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Abstract 

We give the first exact algorithmic study of facility location 
problems that  deal with finding a median for a continuum 
of demand points. In particular, we consider versions of the 
"continuous k-median (Weber) problem" where the goal is 
to select one or more center points that minimize the aver- 
age distance to a set of points in a demand region. In such 
problems, the average is computed as an integral over the 
relevant region, versus the usual discrete sum of distances. 
The resulting facility location problems are inherently geo- 
metric, requiring analysis techniques of computational ge- 
ometry. We provide polynomial-time algorithms for various 
versions of the L1 1-median (Weber) problem. We also con- 
sider the multiple-center version of the L1 k-median prob- 
lem, which we prove is NP-hard for large k. 

1 Introduction 

"There are three important factors that deter- 
mine the value of real estate - location, location, 
and location." 

There has been considerable study of facility location 
problems in the field of combinatorial optimization. In gen- 
eral, the input to these problems includes a weighted set 
D of demand locations (with weight distribution ~ and to- 
tal weight A), a set F of feasible facility locations, and a 
distance function d that  measures cost between a pair of lo- 
cations. In one important class of questions, the problem is 
to determine one or more feasible median locations c E F 
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in order to minimize the average cost from the demand lo- 
cations, p E D, to the corresponding central points cp that 
are nearest to p: 

pED 

If there is one median point to be placed, the problem is 
known as the classical Weber problem; it was first discussed 
in Weber's 1909 book on the pure theory of location for in- 
dustries [52] (see [54] for a modern survey). More generally, 
for a given number k > 1 of facilities, the problem is known 
as the k-median problem. A problem of similar type with a 
different objective function is the so-called k-center problem, 
where the goal is to find a set of k center locations such that 
the maximum distance of the demand set from the nearest 
center location is minimized. 

With many practical motivations, geometric instances of 
facility location problems have attracted a major portion of 
the research to date. In these instances, the sets D of de- 
mand locations and F of feasible placements are modeled as 
points in some geometric space, typically ~2, with distances 
measured according to the Euclidean (L2) or Manhat tan 
(L1) metric. In these geometric scenarios, it is natural  to 
consider not only finite (discrete) sets F of feasible loca- 
tions, but also (continuous) sets having positive area. For 
the classical Weber problem, the set F is the entire plane 
~2, while D is some finite set of demand points. 

Location theory distinguishes between discrete and con- 
tinuous location theory (see [22]). However, for median 
problems, this distinction has mostly been applied to the 
set of feasible placements, distinguishing between discrete 
and continuous sets F.  It is remarkable that,  so far, con- 
tinuous location theory of median problems has almost en- 
tirely treated discrete demand sets D [22, 45]. We should 
note that  there are several studies in the literature that deal 
with k-center problems with continuous demand, e.g, see 
[36, 51], where demand arises from the continuous point 
sets along the edges in a graph. See [50] for results on the 
placement of k capacitated facilities serving a continuous 
demand on a one-dimensional interval. Also, k-center prob- 
lems have been studied extensively in a geometric setting, 
see e.g. [1, 15, 23, 25, 26, 27, 28, 29, 30, 35, 37, 48, 49]. 
However, designing discrete algorithms for k-center prob- 
lems can generally be expected to be more immediate than 
for k-median problems, since the set of demand points that  
determine a critical center location will usually form just  a 
finite set of d + 1 points in d-dimensional space. 
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Continuous demand for k-median problems is also miss- 
ing from the classification in [5]. We contend that  the prac- 
tical and geometric motivations of the problem make it very 
natural  to consider exact algorithms for dealing with a con- 
tinuous demand distribution for k-median problems: if a 
demand occurs at some position p E D, according to some 
given probabil i ty density 5(p), then we may be interested 
in minimizing the expected distance fpen d(c,p)~(p)dp for a 
feasible center location c E F .  

