q

Check for
updates

Covering Tours and Cycle Covers
with Turn Costs: Hardness
and Approximation

Sandor P. Fekete® and Dominik Krupke®

Department of Computer Science, TU Braunschweig,
38106 Braunschweig, Germany
{s.fekete,d.krupke}@tu-bs.de

Abstract. We investigate a variety of geometric problems of finding
tours and cycle covers with minimum turn cost, which have been stud-
ied in the past, with complexity and approximation results, and open
problems dating back to work by Arkin et al. in 2001. Many new prac-
tical applications have spawned variants: For full coverage, every point
has to be covered, for subset coverage, specific points have to be covered,
and for penalty coverage, points may be left uncovered by incurring a
penalty. We make a number of contributions. We first show that finding
a minimum-turn (full) cycle cover is NP-hard even in 2-dimensional grid
graphs, solving the long-standing open Problem 53 in The Open Prob-
lems Project edited by Demaine, Mitchell and O’Rourke. We also prove
NP-hardness of finding a subset cycle cover of minimum turn cost in thin
grid graphs, for which Arkin et al. gave a polynomial-time algorithm
for full coverage; this shows that their boundary techniques cannot be
applied to compute exact solutions for subset and penalty variants.

On the positive side, we establish the first constant-factor approxima-
tion algorithms for all considered subset and penalty problem variants
for very general classes of instances, making use of LP/IP techniques.
For these problems with many possible edge directions (and thus, turn
angles, such as in hexagonal grids or higher-dimensional variants), our
approximation factors also improve the combinatorial ones of Arkin et
al. Our approach can also be extended to other geometric variants, such
as scenarios with obstacles and linear combinations of turn and distance
costs.

1 Introduction

Finding roundtrips of minimum cost is one of the classic problems of theoretical
computer science. In its most basic form, the objective of the Traveling Salesman
Problem (TSP) is to minimize the total length of a single tour that covers all of
a given set of locations. If the tour is not required to be connected, the result
may be a cycle cover: a set of closed subtours that together cover the whole set.

A full version of this extended abstract can be found at [17].
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This distinction makes a tremendous difference for the computational complexity:
while the TSP is NP-hard, computing a cycle cover of minimum total length can
be achieved in polynomial time, based on matching techniques.

Evaluating the cost for a tour or a cycle cover by only considering its length
may not always be the right measure. Figure 1 shows an example application, in
which a drone has to sweep a given region to fight mosquitoes that may transmit
dangerous diseases. As can be seen in the right-hand part of the figure, by far
the dominant part of the overall travel cost occurs when the drone has to change
its direction. (See our related video and abstract [10] for more details, and the
resulting tour optimization.) There is an abundance of other related applied
work, e.g., mowing lawns or moving huge wind turbines [8].
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Fig. 1. (Left) A drone equipped with an electrical grid for killing mosquitoes. (Mid-
dle) Physical aspects of the flying drone. (Right) Making turns is expensive. See our
related video [10].

For many purposes, two other variants are also practically important: for
subset coverage, only a prespecified subset of locations needs to be visited, while
for penalty coverage, locations may be skipped at the expense of an individual
penalty. From the theoretical side, Arkin et al. [6] showed that finding minimum-
turn tours in grid graphs is NP-hard, even if a minimum-turn cycle cover is
given. The question whether a minimum-turn cycle cover can be computed in
polynomial time (just like a minimum-length cycle cover) has been open for at
least 17 years, dating back to the conference paper [5]; it has been listed for 15
years as Problem 53 in The Open Problems Project edited by Demaine, Mitchell,
and O’Rourke [15]. In Sect. 2 we resolve this problem by showing that computing
a minimum-turn cycle cover in planar grid graphs is indeed NP-hard.

This raises the need for approximation algorithms. In Sect. 3, we present a
technique based on Integer Programming (IP) formulations and their Linear
Programming (LP) relaxations. Based on polyhedral results and combinatorial
modifications, we prove constant approximation for all problem variants.

