Computational Geometry
 Tutorial \#3 - Polygon operations \& Farthest point pairs

Point sets, hulls, and polygons

Refresh: What's the difference?

A point set \mathscr{P}

$\operatorname{conv}(\mathscr{P})$

A polygon P on \mathscr{P}

Boolean Operations

Boolean Operations on Convex Polygons

Given two convex Polygons P and Q, we seek to determine:

$$
P \cap Q, P \cup Q, P \backslash Q,(Q \backslash P)
$$

Tools

Point-Line Test

O(1)

Point Location Problem

$\mathcal{O}(\log n)$
(If P convex)

Intersection Test

$\mathcal{O}(1)$

Naive Algorithm using these tools

Eliminate/Add points, then recompute convex hull

Given: Convex polygons $P:=p_{1}, \ldots, p_{n}$ and

$$
Q:=q_{1}, \ldots, q_{m} .
$$

Wanted: The convex polygon $P \cap Q$.

Idea: Determine extreme points of $P \cap Q$ in $\mathcal{O}\left(n^{2}\right)$, then compute the convex hull in $\mathcal{O}(n \log h)$.

This gives us an $\mathcal{O}\left(n^{2}\right)$-algorithm.

Convex polygons

... can be decomposed!

- Given $P=p_{1}, \ldots, p_{n}$
- Compute $p_{\text {min }}$ and $p_{\text {max }}$ in $\mathcal{O}(n)$ along the y-axis
- We obtain P_{L} and P_{R} :

$$
\begin{aligned}
P_{L} & =p_{\max }, \ldots, p_{\min } \\
P_{R} & =p_{\min }, \ldots, p_{\max }
\end{aligned}
$$

Towards an $\mathcal{O}(n)$-Algorithm Using left- and right decomposition

- If we slice through P and Q horizontally, at some y (see right, exaggerated):

(a) P and Q do not intersect,
(b) P and Q overlap partially, or
(c) one contains the other.

Towards an $\mathcal{O}(n)$-Algorithm Using left- and right decomposition

- If we slice through P and Q horizontally, at some y (see right, exaggerated):
(a) P and Q do not intersect,
(b) P and Q overlap partially, or
(c) one contains the other.
- Each case corresponds to an x-order of the chains at that y-coordinate.

Farthest point pairs

Farthest Point Pairs

Let \mathscr{P} be a finite point set in general position.
The farthest point pair of \mathscr{P} consists of two vertices of the convex hull.

Farthest Point Pairs

Let \mathscr{P} be a finite point set in general position.
The farthest point pair of \mathscr{P} consists of two vertices of the convex hull.
Two points of \mathscr{P} are antipodal if there exist parallel lines through them which do not cut the hull.

Argue that the farthest pair is antipodal.

Farthest Point Pairs

Let \mathscr{P} be a finite point set in general position.
The farthest point pair of \mathscr{P} consists of two vertices of the convex hull.
Two points of \mathscr{P} are antipodal if there exist parallel lines through them which do not cut the hull.

How can we use this?

Rotating Callipers Algorithm

Michael Shamos, 1978

Idea: Compute convex hull, then enumerate antipodal pairs and track the farthest one.

To achieve this, "rotate" parallel lines around the point set.

Rotating Callipers Algorithm Michael Shamos, 1978

Distances [edit]

- Diameter (maximum width) of a convex polygon ${ }^{[6][7]}$
- Maximum distance between two convex polygons ${ }^{[9][10]}$
- Minimum distance between two convex polygons ${ }^{[11][12]}$

Bounding boxes [edit]

- Minimum area oriented bounding box
- Minimum perimeter oriented bounding box

Triangulations [edit]

- Onion triangulations
- Spiral triangulations
- Quadrangulation
- Art gallery problem
- Art gallery problem
untipoly
- Union of two convex polygons
- Common tangents to two convex polygo
- Intersection of two convex polygonss ${ }^{[16]}$
- inicaar support lines of two convex polygons

Vector sums (or
-Convex hull of two convex polygons

Traversals [edit]

- Shortest transversals ${ }^{[18][19]}$

Others [edit]

- Non parametric decision rules for machine learned classification ${ }^{[2]}$
- Aon parameatric decisision rules for maccine learned classification optinizations for visibility problems in computer vision ${ }^{[22]}$
- Finding longest cells in millions of biological cells ${ }^{[23]}$
- Comparing precision of two people at tiring range

Classity sections of brain trom scan images

