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Introduction

Task:
® Given: Set of n points in R

® \Wanted: Smallest enclosing convex object

Intuition in R?:
® Draw points on a wooden board.

e Put in nails at points.

® | et arubber band snap to the nails.

Theorem 2.18: Computing the convex hull takes (nlogn).

Theorem 2.35: Computing the / vertices of the convex hull can be done in O(n log k).
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Definition - |

q

Definition 2.1 /
Forp,q cR*:pg:={zeR?|Ja,B e R, > 0,0+ =1,z =ap+ Bq} p

p+Ag—p),0<A<1
=(1—-Np+ \q
Definition 2.2

For{po,...,pn_1} C R? pointz € R is a convex combination of {po, - - -, Pn—1}, if

dag, ..., a1 € |0, 1] with ‘I.Z%’pi =X
i=0

2. iai =1
i=0

® P = {r |x convex combination of {P,q}}

e A(p,q,7) ={z | x convex combination of {p,q,7}}
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Definition - |l

Definition 2.3
Convex hull  conv(P) of P:={po,...,Pn_1}:

conv(P) :={x € R | x convex combination of P}

Theorem 2.4 (Carathéodory)
conv(P) = Union of all convex combinations with at most (d + 1) pointsin P

Corollary 2.5
P c R? = conv(P) union of all A(p,q,r) with p,q,7 € P.
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Alternative Definitions

Lemma 2.6
The following definitions are equivalent to Definition 2.3.

1. conv(P) := ﬂ P

PDOP,P convex

2. Ford=2:3 convexpolygon P:P C P C conv(P)

3. For d = 2: conv(P) := conv. polygon P with minimal circu e (area) with P C P
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Computing the Convex Hull - |

® Fromnowon P CR?
e First Approach: Find vertices of conv(P) by elimination

e Negation of Corollary 2.5:

x not vertex of conv(P)

0

dpi,pj, P € P+ x = non-trivial convex combination of Pi;Pj; Pk, -

Algorithm 2.7

1: for ( all triples (pi,p]', Pk) of points in P) do
2: for ( all points in € P) do
3: 1f (p lies in the inside of A(pi, p,',pk)
or on a boundary edge of A(pi, Pis pk)) then

4 mark P as an interior point.

5: P':= {P cP ’ is unmarked };
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Computing the Convex Hull - |l

Analysis of Algorithm 2.7:

° (g) € O(n’) triangles

’b 4
2 ‘A'AVA§ \

N ”~
“V

® Per triangle: O(n) further points

e Sort O(n)vertices

e Total runtime: O(n*+nlogn) = O(n?)

Sorting criterion:
e CCWon conu(P).

® Polar angle wrt ¥-minimal point in P,

® |ssue: Do we need trigonometry?
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Lexicographic Order

Lexicographic order

® Choose the ,,y-minimal“ point by lexicographic order:

(p-z,p.y) <y (gx,0y) & ((py < qy) V(py=qy) A(px<qx)))

e Analogously: by x-coordinate

(p-x,py) <z (¢.2,qy) & (P < qx)V(pr=qx)A @y <qy)))
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Sorting by Polar Coordinates

Observation:

® (Goal: CCW order

e Sort by polar angle. *S
e Sufficient: pairwise \ |
comparion of points s, q = @ .

e Check relative position Pmin
Of q wit Pmin$

Consequence: D

® Predicate: a <b:& ((@ = pmin) V (a = b) V (LEFTTURN(pmin, @, b) = TRUE))
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Review: Sorting

® Algorithms and Data Structures 1

® \arious algorithmic paradigms

Sorting algorithms:

® |[nhcremental methods:
- Bubble Sort, Selection Sort, Insertion Sort

e Divide-and-conquer methods:

- Quicksort, Mergesort

® Methods based on data structures:
- Heapsort, sorting by AVL tree

® Other methods:
- Bucket Sort, Shellsort, ...
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Incremental Methods

Difference: Selection Sort <-> Insertion Sort
® Selection Sort: Search in unsorted part of array
® |nsertion Sort: Search in sorted part of array

1 1
112(3l4|7]|sl6l5 2l3f(s5|(7[1]|8]|6]4
T A
minindex Insert
Selection Sort Insertion Sort

Approach:

® Selection Sort: Find next element for extending the order
® |nsertion Sort: Insert next element, such that sequence remains sorted
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® Split (Quicksort) or combine (Mergesort)
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Divide-and-Conquer

7 31211 4
3 1047 5
3|2 615
1|2 6|7
9 6|7
2 7 8
Quicksort

71503[2'1|8]6]|4
71532 18'6|4
7 1 7 1
715 3129 1'8 6'4
: : : :

7 5 2 3 1 8 6 4
517 213 1|8 416
2131517 114|618
1121345678
Mergesort
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Sorting Methods Based on Data Structures

»~Algorithms and Data Structures®: AVL-tree
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Sorting as a Lower Bound

Theorem 1.18: Computing the convex hull takes 2(nlogn)
iIn certain models of computation.

Proof: Recall that comparison-based sorting takes (2(nlogn).
Consider a set of n numbers, L1,...,Tn.
Map them to the points (1, l’%) ooy (T, x%).

5

3,5,1,2,4,7,6

The convex hull yields the sorted order of numbers.
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INFORMATION PROCESSING LETTERS 2 (1973) 18--21. NORTH-HOLLAND PUBLISHING COMPANY

ON THE IDENTIFICATION OF THE CONVEX HULL OF
A FINITE SET OF POINTS IN THE PLANE

R.A. JARVIS
The Australian National University, Department of Statistics, Box 4, Canberra, A.C. T. 2600, Australia

Received 6 December 1972

convex hull

1. Int:xduction

This paper presents an extremely simple algorithm
for identifying the convex hull of a {inite set of points
in the piane in essentially, at most n(r:+ 1) operations
for n points in the set and m < n points on the convex
hull. In most cases far less than n(m + 1) operations
are necessary because of a powerful point deletion
mechanism that can easily be included. The operations
are themselves trivial (computationally inexpensive)
and consist of angle comparisons only. Even these
angle comparisons need not be actvally carried out if
an improvement suggested in » late- section is imple-
mented. Aithough Graham’s algorithm [1] requires
no more than (nlopn)/log2 i Cn operations*, the oper-
ations are themselves more complex than those o1 the
method presented here; in particular, Graham’s
method would niot be as efficient for low m.