To the best of our knowledge, there are only few refer- 
ences that  discuss k-median problems with continuous de- 
mand: See the papers [44, 58] for a discussion of continuous 
demand that  arises probabilistically by considering a dis- 
crete demand in an unbounded environment with a large 
number of demand points, leading to a heuristic for optimal 
placement of many center points. Drezner [17] describes in 
Chapter  2 of his book that  normally a continuous demand 
is replaced by a discrete one, for which the error is "quite 
pronounced for some problems". (See his chapter for some 
discussion of the resulting error.) Wesolowsky and Love 
[55] (and also in their book [34] with Morris) and Drezner 
and Wesolowsky [18] consider the problem of continuous de- 
mand for rectilinear distances. Practical motivations include 
the modeling of postal districts and facility design. They 
compute the optimal solution for one specific example, but  
fail to give a general algorithm. More recently, Carrizosa, 
Mufioz-M~rquez, and Puerto [6, 7] use convexity properties 
for problems of this type to deal with the error resulting 
from nonlinear numerical methods for approximating solu- 
tions. I t  should be noted that  the objective function is no 
longer convex when distances axe computed in the presence 
of obstacles. 

In this paper,  we s tudy the k-median problem, and its 
specialization to the Weber problem (k ---- 1), in the case of 
continuous demand sets. Another way to state our continu- 
ous Weber (1-median) problem is as follows: In a geometric 
domain (e.g., cluttered with obstacles), determine the ideal 
"meeting point" c* that  minimizes the average time that  it 
takes an individual, initially located at a random point in D, 
to reach c*. Another application comes from the problem 
of locating a fire stat ion in order to minimize the average 
distance to points in a neighborhood, where we consider 
the potential  emergencies (demands) to occur at points in 
a continuum (the region defining the neighborhood D). As 
we noted above, this objective function is different from the 
situation in which we want to minimize the maximum dis- 
tance instead, a problem that  has been studied extensively 
in the context of discrete algorithms. 

Choice of Metric. Many papers on geometric location the- 
ory have dealt with continuous sets F of feasible placements ,  
including [2, 4, 11, 12, 14, 19, 31, 32, 33, 55, 56, 57]. In the 
majori ty of these papers, distances are measured according 
to the L1 metric. In fact, it was shown by Bajaj  [3] that  if L2 
distances are used, then even in the case of only five demand 
locations (IDI ---- 5), the problem cannot be solved using rad- 
icals; in particular,  it cannot be solved by exact algorithmic 
methods that  use only ruler and compass. (Chandrasekaran 
and Tamir [9] give a polynomial-t ime approximation scheme 
that  uses the ellipsoid method.)  In this paper, we too con- 
centrate on the problem using the L1 metric. While we can 
exactly solve some very simple special cases in the L2 met- 
ric, in general the integrations that  are required to solve the 
problem are likely to be just  as intractable as the classic 
Weber problem. (Results that  approximate the Euclidean 
cases are discussed more in the full paper.) 

Summary of Results. In this paper,  we give the first exact 
algorithmic results for location problems that  are continuous 
on both counts, in the set D as well as the set F .  In our 
model D and F are each given by polygonal domains. Our 
goal is to compute a set of k (k ~ 1) optimal centers in 
the feasible set F that  minimize the average distance from a 
demand point of D to the nearest center point. Our results 
include: 

(1) A linear-time (O(n)) algorithm for computing an opti- 
mal solution to the 1-median (Weber) problem when 
D ---- F ---- P ,  a simple polygon having n vertices, and 
distance is taken to be L1 geodesic distance inside P.  

(2) An O(n 2) algorithm for computing an optimal 1-median 
for the case that  D -- F = P,  a polygon with holes, 
and distance is taken to be (straight-line) L1 distance. 

(3) An 0(I + n logn )  algorithm (where I ---- O(n 4) is the 
complexity of a certain arrangement) for computing 
an optimal 1-median for the case that  D -- F = P ,  
a polygon with holes, and distance is taken to be L1 
geodesic distance inside P.  

(4) A proof of NP-hardness for the k-median problem when 
the number of centers, k, is part  of the input, and 
D = F -- P is a polygon with holes. This adds specific 
meaning to the statement by Wesolowsky and Love 
[55] that  computing the optimal position of several lo- 
cations "is obviously very tedious when (the number 
of locations) is very large". 

(5) Generalizations of our results to the following cases: 
D ¢ F;  non-uniform probabili ty densities over the 
demand set D; fixed-orientation metrics (generaliza- 
tion of L1), which can be used to approximate the 
Euclidean metric; and, higher dimensions. 

(~.,4) (4,4) 

-4,-4) 

(-3,2) (1,2) 

""-" c* 

(- I,-2) (3,-2) 

4,-4) 

Figure 1: A simple example: The region D ---- F ---- P is 
shown as a polygon with a single (parallelogram) hole, shown 
shaded. There axe two points (marked "c*") that  minimize 
the average straight-line L1 distance. (In this part icular  
example, the optima lie on the boundary of P.) 

