Computational Geometry Tutorial #1 — Organisation & Convex Hulls

Peter Kramer

16th November, 2023

Organisation

Organisation Tutorials: Dates, Times, Topics

- Planned: 6-7 Tutorials, biweekly
- Thursdays at 3pm in IZ 161
- **Topics:** Expand upon and put concepts from the lecture to use
 - Introducing and discussing new problems, finding solutions
 - Detours into topics beyond the chapters of the lecture

Date	Tutorial
16.11.2023	Tutorial #1
23.11.2023	Tutorial #2
07.12.2023	Tutorial #3
21.12.2023	Tutorial #4
11.01.2023	Tutorial #5
25.01.2023	Tutorial #6
08.02.2023	Tutorial #7

Organisation "Studienleistung" & Exam

- Homework: Quiz Sheet(s) that span all lecture chapters
- **Exam:** Usually oral, (but...)

Further details soon (next week)!

Convex Hulls

Show that p and q are vertices of the convex hull of \mathscr{P} .

Let \mathscr{P} be a finite point set in general position, and let $p, q \in \mathscr{P}$ be two points such that their distance is maximal across all pairs of \mathscr{P} .

Point Location Problem "Where am I?"

- Given geometric information such as a map in the plane, how can decide where we are?
- Fundamental Question: Am I inside/outside of a given region?

Applications: Geofencing, Navigation, Simulation Software, Outlier Detection, ...

Point Location Problem on Polygons

p is inside.

How can we decide (algorithmically) whether a given point p lies inside a given convex polygonal region P?

Assume that P is given as a CCW sequence of vertices.

p is outside.