2. Geometric in‘erzretation

The upderlyinz method uf the algorithn can be
described simply: find an origin point outside the
point set and swing a radius arm in an arbitrary direc-
tion until a point of the set is met; this point becomes

* To quote Graham, “C is a small positive constant wlich
depends on what is meant by an “operation’™. In fact, C is
distributed over the five basic steps of Graham’s aigorithm
and his paper should be consulted for detalied interpreta-
tion.

e e t——TT
19

t2 identify convex hull point Na8 .
it 5 necessay to make only 7 angle evaluations

Fig. 1. Geometric interpretation of the algorithm.

the first point on the knl), ake this the new origin

point and swing a radius arm from this point in the

same direction as before till the next hull point is

found. Repeat until the points are enclosed by the

convex hull. Delete points from further consideration

if

(i) they have already b2en identi’ed as being on the
convex hull,

(ii) they lie in the area enclosed by a line from the
yirst to the last convex hull point found and the
iines joining the convex hull points in the sequence
found.

Fig. 1 illusirates this geometric interpretation.
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IDEA

A series of nonverbal
algorithm assembly instructions.
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Jarvis’ March [Jarvis, 1973]

Basic idea:

e |teratively find next edge on boundary of conv(P)
e Analogy: Selection Sort.

- Find next element for continuing sorted order

e Start: minimal point Pmin wrt <,

Intuition:

e Gift wrapping“
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Giftwrapping: Pseudocode and Animation

Algorithm 2.9: Compute conv(P) with Jarvis’ March.

algorithm jarvis(S) is
// S is the set of points
// P will be the set of points which form the
convex hull. Final set size is i.
pointOnHuUll = leftmost point in S // which is
guaranteed to be part of the CH(S)
i:=20
| repeat
P[i] := pointOnHull
endpoint := S[0] // initial endpoint
for a candidate edge on the hull
for j from 0 to |S| do
// endpoint == pointOnHull is a rare
case and can happen only when j == 1 and a better
endpoint has not yet been set for the loop
if (endpoint == pointOnHull) or (S[j]
is on left of line from P[i] to endpoint) then
endpoint := S[j] // found
greater left turn, update endpoint

im=1+1
pointOnHull = endpoint
until endpoint = P[0] // wrapped around

to first hull point

From Wikipedia, the free encyclopedia By Maonus, CC BY-SA 4.0 |
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Summary

Theorem 2.10

Jarvis’ March computes the # vertices of conv(P) in O(hn).

Algorithm 2.9: Compute conv(P) with Jatvis!_

algorithm jarvis(S) is
L // S is the set of points
7 // P will be the set of points which form the
convex hull. Final set size is i.

pointOnHull = leftmost point in S // which is
| guaranteed to be part of the CH(S) O(n)
. i:=0
[ repeat 1
L P[i] := pointOnHull
‘ endpoint := S[0] // initial endpoint
|| for a candidate edge on the hull
[ for j from @ to |S| do

// endpoint == pointOnHull is a rare

case and can happen only when j == 1 and a better
‘ endpoint has not yet been set for the loop
; if (endpoint == pointOnHull) or (SI[j]
|| is on left of line from P[i] to endpoint) then
f endpoint := S[j] // found
L greater left turn, update endpoint
E

output-sensitive

im=i+ 1
pointOnHull = endpoint
until endpoint = P[0] // wrapped around
to first hull point
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A New Convex Hull Algorithm for Planar Sets

' Quickhull [Eddy, 1977]

WILLIAM F. EDDY
Camegie-Mellon University

A new algorithm, CONVEX, that determines which points of a planar set are vertices of the
convex hull of the set is presented. It is shown that CONVEX operates in a fashion similar
to the sorting algorithm QUICKERSORT. Evidence is given which indicates that in some
situations CONVEX is preferable to earlier algorithms. A Fortran implementation, intended
to minimize execution time, is presented and an alternative, which minimizes storage require-
ments, is discussed.

Key Words and Phrases: convex hull, QUICKERSORT, partitioning, sorting

CR Categories: 5.30, 5.31

The Algorithm: CONVEX, A New Convex Hull Algorithm for Planar Sets. ACM Trans.
Math. Software 8, 4 (Dec. 1977), 411-412.

INTRODUCTION

The convex hull of a planar set is the minimum-area convex polygon containing
the planar set. A convex polygon is clearly determined by its vertices. Graham [1]
suggests an algorithm for determining which points of a planar set are vertices of
its convex hull. Because his algorithm requires sorting the points, if there are N
points then at least O(N log N) operations are needed to determine the vertices.
Recently, Preparata and Hong [3, 4] have shown that there exist sets of points for
which every algorithm requires at least O(N log N) operations to determine the
vertices of the convex hull. Jarvis [2] gives an algorithm which requires O(N-C)
operations, where C is the number of vertices. For some configurations of the
points in the plane (those with small values of C) the algorithm given by Jarvis
will be faster than the algorithm of Graham; for other configurations it may be
slower. An adaptive algorithm, CONVEX, is presented here which never requires
more than O(N-C) operations to determine the vertices of the convex hull and
may require substantially fewer. However, CONVEX may require more opera-
tions than Graham’s algorithm for some configurations of points. Evidence is
presented which suggests that in applications CONVEX is preferable to the “sort-
ing” algorithms [1, 3, 4] and to Jarvis’s algorithm [2].