1.1 Related Work

Milling with Turn Costs. Arkin et al. [5,6] introduce the problem of milling
(i.e., “carving out”) with turn costs. They show hardness of finding an optimal
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tour, even in thin 2-dimensional grid graphs (which do not contain an induced
2 x 2 subgraph) with a given optimal cycle cover. They give a 2.5-approximation
algorithm for obtaining a cycle cover, resulting in a 3.75-approximation algo-
rithm for tours. The complexity of finding an optimal cycle cover in a 2-
dimensional grid graph was established as Problem 53 in The Open Problems
Project [15].

Maurer [23] proves that a cycle partition with a minimum number of turns in
grid graphs can be computed in polynomial time and performs practical experi-
ments for optimal cycle covers. De Assis and de Souza [14] computed a provably
optimal solution for an instance with 76 vertices. For the abstract version on
graphs (in which “turns” correspond to weighted changes between edges), Fel-
lows et al. [20] show that the problem is fixed-parameter tractable by the number
of turns, tree-width, and maximum degree. Benbernou [11] considered milling
with turn costs on the surface of polyhedrons in the 3-dimensional grid. She gives
a corresponding 8/3-approximation algorithm for tours.

Note that the theoretical work presented in this paper has significant prac-
tical implications. As described in our forthcoming conference paper [18], the
IP /LP-characterization presented in Sect. 3 can be modified and combined with
additional algorithm engineering techniques to allow solving instances with more
than 1000 pixels to provable optimality (thereby expanding the range of de Assis
and de Souza [14] by a factor of 15), and computing solutions for instances with
up to 300,000 pixels within a few percentage points (thereby showing that the
practical performance of our approximation techniques is dramatically better
than the established worst-case bounds).

For mowing problems, i.e., covering a given area with a moving object that
may leave the region, Stein and Wagner [25] give a 2-approximation algorithm
on the number of turns for the case of orthogonal movement. If only the traveled
distance is considered, Arkin et al. [7] provide approximation algorithms for
milling and mowing.

Angle and Curvature-Constrained Tours and Paths. If the instances are
in the R? plane and only the turning angles are measured, the problem is called
the Angular Metric Traveling Salesman Problem. Aggarwal et al. [3] prove hard-
ness and provide an O(log n) approximation algorithm for cycle covers and tours
that works even for distance costs and higher dimensions. As shown by Aich-
holzer et al. [4], this problem seems to be very hard to solve optimally with
integer programming. Fekete and Woeginger [19] consider the problem of con-
necting a point set with a tour for which the angles between the two successive
edges are constrained. Finding a curvature-constrained shortest path with obsta-
cles has been shown to be NP-hard by Lazard et al. [22]. Without obstacles,
the problem is known as the Dubins path [16] that can be computed efficiently.
With complexity depending on the types of obstacles, Boissonnat and Lazard
[12], Agarwal et al. [1], and Agarwal and Wang [2] provide polynomial-time algo-
rithms when possible or 1 + € approximation algorithms otherwise. Takei et al.
[26] consider the solution of the problem from a practical perspective.
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Related Combinatorial Problems. Goemans and Williamson [21] provide an
approximation technique for constrained forest problems and similar problems
that deal with penalties. In particular, they provide a 2-approximation algo-
rithm for Prize-Collecting Steiner Trees in general symmetric graphs and the
Penalty Traveling Salesman Problem in graphs that satisfy the triangle inequal-
ity. An introduction into approximation algorithms for prize-collecting/penalty
problems, k-MST /TSP, and minimum latency problems is given by Ausiello et
al. [9].

1.2 Preliminaries

The angular metric traveling salesman problem resp. cycle cover problem ask for
a cycle resp. set of cycles such that a given set P of n points in R? is covered
and the sum of turn angles in minimized. A cycle is a closed chain of segments
and covers the points of the segments’ joints. A cycle has to cover at least two
points. The turn angle of a joint is the angle difference to 180°. In the presence
of polygonal obstacles, cycles are not allowed to cross them. We consider three
coverage variants: Full, subset, and penalty. In full coverage, every point has to
be covered. In subset coverage, only points in a subset S C P have to be covered
(which is only interesting for grid graphs). In penalty coverage, no point has to
be covered but every uncovered point p € P induces a penalty ¢(p) € Qg on the
objective value. Optionally, the objective function can be a linear combination
of distance and turn costs.

