögliche Zeichen

Code	0	1	2	3	4	5	6	7	8	9	A	В	c	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	11	#	\$	%	&	r	()	*	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	:	,	<	=	>	?
4	@	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	V	W	X	Y	Z	[\]	٨	_
6	`	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0
7	р	q	r	S	t	u	٧	W	x	у	Z	{		}	~	DEL

Codierungsgröße - Beispiele

• Zeichenketten/Strings $S: \approx |S| \cdot \log N$ für N mögliche Zeichen.

"(>o.o)>einfach_orangensaft<(o.o<)"

Punktmenge *P* in *d* Dimensionen mit *N* als die größtmögliche Koordinate:

$$\approx d \cdot |P| \cdot \log N$$
,

 $n \times m$ -Matrizen mit dem größtmöglichen Wert *N*:

$$\approx n \cdot m \cdot \log(N)$$
,

$$\begin{pmatrix} 5 & 12 & 1 \\ 6 & 22 & 5 \\ 0 & 42 & 21 \end{pmatrix}$$

... nächstes Mal:

... vollständige Induktion!