METHOD

Operationally, this algorithm is analogous to the sorting algorithm QUICKERSORT
[5). At each step QUICKERSORT partitions the input array with respect to a

Copyright © 1977, Association for Computing Machinery, Inc. General permission to re-
publish, but not for profit, all or part of this material is granted provided that ACM’s copy-
right notice is given and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the Association for Com-
puting Machinery.

This research was supported in part by the National Science Foundation under Grant DCR75-
08374.

Author’s address: Department of Statistics, Carnegie-Mellon University, Schenley Park,
Pittsburgh, PA 15213.

ACM Transactions on Mathematical Software, Vol. 3, No. 4, December 1977, Pages 398-403.
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KVICK SORT

idea-instructions.com/quick-sort/ m
v1.2, CC by-nc-sa 4.0
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Quickhull [Eddy, 1977]
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Quickhull [Eddy, 1977]

Basic idee:

® Use pivot element for subdivision into independent subsets

® Analogy: Quicksort >T1 31 V506 {I

- Pivotelement m€ A: A— A_,,0A_,,0As,

- Concatenate subsequences

Transfer to R*: o

e Separation of P by line ¢ g

e ¢ :=line through extreme points [, r o

e (Concatenation of recursively computed hull

— conv(P)
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Recursion in Quickhull

Choosing the pivot element:
e Points above g
® Auxiliary point : maximal distance to g.

e New pivot elements: (A, Ar

® Delete PNA(,r, h). g1

® [wo recursions: p
Above [h and below rh \ pad

e _Exhaustion from inside®

e Analogously below g
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Quickhull: Animation

150ttt e -

By Maonus, CC BY-SA 4.0 '
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Quickhull: Pseudocode

Algorithm 2.11: Compute conv(P) with Quickhull.

Input = a set S of n points
Assume that there are at least 2 points in the input set S of points

function QuickHull(S) is
// Find convex hull from the set S of n points
Convex Hull := {}
Find left and right most points, say A & B, and add A & B to convex hull
Segment AB divides the remaining (n - 2) points into 2 groups SI and S2
where S1 are points in S that are on the right side of the oriented line from A to B,
and S2 are points in S that are on the right side of the oriented line from B to A
FindHull(S1, A, B)
FindHull(S2, B, A)
OQutput := Convex Hull
end function

function FindHull(Sk, P, Q) is
// Find points on convex hull from the set Sk of points
// that are on the right side of the oriented line from P to Q
if Sk has no point then
return
From the given set of points in Sk, find farthest point, say C, from segment PQ
Add point C to convex hull at the location between P and Q
Three points P, Q, and C partition the remaining points of Sk into 3 subsets: S@, S1, and
S2
where S0 are points inside triangle PCQ, SI are points on the right side of the
oriented
line from P to C, and S2 are points on the right side of the oriented line from C to
Q.
FindHull(S1, P, C)
FindHull(S2, C, Q)
end function
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Analysis

Theorem 2.12
Quickhull computes conv(P) in O(n?)worst-case and in O(nlogn) best-case runtime.

Excercises:
® Details of implementation
® Jermination

e Runtime

NILg

e

Universitat
o o
Braunschweig

”t;_& ‘32 Technische
6] ~12 " z
%

Nsce

28



Overview

1. Introduction and Definitions

Interlude: Algorithmic Paradigms

Jarvis’ March

Quickhull

Divide-and-conquer and incremental construction

Graham'’s Scan

N o o & 0 b

Optimal output-sensitive construction

WILgy

e

Universitat
o o
Braunschweig

”t;_& ‘32 Technische
6] ~’a " z
%

Nsce

29



'«IL."Q
3% Technische

2
>

g
'@“7

Universitat
Braunschweig

Divide-and-Conquer [Preparata and Hong, 1977]
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Convex Hulls of Finite
Sets of Points in Two
and Three Dimensions

F. P. Preparata and S. J. Hong
University of Illinois at Urbana-Champaign

The convex hulls of sets of n points in two and three
dimensions can be determined with O(n log n) opera-
tions. The presented algorithms use the ‘divide and
conquer’’ technique and recursively apply a merge
procedure for two nonintersecting convex hulls. Since
any convex hull algorithm requires at least O(n log n)
operations, the time complexity of the proposed
algorithms is optimal within a multiplicative constant.

Key Words and Phrases: computational com-
plexity, convex hull, optimal algorithms, planar set of
points, spatial set of points

CR Categories: 4.49, 5.25, 5.32

1. Introduction

The determination of the convex hull of a finite
set of points is relevant to several problems in com-
puter graphics, design automation, pattern recognition
and operations research: references [3, 4, 10]—just
to cite a few—discuss some interesting applications in
these areas, which require convex hull computation.

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the Joint Services Elec-
tronics Program (U.S. Army, U.S. Navy, and U.S. Air Force)
under Contract DAAB-07-72-C-0259.

Authors’ addresses: F.P. Preparata, Coordinated Science
Laboratory, University of 1linois, Urbana, IL 61801; S.J. Hong,
IBM Systems Product Division, Poughkeepsie, NY 12602. This
work was completed while the second author was on leave at the
University of 1llinois.

