Computational Geometry Tutorial #3 — Polygon operations & Farthest point pairs

Peter Kramer

December 7, 2023

Point sets, hulls, and polygons Refresh: What's the difference?

A point set \mathscr{P}

 $\operatorname{conv}(\mathscr{P})$

A polygon P on \mathscr{P}

Boolean Operations

Boolean Operations on Convex Polygons

Given two convex Polygons P and Q, we seek to determine: $P \cap Q, P \cup Q, P \setminus Q, (Q \setminus P)$

Tools

Point-Line Test

 $\mathcal{O}(1)$

 $\mathcal{O}(\log n)$ (If P convex)

Point Location Problem

Intersection Test

 $\mathcal{O}(1)$

Naive Algorithm using these tools Eliminate/Add points, then recompute convex hull

- Convex polygons $P := p_1, \ldots, p_n$ and Given: $Q := q_1, \ldots, q_m.$
- Wanted: The convex polygon $P \cap Q$.
- Determine extreme points of $P \cap Q$ in $\mathcal{O}(n^2)$, Idea: then compute the convex hull in $\mathcal{O}(n \log h)$.

This gives us an $\mathcal{O}(n^2)$ -algorithm.

Convex polygons ... can be decomposed!

- Given $P = p_1, ..., p_n$
- Compute p_{\min} and p_{\max} in $\mathcal{O}(n)$ along the y-axis
- We obtain P_L and P_R :

$$P_L = p_{\text{max}}, \dots, p_{\text{min}}$$
$$P_R = p_{\text{min}}, \dots, p_{\text{max}}$$

Towards an $\mathcal{O}(n)$ -Algorithm Using left- and right decomposition

If we slice through P and Q horizontally, at some y (see right, exaggerated):
(a) P and Q do not intersect,
(b) P and Q overlap partially, or
(c) one contains the other.

Towards an O(n)-Algorithm Using left- and right decomposition

- If we slice through P and Q horizontally, at some y (see right, exaggerated): (a) P and Q do not intersect, (b) P and Q overlap partially, or (c) one contains the other.
- Each case corresponds to an *x*-order of the chains at that y-coordinate.

Farthest point pairs

Farthest Point Pairs

Let \mathscr{P} be a finite point set in general position.

The farthest point pair of \mathscr{P} consists of two vertices of the convex hull.

Farthest Point Pairs

Let \mathscr{P} be a finite point set in general position.

The farthest point pair of \mathscr{P} consists of two vertices of the convex hull.

Two points of \mathscr{P} are antipodal if there exist parallel lines through them which do not cut the hull.

Argue that the farthest pair is antipodal.

Farthest Point Pairs

Let \mathscr{P} be a finite point set in general position.

The farthest point pair of \mathscr{P} consists of two vertices of the convex hull.

Two points of \mathscr{P} are antipodal if there exist parallel lines through them which do not cut the hull.

How can we use this?

Rotating Callipers Algorithm Michael Shamos, 1978

Idea: Compute convex hull, then enumerate antipodal pairs and track the farthest one.

To achieve this, "rotate" parallel lines around the point set.

Rotating Callipers Algorithm Michael Shamos, 1978

machine

Distances [edit]

- Diameter (maximum width) of a convex polygon^{[6][7]}
- Maximum distance between two convex polygons^{[9][10]}
- Minimum distance between two convex polygons^{[11][12]}

Bounding boxes [edit]

- Minimum area oriented bounding box
- Minimum perimeter oriented bounding box

Triangulations [edit]

- Onion triangulations
- Spiral triangulations
- Quadrangulation
- Nice triangulation
- Art gallery problem
- Wedge placement optimization problem^[15]

Multi-polygon operations [edit]

- Union of two convex polygons
- Common tangents to two convex polygons
- Intersection of two convex polygons^[16]
- Critical support lines of two convex polygons
- Vector sums (or Minkowski sum) of two convex polygons^[17]
- Convex hull of two convex polygons

Traversals [edit]

- Shortest transversals^{[18][19]}
- Thinnest-strip transversals^[20]

Others [edit]

- Non parametric decision rules for machine learned classification^[21]
- Aperture angle optimizations for visibility problems in computer vision^[22]
- Finding longest cells in millions of biological cells^[23]
- Comparing precision of two people at firing range
- Classify sections of brain from scan images