71 



Related Work. There is a vast l i terature on location the- 
ory; for a survey, see the book of Drezner [16], with its over 
1200 citations that  not only include papers dealing with 
mathematical  aspects of optimization and algorithms, but 
also various applications and heuristics. A good overview 
of research with a mathematical  programming perspective 
is given in the book of Mirchandani and Francis [38]. 

There has been considerable activity in the computa- 
tional geometry community on facility location problems 
that  involve computing geometric "centers" and medians of 
various types. The problem of determining a 1-center, point 
c, to minimize the maximum distance from c to a discrete set 
D of points is the familiar minimum enclosing disk problem, 
which has linear-time algorithms based, e.g., on the meth- 
ods of Megiddo. The geodesic 1-center of simple polygons 
has an O(n log n) algorithm [46]. Exciting recent results of 
Sharir et al. [48, 20, 8] have yielded nearly-linear-time algo- 
r i thms for the planar two-center problem. The more general 
p-center problem has been studied recently by [49]. 

The results outlined in this abstract  constitute much of 
the PhD thesis of Weinbrecht [53]; most of the details nec- 
essarily omit ted here are presented in-depth in the thesis. 

2 Preliminaries 

We will let Z ---- (x, y) denote a candidate center point in 
F C_ ~ .  (We concentrate on two-dimensional problems un- 
til Section 8, where we discuss extensions to higher dimen- 
sions.) We defer discussion of multiple center points (k > 1) 
to Section 7; for now, k = 1 and we consider the Weber 
(1-median) problem. 

We let P denote a polygonal domain, possibly with holes. 
For purposes of our discussions, we focus on the case in 
which D = F = P:  we restrict Z to P ,  which also equals 
the demand set. Our results will apply more generally to 
cases in which D ~ F ,  but  we simplify our discussion here 
to the case D -- F .  

Furthermore, we restrict our discussion in this abstract  
to the case in which the demand is uniformly distr ibuted 
over the set D ---- P ,  so our goal is to compute average dis- 
tance. 

Thus, the value of our objective function, denoted f (Z ) ,  
is given by the integral 

s ( z )  = s ( x ,  = [ [  (u, 
J J ( u , v ) 6 P  

where d(., .) denotes either (straight-line) Li  distance or 
geodesic Li  distance within P.  (We abuse notation slightly 
by writing f ( Z )  = f ( (x ,  y)) = ] (x ,  y).) 

In order to analyze the k-median problem with respect 
to geodesic distances, we will utilize several definitions and 
results from the theory of geometric shortest paths among 
obstacles. The shortest path map, SPM(s),  with respect 
to source point s, is a decomposition of P into cells ac- 
cording to the "combinatorial structure" (sequence of ob- 
stacle vertices along the path)  of shortest paths from s to 
points in the cells. In particular,  the last obstacle vertex 
along a shortest s-t path is the root of the cell containing 
t. The root of a cell lies on its boundary and can reach 
each point of the cell directly. We store with each ver- 
tex, v, of P the geodesic distance, de(s,v), from s to v, 
as well as a pointer to the predecessor of v, which is the 
vertex (possibly s) preceding v in a shortest path  from s 
to v. The predecessor pointers provide an encoding of the 
shortest path tree, SPT(s) .  The boundaries of cells con- 
sist of portions of obstacle edges and bisector curves. The 

bisector curves are the locus of points p that  are (geodesi- 
cally) equidistant from two roots, u and v: they satisfy 
de(s, u) + d(u,p) = de(s, v) + d(v,p), where dG(., .) denotes 
the shortest path  (geodesic) distance function, and d(-, .) de- 
notes our underlying distance function (L1, L2, etc.). Fig- 
ure 2 shows the types of bisectors that  can arise in the Li  
metric; Figure 3 shows an example of an Li  shortest pa th  
map. I f t  lies in the cell rooted at r,  the geodesic distance to 
t is given by dG(s, t) = dG(s, r)÷d(r, t). Shortest path  maps 
can be computed in optimal t ime O(n log n), both in the Eu- 
clidean metric and in the Li metric [24, 39, 41]. For more 
information, see the survey chapters by Mitchell [42, 43]. 

yL. 
x / 

• PI PI • / 

Pz / • P: 
(a)  (b )  

• • P2 

Figure 2: Li  bisectors. 

l x 

Figure 3: SPM(Z)  for a polygon P having two holes. Ver- 
tices are labeled with their L1 geodesic distances from Z. 