Communications February 1977
of Volume 20
the ACM Number 2

30




Divide-and-Conquer [Preparata and Hong, 1977]

Basic idea:

® Balanced subdivision, solve recursively

® Analogy: Mergesort § 9 10 11 12 13 14 15 16 17
i J a . J12]2]3]4[5]6]7]..
- Split array in a balanced fashion into two arrays s . 'j s
i WS - & R |
- Sort recursively L[2]415]7 i ’ |
. T — ——————
- Combine
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Divide-and-Conquer [Preparata and Hong, 1977]

[ 1]
MERGE SORT R ghd 1DEA
v1.2, CC by-nc-sa 4.0
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Divide-and-Conquer [Preparata and Hong, 1977]

Basic idea:
® Balanced subdivision, solve recursively

® Analogy: Mergesort 8 9 10 112 13 14 1s 16 17

- Split array in a balanced fashion into two arrays

- Sort recursively

- Combine

Transfer to R?:

e Separate by x-median

® Recursively: right and left hull

® (Combine left and right hull
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Merging Two Convex Hulls - |

Assumption: General position (1. distinct z -coordinate and
2. no three points collinear)

® Split wrt. z-median = Left and right hull disjoint

e Runtime:
T(n) = 27 (g) T f(n) T fmerge(n) Wlthf(’n) c @(n)

fmerge(n) :=time for merging right and left hull

o Goal: frerge(n) € O(n) .

® Then T(n) € O(nlogn)
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Merging Two Convex Hulls - |

Algorithmic approach:

® Find extreme points wrt. <, for both hulls

Vo, Vk = min./max. x-coordinate in left hull
wo, w; ;= min./max. x-coordinate in right hull

® Find tangent for lower hulls (vo, - - -, V&) und (wo, . .., w;).
® Find tangent for upper hulls (Vk, - .., v0) und (w, ..., wp)

® Delete points between tangent points
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Overview

e Some ideas similar to Gift Wrapping

® \/arious technical details

e Omitted here

® | ower bound: Q(nlogn)

Theorem 2.18

The algorithm of Preparata and Hong computes conv(P) in optimal time ©O(nlogn).
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Overview

1. Introduction and Definitions

Interlude: Algorithmic Paradigms

Jarvis’ March

Quickhull

Divide-and-conquer and incremental construction

Graham’s Scan

N o o & 0 b

Optimal output-sensitive construction
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AN EFFICIENT ALGORITH FOR DETERMINING
THE CONVEX HULL OF A FINITE PLANAR SET

R.L. GRAHAM

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey, USA

Received 28 January 1972

convex hull

Given a finite set S={s,,. .. s,} in the plane, it
is frequently of interest to find the convex hull
CH(S) of S. In this note we describe an algorithm
which determines CH(S) in no more than (n log n)/
(log 2) + cn “operations” where ¢ is a small positive
constant which depends upon what is meant by an
“operation”.

The algorithm we give determines which points
of § are the extreme points of CH(S). These, of
course, define CH(S). The algorithm proceeds in
five steps.

Step 1: Find a point P in the plane which is in
the interior of CH(S). At worst, this can be done in
¢y n steps by testing 3 element subsets of S for colli-
nearity, discarding middle points of collinear sets
and stopping when the first noncollinear set (if there
is one), say x, y and z, is found. P can be chosen to
be the centroid of the triangle formed by x, y and z.

Step 2: Express each s; € S in polar coordinates
with origin P and 6 = 0 in the direction of an arbi-
trary fixed half-line L from P. This conversion can
be done in cyn operations for some fixed constant
cy.
2 Step 3: Order the elements p; exp (i6;) of S in
terms of increasing 6. This is well known to be
possible in essentially (n log n)/log 2 comparisons
(cf. [1]). We now have S in the form
S={r; exp(igy),...,r, exp(ig,)} with
0<y¢; <...<yg,<2mandr; > 0(cf. fig. 1). Note
that by the choice of P, g _ | —pp <m where the
index addition is modulo .

algorithm

Step 4: 1f p; = ;41 then we may delete the point
with the smaller amplitude since it clearly cannot
be an extreme point of CH(S). Also any point with
r; = 0 can be deleted. We can eliminate all these
points in less than n comparisons, and by relabelling
the remaining points, we can set
S'={r, exp(ip;), ..., 7,.exp (ip,")} where
n' <n.

Step 5: Start with three consecutive points in

S', say, rg exp (i9g), Ty €XP (i041)s 742 €XP (i0k47)

with o <opyq <@gy (cf. fig. 2). There are two
possibilities:

(i) @ + § = m. Then we delete the point
Tk+1 Xp (igg4) from S since it cannot be an ex-
treme point of CH(S), and return to the beginning of
step 5 with the pointsr; exp (ipg), 7g+1 eXp (ivg+1)s
T4 exp (ipg4,) replaced by 7, exp (ivp_q),
1y exp (igy), Iy 49 exp (igy,) (where indices are re-
duced modulo n").

R S

Graham’s Scan [Graham, 1972]
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Graham’s Scan [Graham, 1972]

Overview:

® First optimal algorithm
e [Graham, 1972] is considered ,,the first publication in Computational Geometry*.

Basic idea:

® Delete points in triangles. [Known]
e Only consider O(n)triangles. [new]
e Ensure: #“point-in-triangle-tests € O(n) [new]
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Basic Ildea of Graham’s Scan - |

Convex hull

Sorting by polar angle

Vertices on convex hull
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Goal:

® Finding a sequence of ,left” turns

)

Knowing conv(P)

Approach:

® NMaintain stack of vertices

® |n case of a ,right” turn:

Pop vertex off stack
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Goal:

® Finding a sequence of ,left” turns

)

Knowing conv(P)

Approach:

® NMaintain stack of vertices

® |n case of a ,right” turn:

Pop vertex off stack
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Goal:

® Finding a sequence of ,left” turns

)

Knowing conv(P)

Approach:

® NMaintain stack of vertices
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Goal:

® Finding a sequence of ,left” turns

)

Knowing conv(P)

Approach:

® NMaintain stack of vertices

® |n case of a ,right” turn:

Pop vertex off stack
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Goal:

® Finding a sequence of ,left” turns

)

Knowing conv(P)

Approach:

® NMaintain stack of vertices

® |n case of a ,right” turn:

Pop vertex off stack
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Graham’s Scan: Pseudocode and Animation

Algorithm 2.23: Compute conv(P) with Graham’s Scan.

let points be the list of points
let stack = empty_stack()

O O
‘find the lowest y—coordinate and leftmost ‘(i)(7l) O é? o
sort points by polar angle with PQ, if O ©
several points have the same polar angle
then only keep the farthest O(n lOg ’fL) O o O ®)
O O

for point in points:

# pop the last point from the stack if O
we turn clockwise to reach this point

while count stack > 1 and
ccw(next_to_top(stack), top(stack), point)
<= 0:

pop stack
push point to stack

end

From Wikipedia, the free encyclopedia By Shiyu Ji, CC BY-SA 4.0
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e —

1L
o’« ."Q

2 | .22 Technische
S 2% Universitit
%

(& o
,,O*’ *¢ Braunschweig
Nsce

38



Theorem 2.24
Graham’s Scan computes conv(P) in O(nlogn).