In the following, we introduce the discretized angular metric, by considering
for every point p € P a set of w possible orientations (and thus, 2w possible
directions) for a trajectory through p. We model this by considering for each
p € P aset O, of w infinitely short segments, which we call atomic strips; a point
is covered if one of its segments is part of the cycle, see Fig. 2. The corresponding
selection of atomic strips is called Atomic Strip Cowver, i.e., a selection of one
o € O, for every p € P.

N

edge weight:
¢1+ P2

Replace every point by a set

of atomic strips and push
.-+ the turn costs into the edge
. weights.

One of the atomic
strips is integrated
into the polygonal
tour to cover the
corresponding point

atomic strip cover

Fig. 2. Transforming an angular metric TSP instance and solution to an instance based
on atomic strips, which can be considered infinitely small segments.



228 S. P. Fekete and D. Krupke

The atomic strips induce a weighted graph Go(Vo, Eo) with the endpoints
of the atomic strips as vertices and the connections between the endpoints as
edges. The weight of an edge in Gp equals the connection costs, in particular
the turn costs on the two endpoints. Thus, the cycle cover problem turns into
finding an Atomic Strip Cover with the minimum-weight perfect matching on
its induced subgraph. As the cost of connections in it depends on two edges in
the original graph, we call this generalized problem (in which the edge weights
do not have to be induced by geometry) the semi-quadratic cycle cover problem.

d = distance costs [+ 14]
t = turn costs per 90° b -
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Fig. 3. (Left) From an optimal cycle cover (dotted) we can extract an Atomic Strip
Cover (thick black), such that the matching (orange) induces an optimal solution.
(Right) For turns it does not matter if we choose the horizontal or vertical atomic
strip. (Color figure online)

It is important to note that the weights do not satisfy the triangle inequal-
ity; however, a direct connection is not more expensive than a connection that
includes another atomic strip, giving rise to the following pseudo-triangle inequal-
ities.

cost(v1v2) < cost(viwy) + cost(wavs)

Vo1, v2 € Vo, wrwz € Op,p € P cost(vyvg) < cost(viws) + cost(wive)

(1)
Our model allows the original objective function to be a linear combination of
turn and distance costs, as it does not influence Eq. (1). Instances with polygonal
obstacles for 2-dimensional geometric instances are also possible (however, for
3D, the corresponding edge weights can no longer be computed efficiently). A
notable special case are grid graphs that arise as vertex-induced subgraphs of the
infinite integer orthogonal grid. In this case, a point can only be covered straight,
by a simple 90° turn, or by a 180° u-turn. We show grid graphs as polyominoes
in which vertices are shown as pizels. We also speak of the number of simple
turns (u-turns counting as two) instead of turn angles. More general grid graphs
can be based on other grids, such as 3-dimensional integral or hexagonal grids.
Minimum turn cycle covers in grid graphs can be modeled as a semi-quadratic
cycle cover problem with w = 2 and edge weights satisfying Eq. (1). One of the
atomic strips represents being in a horizontal orientation (with an east and a west
heading vertex) and the other being in a vertical orientation (with a north and a
south heading vertex). The cost of an edge is as follows; see Fig. 3: Every vertex is
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connected to a position and a direction. The cost is the cheapest transition from
the position and direction of the first vertex to the position and opposite heading
of the second vertex (this is symmetric and can be computed efficiently). We can
easily transform a cycle cover in a grid graph into one based on atomic strips
and vice versa,; see Fig. 3 (left). For each pixel we choose one of its transitions. If
it is straight, we select the equally oriented strip; otherwise it does not matter,
see Fig. 3 (right). With more atomic strips we can also model more general grid
graphs such as hexagonal or 3-dimensional grid graphs with three atomic strips.

1.3 Owur Contribution

We provide the following results.