3 Local Optimality Conditions 

For any given center location Z, the objective function value 
f ( Z )  that  gives the average distance from Z to points of 
P can be evaluated by decomposing P into a set of "sim- 
ple" pieces, computing the average distance for each piece, 
and then obtaining the total  average distance as a weighted 
sum of the average distances for the pieces. In the case of 
straight-line L1 distance, we simply use a trapezoidization 
(or triangulation) of P to determine the pieces; this can be 
done in linear t ime if P is simple, or in O(nlogn) t ime if 
P has holes. In the case of geodesic distance, the shortest 
path  map, SPM(Z) ,  gives a decomposition of P into cells 
(each of which can be refined to yield a decomposition into 
O(1)-size pieces), each having a corresponding root vertex 
on its boundary. By computing the average distance from 
points of a cell to the cell's root r,  and then adding this 
average to the distance dG(Z, r)  and summing over all cells, 
we obtain the average geodesic distance, f ( Z ) .  
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The average distance associated with a single simple piece 
is given by the following result, whose straightforward proof 
is omit ted here. 

L e m m a  1 For  a triangle T with vertices A, B ,  and C, let 
a be the length of AB ,  let c be the length of the altitude from 
C, and let b be the distance from A to the foot of the altitude 
from C. Then the average L1 distance of points in v from 
vertex A is ½(a + b + c). 

x A a A 
h 

Figure 4: Notation used in computing the average L1 dis- 
tance of A A B C  from A. 

x x 

Figure 5: Computing the part ial  derivative in x-direct ion 
for (left) straight-line L1 distances; (right) geodesic L1 dis- 
tances. 

The objective function, f (Z) ,  is a continuous function of 
the location of the center Z. Since the set F ---- P of feasible 
placements is a compact domain, it follows that  there is an 
optimum, which must, necessarily, be locally optimal. The 
following lemma characterizes local optimality: 

P r o p o s i t i o n  2 I f  Z E P is a local optimum o f f ,  then there 
cannot be a feasible direction h = (h~, hu) , i. e., Z + eh E P 
for suj~iciently small e), such that f ( Z )  > f ( Z  + eh). I f  
the gradient V f exists in some neighborhood of Z,  then this 
implies that for any feasible direction h, we have (V f, h) > 
O. 

In particular,  for interior points that  are locally opti- 
mal, the gradient must be zero; for points in the interior 
of boundary edges, the gradient must be orthogonal to the 
boundary. 

For any position Z of a center, the region P is subdi- 
vided into two pieces: the set W ( Z )  of all points for which a 
shortest path  to Z reaches Z in a ("western") direction with 
nonnegative x-coordinate, while E(Z)  is the set of all points 
for which a shortest path  to Z reaches Z in an ( "eastern" ) di- 
rection with non-positive x-coordinate. Similarly, we define 
N ( Z )  and S(Z) .  (Note that  this part i t ion looks different for 
straight-line and for geodesic distances; see Figure 5 (right) 
for the case of geodesic distances.) 

Then we have the following: 

L e m m a  3 Consider the objective function f for average 
straight-line or geodesic L1 distance in a region P.  Let 
Z = (x~,y~) be a point in P ,  with neither x nor y coin- 
ciding with the x- or y-coordinate of a local minimum or 
maximum of the boundary of P ,  and let A be the area of P.  
Then the first partial derivatives of f are well-defined and 
given by: 

I x (Z)  = ~ ( W ( Z ) -  E ( Z ) ) ,  (1) 
fu (Z)  = -r.~ (S (Z)  - N ( Z ) ) .  

Proof. 
We discuss the x-coordinates for straight-line L1 dis- 

tances, see Figure 5 (left). Consider Z' = Z + (h, 0) for 
some sufficiently small h. Then we get 

f~(x~,yz)  = lim f(x~ + h,y~) - f (x~ ,y~)  
h-~0 h 

lim ( ~ (hW(x~,  yz) - hE(x~ + h, y~) + O(h2)) 
h--~0 h 

-/(xz,yz)) +/(x~,yz) -~ 

1 lim hW(xz , y~ )  - hE(x~ + h , y ~ )  + O ( h  2) 
A h-~O h 

1 
= A ( W ( x z , y z )  - E(x~ ,yz ) )  = -~ ( W ( Z )  - E ( Z ) ) .  