Remarks:

® |mplementation details: [O’Rourke, 1994, Chap. 3.5].

® Graham’s Scan is also optimal in the following models:

- Single-disk I/0-model [Aggarwal und Vitter, 1988].
- Cache-oblivous model [Frigo et al., 1988].
- In-place model [Bronnimann et al., 2004].
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Overview

1. Introduction and Definitions

Interlude: Algorithmic Paradigms

Jarvis’ March

Quickhull

Divide-and-conquer and incremental construction

Graham'’s Scan

N o o & 0 b

Optimal output-sensitive construction
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SIAM J. COMPUT. @© 1986 Society for Industrial and Applied Mathematics
Vol. 15, No. 1, February 1986 021

THE ULTIMATE PLANAR CONVEX HULL ALGORITHM?*

DAVID G. KIRKPATRICKt AND RAIMUND SEIDEL%

Abstract. We present a new planar convex hull algorithm with worst case time complexity O(n log H)
where n is the size of the input set and H is the size of the output set, i.e. the number of vertices found to
be on the hull. We also show that this algorithm is asymptotically worst case optimal on a rather realistic

R - model of computation even if the complexity of the problem is measured in terms of input as well as output
eca I I n size. The algorithm relies on a variation of the divide-and-conquer paradigm which we call the “‘marriage-
before-conquest™ principle and which appears to be interesting in its own right.

Key words. computational geometry, convex hull, divide-and-conquer, lower bounds

e Jarvis’ March: output-sensitive: O(hn). A A

1. Introduction. The convex hull of a finite point set S in the plane is the smallest
— h : Output convex polygon containing the set. The vertices (corners) of this polygon must be
points of S. Thus in order to compute the convex hull of a set S it is necessary to find
. I t those points of S which are vertices of the hull. For the purposes of constructing upper
- n. n pu bounds we define the convex hull problem, as the problem of constructing the ordered
sequence of points of S which constitute the sequences of vertices around the hull.
. . . The convex hull problem was one of the first problems in the field of computational
o NO Contrad |Ct|0n to Q (n log n) , as h E @ (n) IS pO: geometry to have been studied from the point of view of computational complexity.
In fact, efficient algorithmic solutions were proposed even before the term ‘“‘computa-
tional geometry” was coined. This, along with its very extensive analysis in recent
years, reflects both the theoretical and practical importance of the problem.

Of the convex hull algorithms proposed so far several have O(n log n) worst case
time bounds [4], [8], [14], [15], [17], where n is the size of the input point set. Shamos
[17] even argued that the O(n log n) time bound is worst case optimal. He observed
that a set S of n real numbers could be sorted by finding the convex hull of the planar

- = = set S'={(x, x?)|x € S}. But sorting, of course, has an Q(n log n) lower bound on a wide
Theorem 2.35 ([KI rkpatrICK and Seldel y 1 986]) range of computational models. Yao [19] and on weaker computational models Avis
[2], van Emde Boas [7], and Preparata and Hong [15] proved the Q(n log n) bound
1 for a less demanding version of the convex hull problem: just the vertices of the convex
Com pUtI ng conv (P) has a Iower bou nd Of Q (n 1Og h) L] hull are to be identified, irrespective of their sequence.

In contrast to the results above, it is interesting to observe that algorithms exist
which solve the planar convex hull problem in O(nH) time, where H is the number
of vertices found to be on the hull [6], [9]. For small H, these algorithms seem to be
superior to the O(n log n) methods. (This, of course, does not contradict the previously

- a H cited lower bound results, as H could be as large as n). It is notable, however, that
Theorem 2'36 ([KlrkpatrICk and seldel, 1 986]) all of the lower bound arguments mentioned above are insensitive to H in that they
. . . assume that some fixed fraction of the data points are vertices of the convex hull.
Com p utl n g conv (7)) Can be aCh |eved | n O (n log h) | In this paper we present a convex hull algorithm with worst case time complexity
O(nlog H). Thus its running time is not only sensitive to both n and H, but it is also
worst case optimal in the traditional sense when the running time is measured as a
function of n only. However, we also show that our algorithm is asymptotically worst
case optimal even if the complexity of the problem is measured as a function of both
n and H.

* Received by the editors November 15, 1983, and in revised form August 15, 1984. This researth was
supported by the Natural Sciences and Engineering Research Council of Canada, grant A3583.

1 Department of Computer Science, University of British Columbia, Vancouver, B.C. V6T 1W5 Canada.

i Department of Computer Science, Cornell University, Ithaca, New York 14853,
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© 1996 Springer-Verlag New York Inc. y

Optimal Output-Sensitive Convex Hull Algorithms
in Two and Three Dimensions*

T. M. Chan

Department of Computer Science, University of British Columbia,
Vancouver, British Columbia, Canada V6T 124

Abstract. We present simple output-sensitive algorithms that construct the convex hull
of a set of n points in two or three dimensions in worst-case optimal O (n log h) time and
O(n) space, where h denotes the number of vertices of the convex hull.