— We resolve Problem 53 in The Open Problems Project [15] by proving that
finding a cycle cover of minimum turn cost is NP-hard, even in the restricted
case of grid graphs. We also prove that finding a subset cycle cover of min-
imum turn cost is NP-hard, even in the restricted case of thin grid graphs,
in which no induced 2 x 2 subgraph exists. This differs from the case of full
coverage in thin grid graphs, which is known to be polynomially solvable [6].

— We provide a general IP/LP-based technique for obtaining 2 * w approxima-
tions for the semi-quadratic (penalty) cycle cover problem if Eq. (1) is satisfied,
where w is the maximum number of atomic strips per vertex.

— We show how to connect the cycle covers to minimum turn tours to obtain a
6 approximation for full coverage in regular grid graphs, 4w approximations
for full tours in general grid graphs, 4w+ 2 approximations for (subset) tours,
and 4w + 4 for penalty tours.

To the best of our knowledge, this is the first approximation algorithm for
the subset and penalty variant with turn costs. For general grid graphs our
techniques yields better guarantees than than the techniques of Arkin et al. who
give a factor of 6 * w for cycle covers and 6 * w 4 2 for tours. In practice, our
approach also yields better solutions for regular grid graphs, see [18].

2 Complexity

Problem 53 in The Open Problems Project asks for the complexity of finding
a minimum-turn (full) cycle cover in a 2-dimensional grid graph. This is by
no means obvious: large parts of a solution can usually be deduced by local
information and matching techniques. In fact, it was shown by Arkin et al. [5,06]
that the full coverage variant in thin grid graphs (which do not contain a 2 x 2
square, so every pixel is a boundary pixel) is solvable in polynomial time. In this
section, we prove that finding a full cycle cover in 2-dimensional grid graphs with
minimum turn cost is NP-hard, resolving Problem 53. We also show that subset
coverage is NP-hard even for thin grid graphs, so the boundary techniques by
Arkin et al. [5,6] do not provide a polynomial-time algorithm.
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Theorem 1. [t is NP-hard to find a cycle cover with a minimum number of 90°
turns (180° turns counting as two) in a grid graph.

The proof is based on a reduction from One-in-three 3SAT (1-in-3SAT),
which was shown to be NP-hard by Schaefer [24]: for a Boolean formula in
conjunctive normal form with only three literals per clause, decide whether there
is a truth assignment that makes exactly one literal per clause true (and exactly
two literals false). For example, (1 V 22 V 23) A (T1 V Tz V T3) is not (1-in-3)
satisfiable, whereas (z1 V 22 V x3) A (T1 V T2 V T4) is satisfiable.

See full version [17] for details, Fig. 5 for representing the one-clause formula
x1+22+2x3 = 1 with its three possible 1-in-3 solutions, and Fig. 4 for the instance
T1+ro+x3 =1AT1+T2+T4 = 1 ATy +22+T3 = 1. For every variable we have
a &b gadget consisting of a gray & gadget and a zig-zagging, high-cost path of
blue pixels. A cheap solution traverses a blue path once and connect the ends
through the remaining construction of gray and red pixels. Such variable cycles
(highlighted in red) must either go through the upper (&) or lower (&) lane
of the variable gadget; the former corresponds to a true, the later to a false
assignment of the corresponding variable. A clause gadget modifies a lane of all
three involved variable gadgets. This involves the gray pixels that are covered
by the green cycles; we can show that they do not interfere with the cycles for
covering the blue and red pixels, and cannot be modified to cover them. Thus,
we only have to cover red and blue pixels, but can pass over gray pixels, too.

To this end, we must connect the ends of the blue paths; as it turns out, the
formula is satisfiable if and only if we can perform this connection in a manner
that also covers one corresponding red pixel with at most two extra turns.

For subset cover we can also show hardness for thin grid graphs. Arkin et al.
[5,6] exploits the structure of these graphs to compute an optimal minimum-turn
cycle cover in polynomial time. If we only have to cover a subset of the vertices,
the problem becomes NP-hard again. The proof is inspired by the construction
of Aggarwal et al. [3] for the angular-metric cycle cover problem and significantly
simpler than the one for full coverage. See full version [17] for proof details.

