Computational Geometry

Tutorial \#2 - Convex Hulls \& Polygon Operations

Organisation

Organisation

Question Sheet \#1

- Covers Chapters I III
- Accessible on Course Website
- Due on Dec. 21st (in 4 weeks)
- Digital (properly formatted!)
- Sketches where appropriate
- Second sheet in January

Question Sheet 1

Submit in your solutions, in a properly formatted, single, PDF file, to https://nextcloud ibr.cs.tu-bs.de/s/p5pNRkgYMJE9F5Z. The deadline is December 21, 2023. Please additionally note the following data: Full name, field of study, and matriculation number. Please name the file as follows: [your_full_name]_[your_matriculation_number].pdf

Convex Layers \& Polygons

Convex Layers of Point Sets
 "Onion Decomposition"

The convex layers of a point set \mathscr{P} are a decomposition based on repeated deletion of the convex hull vertices of \mathscr{P}, until there are no points left.

How (quickly) can we compute this?

Applications: Outlier Detection, Central Tendency (Probabilistic Analysis), ...

Convex Layers of Point Sets

Chazelle, 1985

This is possible in $\mathcal{O}(n \log n)$ time.

Fig. 3. Hull graph of S.

On the Convex Layers of a Planar Set

Applications: Outlier Detection, Central Tendency (Probabilistic Analysis), ...

Boolean Operations on Convex Polygons

Given two convex Polygons P and Q, we seek to determine:

$$
P \cap Q, P \cup Q, P \backslash Q,(Q \backslash P)
$$

Which properties of the resulting polygons can you think of?

Boolean Operations on Convex Polygons

Given two convex Polygons P and Q, we seek to determine:

$$
P \cap Q, P \cup Q, P \backslash Q,(Q \backslash P)
$$

Which properties of the resulting polygons can you think of?

Which concepts from the lecture could we use?