1. Introduction

Given a set P of n points in the Euclidean plane £ or Euclidean space E3, we consider
the problem of computing the convex hull of P, conv(P), which is defined as the smallest
convex set containing P. The convex hull problem has received considerable attention in
computational geometry [11], [21], [23], [25]. In E? an algorithm known as Graham’s
scan [15] achieves O(nlogn) running time, and in E* an algorithm by Preparata and
Hong [24] has the same complexity. These algorithms are optimal in the worst case,
but if A, the number of hull vertices, is small, then it is possible to obtain better time
bounds. For example, in E2, a simple algorithm called Jarvis’s march [19] can construct
the convex hull in O(nh) time. This bound was later improved to O(nlogh) by an
algorithm due to Kirkpatrick and Seidel [20], who also provided a matching lower
bound; a simplification of their algorithm has been recently reported by Chan er al.
[2]. In E? an O(nh)-time algorithm can be obtained using the gift-wrapping method,
an extension of Jarvis’s march originated by Chand and Kapur [3]. A faster but more
involved algorithm in E 3 was discovered by Edelsbrunner and Shi [13], having a running
time of O(n log® h). Finally, by derandomizing an algorithm of Clarkson and Shor [8],
Chazelle and Matousek [7] succeeded in attaining optimal O (n log k) time in E>. These

* This research was supported by a Killam Predoctoral Fellowship and an NSERC Postgraduate

—‘!-w
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Chan’s Algorithm [Chan, 1996]




Full Details

2. An Output-Sensitive Algorithm in Two Dimensions

Let P C E? be a set of n > 3 points. For simplicity, we assume that the points of P are
in general position, i.e., no three points are collinear; see Section 4 for how to deal with
degenerate point sets.

Recall that Jarvis’s march [19], [23], [25] computes the & vertices of the convex hull
one at a time, in counterclockwise (ccw) order, by a sequence of h wrapping steps: if
Pi—1 and py are the previous two vertices computed, then the next vertex py4; is set to
be the point p € P that maximizes the angle Zp;_) pxp with p # p;. One wrapping
step can obviously be done in O (n) time by scanning all » points; with an appropriate
initialization the method constructs the entire convex hull in O (nh) time.

We observe that a wrapping step can be done faster if we preprocess the points. Choose
a parameter m between 1 and n and partition P into [n/m7 groups each of size at most m.
Compute the convex hull of each group in O (m log m) time by, say, Graham’s scan [15].
This gives us [n/m7 possibly overlapping convex polygons each with at most m vertices,
after a preprocessing time of O((n/m)(mlogm)) = O(nlogm). Now, a wrapping step
can be done by scanning all [n/m1 polygons and computing tangents or supporting lines
of the polygons through the current vertex pg, as shown in Fig. 1. Since tangent finding
takes logarithmic time for a convex polygon by binary or Fibonacci search [5], [25] (the
dual problem is to intersect a convex polygon with aray), the time required for a wrapping
stepisthen O((n/m) log m). As h wrapping steps are needed to compute the hull, the total
time of the algorithm becomes O (nlogm + h((n/m)logm)) = O(n(1+h/m)logm).

The following is a pseudocode of the algorithm just described. The procedure always
runs within O(n(1 + H/m)log m) time and successfully returns the list of vertices of
conv(P) in ccw order when H > h.

Algorithm Hull2D(P, m, H), where P C E*>, 3<m <n,and H > 1

1. partition P into subsets Pi, ..., P, m €ach of size at most m
2. fori=1,...,[n/m]do
3.  compute conv(P;) by Graham’s scan and store its vertices in an array

in ccw order
4. po < (0, -00)
5. p; < the rightmost point of P
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Fig. 1. Wrapping a set of [n/m convex polygons of size m.

6. fork=1,...,Hdo
7. fori=1,...,[n/m]do
8. compute the point g; € P; that maximizes £ pi—) prqi (gi # Px)
by performing a binary search on the vertices of conv(FP;)
9. P41 < the point g from {q, ..., g[n/m)} that maximizes Z p;_; pxq
10.  if px41 = p; then return the list (py, ..., pi)
11. return incomplete

By choosing m = H, the complexity of the algorithm is then O (n(14+H/m)logm) =
O (nlog H). Since the value of 4 is not known in advance, we use a sequence of H’s to
“guess” its value as shown below (the same strategy is used in Chazelle and Matousek’s
algorithm):

Algorithm Hull2D(P), where P C E?

1. forr=1,2....do
2. L <« Hull2D(P.m, H), where m = H = min{2?, n)
3. if L # incomplete then return L

. The procedure stops with the list of hull vertices as soon as the value of H in the for-loop

reaches or exceeds h. The number of iterations in the loop is [loglog &7 (using base-2

‘ logarithms), and the rth iteration takes O (nlog H) = O(n2') time. Therefore, the total
- running time of the algorithm is O(Z,n;),ghgﬂ n2')y = O(n2Meloehl+ly = O(nlogh).

The storage requirement is clearly linear.



Algorithm

Algorithm Hull2D(P, m, H), where P C E*>, 3<m <n,and H > 1

Jud

q . | partition P into subsets Py, ..., P, m) €ach of size at most m '

fori=1,...,[n/m] do
compute conv(P;) by Graham’s scan and store its vertices in an array |

! in ccw order |

po < (0, —00)

p1 < the rightmost point of P

fork=1,..., Hdo
fori=1,...,[n/m] do
compute the point g; € P; that maximizes £ px—) pxq;: (gi # Px)
| by performing a binary search on the vertices of conv(FP;) |
' | 9. pry1 < the point g from {q, ..., g[n/m)} that maximizes Z py_) pxq ,
l 10.  if prsy = py then return the list (py, .. ., py)
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Algorithm

Algorithm Hull2D(P, m, H), where P C E*>, 3<m <n,and H > 1

Jud

q . | partition P into subsets P, ..., Pp,/m) €ach of size at most m '
fori=1,...,[n/m] do

compute conv(P;) by Graham’s scan and store its vertices in an array |
! in ccw order J
.| po < (0, —00)
. |p1_« the rightmost point of P
fork=1,..., Hdo

fori=1,...,[n/m] do

compute the point g; € P; that maximizes £ px—) pxq;: (gi # Px)

‘ by performing a binary search on the vertices of conv(FP;) |
' | 9. pry1 < the point g from {q, ..., g[n/m)} that maximizes Z py_) pxq ,
l 10.  if prsy = py then return the list (py, .. ., py) |
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Algorithm

Algorithm Hull2D(P, m, H), where P C E*>, 3<m <n,and H > 1

.