Theorem 2. The minimum-turn subset cycle cover problem is NP-hard, even
i thin grid graphs.

3 Approximation Algorithms

3.1 Cycle Cover

Now we describe a 2w-approximation algorithm for the semi-quadratic (penalty)
cycle cover problem with w atomic strips per point if the edge weights satisfy
Eq. (1). We focus on the full coverage version, as the penalty variant can be
modeled in full coverage (with the same w and while still satisfying Eq. (1)), by
adding for every point p € P two further points that have a zero cost cycle only
including themselves and a cycle that also includes p with the cost of the penalty.

Our approximation algorithm proceeds as follows. We first determine an
atomic strip cover via linear programming. Computing an optimal atomic strip
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Ti+a+T3=1

x + a0+ a3

Fig. 4. Representing the 1-in-8SAT-formula z1 +x2+x3 = 1AT1+ T2+ T2 = 1 AT1 +

z2 + T3 = 1. (Color figure online)
1

1+ @2+ 23 T+ T+ a3 =

Fig. 5. Construction for the one-clause formula x1 + 2 + x3 = 1 and three possible
solutions. Every variable has a cycle traversing a zig-zagging path of blue pixels. A
variable is true if its cycle uses the upper path (&) through green/red pixels, false
if it takes the lower path (&). For covering the red pixels, we may use two additional
turns. This results in three classes of optimal cycle covers, shown above. If we use the
blue 4-turn cycle to cover the upper two red pixels, we are forced to cover the lower
red pixel by the x3 variable cycle, setting x3 to false. The variable cycles of x1 and x2
take the cheapest paths, setting them to true or false, respectively. The alternative
to a blue cycle is to cover all three red pixel by the variable cycles, as in the right
solution. (Color figure online)
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Fig. 6. Example of the approximation algorithm for a simple full cycle cover instance in
a grid graph. First the fractional solution of the integer program (2)—(4) is computed.
Strips and edges with value 0 are omitted, while dashed ones have value 0.5. Then
the dominant (i.e., highest valued) atomic strips of this solution are selected. Finally,
a minimum weight perfect matching on the ends of the atomic strips is computed.
(Recall that atomic strips only have an but no length, so the curves in the corner
indicate simple 90° turns.)

cover is NP-hard; we can show that choosing the dominant strips for each pixel
in the fractional solution, i.e., those with the highest value, suffices to obtain
provable good solutions. As a next step, we connect the atomic strips to a cycle
cover, using a minimum-weight perfect matching. See Fig. 6 for an illustration.

We now describe the integer program whose linear programming relaxation
is solved to select the dominant atomic strips. It searches for an optimal atomic
strip cover that yields a perfect matching of minimum weight. To satisfy Eq. (1),
transitive edges (connections implied by multiple explicitly given edges) may
need to be added, especially loop-edges (which are not used in the final solution).
The IP does not explicitly enforce cycles to contain at least two points: all small
cycles consist only of transitive edges that implicitly contain at least one further
atomic strip/point. For the usage of a matching edge e = vw € Ep, we use the
Boolean variable x. = x,,,,. For the usage of an atomic strip o = vw € Op,p € P,
we use the Boolean variable y, = 4.

min Z cost(e)x, (2)

eeEo
s.t. > w=1 peP (3)
vw€Oy
2Ty + Z Te = 2Ty + Z Te = Youw P € Pyvw € O (4)
e€Eo(v) e€Eo(w)
e#£vv eAww

We minimize the cost of the used edges, with Eq. (3) forcing the selection of one
atomic strip per pixel (atomic strip cover) and Eq. (4) ensuring that exactly the
vertices (endpoints) of the selected atomic strips are matched, with loop edges
counting double due to their two ends.