For geodesic distances, we use a similar argument in the 
full paper (see [53]), but  the situation looks as in Figure 5 
(right). 

[] 

It is readily seen that  the function f~(Z) = % ( W ( Z )  - 
E(Z) )  is not continuous at points where the boundary of P 
has a local minimum or maximum of its x-coordinates; we 
say that  a chord through such a point is "critical." 

However, f~ (Z) is lower semi-continuous and monotonic, 
so there is a well-defined vertical median chord c~ at x- 
coordinate xm such that  f~(Z1) < 0 for all Z1 = ( x l , y l )  
with xl  < x,~, and f z (Z2)  > 0 for all Z2 = (x2,y2) with 
x2 > Xm. Similarly, there is a unique horizontal median 
chord cu at y-coordinate ym. We call Zm = (Xm, ym) the L1 
origin of P.  

In some situations, we make use of properties of higher- 
order derivatives of f .  In particular,  we use the following 
lemma: 

L e m m a  4 Consider the objective function f for average 
straight-line or geodesic LI distance in a region P.  Let 
Z = (xz ,yz )  be a point in P ,  with neither x nor y coin- 
ciding with the x- or y-coordinate of a local minimum or 
maximum of the boundary of P ,  and no point of the bound- 
ary of W ( Z )  or E (Z )  coinciding with a vertex of P .  Then 
there is a neighborhood of Z for which f is a cubic function 
in x and y. 
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bl(t) 

\ ,mON 

x b2(0  

Figure 6: Trapezoids and slopes for higher order derivatives 

Proof. 
See Figure 6 for the case of straight-line distances, and 

consider changing Z to Z '  = Z + (h, 0). Then 

W ( x  + h,y)  = W ( x , y )  + Bo + B1 + . . .  + B~ (2) 

and 

E(x  + h,y)  = E (x , y )  - Bo - B1 - . . .  - Bk, (3) 

with trapezoids Bo, . . . ,  Bk as shown in the figure. Let b~(t) 
be the width of t rapezoid Bi at x-coordinate t, and miN 
and mis  be the slopes of the upper and lower line segments 
bounding B~. Then 

1 2 
Bi = hbi(x) + ~h (miN -- mis) .  

Then we get 

k 

i = 0  

This is a constant expression, so f is cubic in x. 
For geodesic distances, the claim follows in a similar man- 

ner. Instead of being trapezoids bounded by two vertical 
chords, however, the areas Bi are bounded by two bisec- 
tors of the SPM. It  follows from elementary properties of L1 
bisectors that  these bisectors move in a parallel fashion, pro- 
vided that  during the move from Z to Z r, no polygon vertex 
is hit by the bisector. Thus, the B ' s  are pseudo-trapezoids, 
and the area of each Bi is still a quadratic function of h. 
(Details are contained in the full version of the paper.) 

[] 

4 Simple Polygons 

In this section, we show how to compute in optimal (O(n)) 
t ime a point tha t  minimizes the average geodesic L1 distance 
for a simple polygon. 

I t  follows from our observations from the previous section 
that  a point has locally optimal x-coordinate if and only if 

its vertical chord passes through the L1 origin of the region. 
Let Zm = (Xm, ym) be this origin. 

In the following, we use the structure of simple polygons 
to show that  Zm has to lie within the feasible region P .  

T h e o r e m  5 The point Zm is feasible and thus a unique 
global optimum. 

Proof. Assume to the contrary tha t  Zm is infeasible. Then 
the chord cx subdivides P into two or more pieces: let E 
denote the part  to the right ("east") of cx, and W the part  
to the left ("west") of c~. Similarly, the chord cy subdivides 
P into two or more pieces, with N ("north")  denoting the 
part  above cy, and S ("south") denoting the par t  below c~. 

We distinguish the following cases, i l lustrated in Fig- 
ure 7: 

C a s e  O: N e i t h e r  c~ n o r  c~ a r e  c r i t i c a l .  If Zm ~ P, 
then, without loss of generality, the si tuation is as shown in 
Figure 7 (top). 

(Case O) 

(Case 1) 

A 
S I 

(Case 2) 

Figure 7: Intersection of median chords. 