. | partition P into subsets P, ..., Pp,/m) €ach of size at most m

2. lfori=1,...,[n/m] do

3.] compute conv(P;) by Graham’s scan and store its vertices in an array
in ccw order

| po < (0, —00)

. |p1_« the rightmost point of P

4
5
6. fork=1,...,Hdo
7
8

fori=1,...,[n/m] do
compute the point g; € P; that maximizes £ px—) pxq;: (gi # Px)
by performing a binary search on the vertices of conv(F;)
9. Ppi41 < the point g from {q, ..., gn/m} that maximizes 2 py_, pxq
10. | if px+1 = p; then return the list (py, ..., px)
11. | return incomplete
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Algorithm

Algorithm Hull2D(P, m, H), where P C E*>, 3<m <n,and H > 1

.

. | partition P into subsets P, ..., Pp,/m) €ach of size at most m

2. lfori=1,...,[n/m] do

compute conv(P;) by Graham’s scan and store its vertices in an array
in ccw order

-1 Po <« ( y —w)
: ‘pl < the rightmost point of P \

4
5
6. tork=1,..., Hdo
7
8

o

fori=1,...,[n/m] do
compute the point g; € P; that maximizes £ px—) pxq;: (gi # Px)
by performing a binary search on the vertices of conv(F;)
9. Ppi41 < thepomntg from {qy, ..., gn/m )} that maximizes Z py_, pxq
10. | if px+1 = p; then return the list (py, ..., px)
11. | return incomplete
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Algorithm

Algorithm Hull2D(P, m, H), where P C E*>, 3<m <n,and H > 1

.

. | partition P into subsets P, ..., Pp,/m) €ach of size at most m

2. lfori=1,...,[n/m] do

compute conv(P;) by Graham’s scan and store its vertices in an array
in ccw order i

-1 Po <« ( y —w)
: ‘pl < the rightmost point of P \

4
5
6. tork=1,..., Hdo
7
8

o

fori=1,...,[n/m] do
compute the point g; € P; that maximizes £ px— pxq; (qi # Pk)
by performing a binary search on the vertices of conv(F;)
9. Ppi41 < thepomntg from {qy, ..., gn/m )} that maximizes Z py_, pxq
‘ 10. | if px+1 = p; then return the list (py, ..., px)
Y 11. | return incomplete
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Algorithm l }

By choosing m = H, the complexity of the algorithm is then O (n(14+H/m)logm) =
O (n log H). Since the value of & is not known in advance, we use a sequence of H’s to
~ “guess” its value as shown below (the same strategy is used in Chazelle and Matousek’s
! algorithm):

Algorithm Hull2D(P), where P C E?

1. forr=1,2....do
2. L <« Hull2D(P.m, H), where m = H = min{2?, n)
3. if L # incomplete then return L

The procedure stops with the list of hull vertices as soon as the value of H in the for-loop '
reaches or exceeds h. The number of iterations in the loop is [loglog 4] (using base-2
logarithms), and the rth iteration takes O (nlog H) = O(n2") time. Therefore, the total
running time of the algorithm is O(3 88" 421y = O (n2Moele1+1y = O(nlogh).

The storage requirement is clearly linear.
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Algorithm

Algorithm Hull2D(P, m, H), where P C E*>, 3<m <n,and H > 1

1. | partition P into subsets Pi, ..., Pp,/m] €ach of size at most m

2. lfori=1,...,[n/m] do

compute conv(P;) by Graham’s scan and store its vertices in an array
i in ccw order

. PO <« ( ’ —w)
: ‘pl < the rightmost point of P \

fork=1,..., Hdo
fori=1,...,[n/m] do
compute the point g; € P; that maximizes £ px—) pxq;: (gi # Px)
by performing a binary search on the vertices of conv(FP;)
9. Ppi41 < thepomntg from {qy, ..., gn/m )} that maximizes Z py_, pxq
10. | if pr41 = p; then return the list (py, ..., pi)
11. | return|incomplete |

»

© N YA

Issues:

What is the runtime?

How do we find the tangent points?
How do we set the parameters m and H?

What is|.incomplete*“? |

What is the overall runtime?
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Algorithm O((n/m)mlogm) O(H(n/m)T)

Algorithm Hull2D(P, m, H), where P C E*>, 3<m <n,and H > 1

q 1. | partition P into subsets Pi, ..., Pp,/m] €ach of size at most m '
2. lfori=1,...,[n/m] do
compute conv(P;) by Graham’s scan and store its vertices in an array |
! in ccw order J
.| po < (0, —00) |
. |p1_« the rightmost point of P
fork=1,..., Hdo
fori=1,...,[n/m] do

compute the point g; € P; that maximizes £ px—) pxq;: (gi # Px)
| by performing a binary search on the vertices of conv(FP;) |
‘ | 9. Pk+1 < the point g from {4, . . ., gn/m1} that maxumzes £ pi—; prq ,
l 10.| if prss = py then return the list (py. ..., pi)

; .“‘ 1 . ‘
| y ’ 11. returrl incomplete | :

Issues:

What is the runtime?

How do we find the tangent points?
How do we set the parameters m and H?

What is|.incomplete*“? |

What is the overall runtime?