Theorem 3. Assuming edge weights that satisfy Eq. (1), there is a 2w-
approximation for semi-quadratic (penalty) cycle cover.
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Proof. Consider the described fractional atomic strip cover and matching of the
integer program, which is a lower bound on the optimal cycle cover. We now
show that we can transform this solution to a matching of the dominant strips
with at most 2w times the value. First we modify the solution such that exactly
the dominant strips are used. In the current solution, the dominant strips are
already used with at least %, so multiplying the solution by w ensures a full
usage of them. Now we can remove all superfluous strip usages by replacing two
fractional matching edges that go through such a strip by a directly connecting
matching edge without increasing the cost. This can create loop matching edges
(assume these to have the same cost as the two edges they replace); these can
easily be removed later. After this, we are left with a matching polytope that is
half-integral (based on the same proof as for Theorem 6.13 in the book of Cook et
al. [13]). Thus, we can assume our matching to be half-integral and double it to
obtain an integral solution with double usages of strips. These double usages can
be removed the same way as before while remaining integral. Whole redundant
cycles may be removed on this way. We are now left with a feasible matching of
the dominant strips that has at most 2w times the cost of the original fractional
solution, giving us the desired upper bound. More details on this proof can be
found in the full version [17].

3.2 Tours

A given cycle cover approximation can be turned into a tour approximation at
the expense of an additional constant factor. Because every cycle involves at
least two points and a full rotation, we can use classic tree techniques known
for TSP variants to connect the cycles and charge the necessary turns to the
involved cycles. We sketch the basic ideas; see full version [17] for details.

Theorem 4. Assuming validity of Eq. 1 we can establish the following approxi-
mation factors for tours.

(i) Full tours in regular grid graphs: 6-approzimation.

(i1) Full tours in generalized grid graphs: dw-approximation.
(i1i) Subset tours in (generalized) grid graphs: (4w + 2)-approzimation.

(iv) Geometric full tours: (4w + 2)-approximation.

(v) Penalty tours (in grid graphs and geometric): (4w + 4)-approximation.

These results also hold for objective functions that are linear combinations of
length and turn costs.

Proof. Tt is crucial that (1) a cycle always has a turn cost of at least 360°, (2)
two intersecting cycles can be merged with a cost of at most 360°, and (3) two
cycles intersecting on a 180° turn can be merged without additional cost.

(i) For full tours in grid graphs, greedily connecting cycles provides a tour with
at most 1.5 times the turn cost of the cycle cover, while a local optimization
can be exploited to limit the length to 4 times the optimum, as shown by
Arkin et al. [5].
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(ii) In a cycle cover for (generalized) grid graphs, there are always at least two
cycles with a distance of one, while every cycle has a length of at least 2;
otherwise the cycle cover is already a tour. This allows iteratively merging
cycles at cost at most as much as a cheapest cycle; the total number of
merges is less than the number of cycles.

(iii) and (iv) For subset coverage in grid graphs or full coverage in the geomet-
ric case, we need to compute the cheapest paths between any two cycles,
ignoring the orientations at the ends. First connect all intersecting cycles,
charging the cost on the vanishing cycles. The minimum spanning tree on
these edges is a lower bound on the cost of the tour. Doubling the MST con-
nects all cycles with the cost of twice the MST, the cost of the cycle cover,
and the turn costs at the end of the MST edges, which can be charged to
the cycles.

(v) Penalty tours can be approximated in a similar manner. Instead of an MST,
we use a Price-Collecting Steiner Tree, which is a lower bound on an optimal
penalty tour. We use a 2-approximation for the PCST [21], as it is NP-hard.
We achieve a cost of twice the 2-approximation of the PCST, the cost of
the penalty cycle cover, and the cost of its cycles again for charging the
connection costs. The penalties of the points not in the cycle cover are
already paid by the penalty cycle cover.

4 Conclusions

We have presented a number of theoretical results on finding optimal tours and
cycle covers with turn costs. In addition to resolving the long-standing open prob-
lem of complexity, we provided a generic framework to solve geometric (penalty)
cycle cover and tours problems with turn costs.

As described in [10], the underlying problem is also of practical relevance.
As it turns out, our approach does not only yield polynomial-time approxima-
tion algorithms; enhanced by an array of algorithm engineering techniques, they
can be employed for actually computing optimal and near-optimal solutions for
instances of considerable size in grid graphs. Further details on these algorithm
engineering aspects will be provided in our forthcoming paper [18].
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