Then the two chords subdivide P into three pieces, E,  
W N N ,  and S. By assumption, we have A(E)  > O, A(S)  > O, 
A ( W  (7 N) > O, and A(E)  + A(S)  + A ( W  n N)  = A(P) .  
Furthermore, the local opt imali ty  assumption on Xm implies 
A(E)  = ½A(P), and the local opt imali ty  assumption on Ym 
implies A(S)  = ½A(P). This implies A ( W  V1N) = O, a 
contradiction. 

C a s e  1: P r e c i s e l y  o n e  o f  cx a n d  cy is  c r i t i c a l .  If 
Zm ~ P then, without loss of generality, the si tuation is as 
shown in Figure 7 (center), with c~ being critical. 

74 



As in Case 0, the vertical chord c~ partitions P into 
two pieces, "eastern" E and "western" W, and, by local 
optimality, A(E) = A(W)  = ½A(P). On the other hand, 
c~ partitions P into an "upper" piece N, a "lower" piece 
$1, and a second "lower" piece $2, all with positive area. 
(Note that the interior of $2 may consist of several connected 
components, if the chord c~ meets several local maxima of 
the boundary of P.) By local optimality, we know that 
A(N) < ½A(P), A(N)+ A(S2) > ½A(P). Since NOS~ C E, 
we have a contradiction. 

Case  2: B o t h  c~ a n d  c~ are  cr i t ical .  If Zm ~ P 
then, without loss of generality, the situation is as shown in 
Figure 7 (bottom). 

As in Case 1, the horizontal chord c~ subdivides P into 
a "northern" piece N, a "southern" piece S~, and a second 
"southern" piece S~, all with positive area. Similarly, the 
vertical chord c~ subdivides P into a "western" piece W, 
an "eastern" piece E~, and a second "eastern" piece E~, 
all with positive area. By local optimality, we know that 
A(N) < ½A(P), A(N) ÷ A(S~) ~_ ½ A(p),  and similarly, 
A(W) < ½A(P), A(W) ÷ A(E2) > ½A(P). Since N O $2 C 
E, we have a contradiction. 

[] 

T h e o r e m  6 The point Zm can be computed in linear time. 

Proof. We describe how to compute the x-coordinate Xm 
of Zm ; the y-coordinate is found in a similar manner. 

In linear time (using Chazelle's algorithm [10]), we build 
the vertical trapezoidization of P, which is defined by draw- 
ing vertical chords through every vertex of P. Each piece 
(cell), 7i, of the map is either a vertical-walled trapezoid or 
a triangle (a degenerate trapezoid). Consider the adja- 
cency graph G of these pieces ~'i (i.e., the planar dual of the 
trapezoidization); since P is a simple polygon, ~ is a tree. 

The x-coordinate Xm of the optimal point Zm has to in- 
tersect some piece Tin. Consider the partition of G induced 
by removing rm; let Cm~x be the heaviest connected com- 
ponent in this subdivision, and let Tmax be the unique node 
of Cmax adjacent to 7m. The weight of Cma~ cannot exceed 
A(P)/2, or the local optimality of Zm would be violated: 
moving Zm from vm by an infinitesimal E into Tm~ would 
reduce the distance to Zm by e for a set of points of a total 
area more than A(P)/2,  while increasing it by at most e for 
a set of points of total area less than A(P)/2. Thus, v,~ is 
a median in the weighted tree ~. 

A median in a weighted tree can be computed in linear 
time (e.g., see Goldman [21]). This allows us to compute 
in linear time a piece Trn that contains the critical coordi- 
nate Xm. 

Once Tm has been identified, it is easy to compute xm: 
assuming that xm is not given by one of the two vertical 
chords, we only have to identify the (unique) x-coordinate 
that splits P into two pieces of equal area. Since the slope of 
the boundary segments of Tm does not change, this compu- 
tation can be carried out by solving one quadratic equation. 

[] 

5 Straight-Line L1 Distance 

For straight-line distances, a finite average is guaranteed 
even for disconnected regions P,  as long as they are compact. 
As in the case of geodesic distances, we can consider lc~:al 
optimality for finding a global optimum of f.  The example 
in Figure 8 shows that  even for the special case of a simple 
polygon P,  the L1 origin of P may not be a feasible point. 