-

i
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Finding Tangent Points

e Check relative position:

di+1
qi+1-
di—1
di—1 ™ (gi+1 :
° Dk é Dk © Dk
Increase i Found i Decrease i
® Binary search! — 1 = (log m)
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Runtime and Parameters

Choose m=H:
O((n/m)ymlogm) +O(H(n/m)logm)
= O((nlogm)

How do we find m ?

Algorithm Hull2D(P), where P C E?
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Runtime and Parameters
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Runtime and Parameters

Algorithm Hull2D(P), where P C E?

1. forr=1,2,...do
2. L « Hull2D(P.m, H), wherelm |=| H|= min{2?, n)
3. if L # incomplete then return L

R SeetcestmmmetERE
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Runtime and Parameters

Algorithm Hull2D(P), where P C E?
P e T Y

2. L < Hull2D(P.m, H), wherelm |=| H|= min{2?, n)
3. if L # incomplete then return L
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Runtime and Parameters

Algorithm Hull2D(P), where P C E?
P e T Y

2. L < Hull2D(P.m, H), where[m |=
3. if L # incomplete then return L
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Runtime and Parameters

Algorithm Hull2D(P), where P C E?

/1

2. L < Hull2D(P.m, H), where[m |=
3. if L # incomplete then return L

—-w

The number of iterations in the loop is [loglog 4]
| ———————
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Runtime and Parameters

Algorithm Hull2D(P), where P C E?

/1

1
2. L < Hull2D(P.m, H), where[m |=
3. if L # incomplete then return L

5

The number of iterations in the loop is [loglog 4]
, e mmma

tth iteration takes O (nlog H) = O(n2') time
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Runtime and Parameters

Algonthm Hull2D(P) where P C E?

[ HullZD(P m, H), where|m =
if L # incomplete then return L

The number of iterations in the loop is [loglog 4]
, e mmma

tth iteration takes O (nlog H) = O(n2') time
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Runtime and Parameters

Algorithm Hull2D(P), where P C E?

/1

1
2. L < Hull2D(P.m, H), where[m |=
3. if L # incomplete then return L

The number of iterations in the loop is [loglog 4]
e S

tth iteration takes O (nlog H) = O(n2') time

O(Zrloglogﬂ n2') = O(nzl'loglogh]+l)
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Runtime and Parameters

Algonthm Hu112D(P) where P C E?

[ HullZD(P m, H), where|m =
if L # incomplete then return L

The number of iterations in the loop is [loglog 4

tth iteration takes O (nlog H) = O(n2') time

O(Zrloglogﬂ n2') = O(nzl'loglogh]+l) — O(nlogh)
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Runtime and Parameters

Algorithm Hu112D( P), where P C E?

L < Hal2D(P. m, H), where|m |=( H
if L # incomplete then return L

The number of iterations in the loop is [loglog 4]

tth iteration takes O (nlog H) = O(n2') time

O(Zrloglogﬂ 2t) O(nzfloglogh]+l) —_ O(n lOg h)

Theorem 2.38 ([Chan, 1996])
Computing conv(P) can be achieved in O(nlogh).
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Further Issues

Refinements 4. Refinements

In this section we suggest ideas on possible improvements that may speed up our algo-
rithms in practice; we also discuss how degenerate cases can be handled.

Idea 1. First, points found to be in the interior of conv(?;) inline 3 of Hull2D(P, m, H)
or Hull3D(P, m, H) can be eliminated from further consideration. This may potentially
save work during future iterations of the algorithm, although it does not affect the worst-
case complexity.

Idea 2. In Hull2D(P) and Hull3D(P) we choose the group size m = H so as to
balance the O(nlogm) preprocessing cost and the O(H ((n/m)logm)) cost for the
O(H) wrapping steps. Alternatively, we can choose m = min{H log H, n} (or set
H = m/logm). This choice of m does not affect the former cost except in the lower-
order terms, but it reduces the latter cost from O(nlog H) to O (n) and thus results in a
smaller constant factor overall.

Idea 3. With Idea 2, the dominant cost of algorithm Hull2D(P, m, H) lies in the pre-
processing, i.e., the computation of the convex hulls of the groups in line 3. To reduce this
cost, we may consider reusing hulls computed from the previous iteration and merging
them as the group size is increased. Suppose m’ is the previous group size. Since the
convex hull of two convex polygons can be computed in linear time (the dual problem
1s to intersect two convex polygons), we can compute the convex hull of [m/m"] con-
vex m'-gons in O (m log(m/m’)) time by the standard “mergehull” divide-and-conquer
algorithm [25]. Thus, the [n/m] hulls in line 3 can be constructed in O (nlog(m/m’))
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Further Issues

Refinements
Programming G. Manacher S.L. Graham

Techniques Editors

Convex Hulls of Finite
Sets of Points in Two
and Three Dimensions

F. P. Preparata and S. J. Hong
University of Illinois at Urbana-Champaign

3D

The convex hulls of sets of n points in two and three
dimensions can be determined with O(n log n) opera-
tions. The presented algorithms use the ‘‘divide and

conquer’’ technique and recursively apply a merﬁe
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Further Issues

Refinements
Programming G. Manacher S.L. Graham

. Techninneg Fditare i

Optimal Output-Sensitive Convex Hull Algorithms
in Two and Three Dimensions*

T. M. Chan

M

F.P. Preparata and S. J. Hong

We can use the same grouping idea from the previous section to 1mprove the time
3D complexity to optimal O (n log #) while maintaining linear space. The calls to Graham’s
scan (line 3 of Hull2D( P, m, H)) are now replaced by calls to Preparata and Hong’s three-

dimensional convex hull algorithm [24], which has the same complexity. To make line 8

The convex hulls of sets of n points in two and three
dimensions can be determined with O(n log n) opera-
tions. The presented algorithms use the ‘‘divide and

conquer’’ technique and recursively apply a merﬁe
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Thank you!
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