~ i  iiiii~i~ ~ ~i~i~ ~ ~iiiii~i~ili iiii~l ~¸ 

Figure 8: For straight-line distances, the L1 origin of a sim- 
ple polygon P may be infeasible 

This makes it more involved to compute all local optima. 
In the following, we describe how to evaluate them in O(n 2) 
time. 

T h e o r e m  7 For straight-line L1 distances, a point Z* = 
(x*, y*) in a polygonal region P that minimizes the average 
distance f to all points in P can be found in time O(n2). 

Proof. We apply the local optimality conditions. We start 
by computing in time O(n log n) the L1 origin Zm of P; if Zm 
is feasible (i.e., Zm E P), we are done. If no interior point of 
P is a local optimum, then we have to consider the boundary 
of P. This yields a set Ed of O(n) line segments and a set 
Vd of O(n) vertices that we examine for local optimality. 

We overlay the set of vertical and horizontal lines through 
all vertices of P with Ed, subdividing each segment in Ed 
into O(n) pieces, bounded by a total of O(n 2) "overlay" ver- 
tices Vo. Let Eo be the resulting set of O(n ~) subsegments. 
See Figure 9. 

x~ x 2 x., 

Figure 9: Subdivision of the polygon into cells. 

Now we can examine the interior points p~ = (t, y(t)) of 
each edge ej E Eo for local optimality. Let sj be a vector 
parallel to ej. By construction of Eo, the vertical and hor- 
izontal lines through p~ cannot encounter a vertex of P as 
p~ slides along one subsegment of Eo. Thus, it follows from 
Lemma 4 that fx(p~) is a quadratic function in t, then so is 
f~ (p~). Therefore, considering the local optimality condition 

( v  f ,  ~:) = 0 

for all O(n 2) subsegments ej E Eo yields a set of O(n 2) 
quadratic equations in t. These can be solved in amor- 
tized time O(n2), since we can obtain the coefficients of 
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each quadratic equation in amortized constant t ime by ad- 
vancing from cell to cell in the overlay arrangement. This 
gives, for each subsegment ej, at most two local optima, qj,1 
and qj,2. Let ~/~ be the union of Eo and all qj,1 and qj,2. By 
construction, t~ contains O(n 2) elements, and all local op- 
t ima of f occur at points of V~. Thus, our goal is to evaluate 
the objective function at each of these points and to select 
the best one. This is simply done in amortized time O(1) 
per candidate,  by walking over the overlay arrangement and 
incrementally updat ing the value of the objective function. 

[] 

In many cases, the following property of straight-line me- 
dians can be applied for a reduction of the set of boundary 
segment that  we need to consider. (See Figure 10 for an 
illustration.) If Zm -- (Xm,ym) is the L1 origin of P and 
pl = (x l , y l )  andp2  = (x2,y2) are points in P ,  we say that  
pl dominates p2, if pl  lies in the rectangle spanned by Zm 
and P2. Figure 11: The example from Figure 1 is analyzed: point 

p4 -- (2v/7 - 9, 11 - 4V~) and its mirror image, ps, are the 
two optima. 

Figure 10: p~ is dominated by pl and cannot be a local 
opt imum 

L e m m a  8 Let pl = (x l , y l )  and p2 = (x2,y2) be points in 
P.  If  pl dominates p 2 ,  then f (p l )  <_ f(p2). 

Proof. Suppose that  x2 > Xl > xm and Y2 > yl ~ Y m .  
A Then W(p2) > W(p l )  > -~ and S(p2) > S(pl)  > ; s o  

moving a center from P2 to pl  cannot increase the objective 
value. 

D 

Using a plane-sweep algorithm, we can to identify the 
non-dominated pieces of the boundary in time O(nlogn) .  
If this set has complexity o(n), then we get a reduction of 
the overall complexity. 

An easy instance of the problem solved in this section 
is shown in Figure 11 (based on the simple example of Fig- 
ure 1); this example shows the necessity of solving quadratic 
equations in computing the solution. We get the non-domi- 
nated points pl,p2,p3 and the edge e2,3 = p2p3. 

6 Geodesic Distances in Polygons with Holes 

Now we discuss an even more complicated case, which arises 
when considering geodesic L1 distances in polygonal regions 
P that  may have holes. Again, we analyze the set of lo- 
cally optimal points: as long as a potential  center can be 
moved in some axis-parallel fashion that  lowers the average 
LI geodesic distance to all the points, it cannot be optimal. 

The local opt imali ty  of a point Z is closely connected to 
the shortest path  subdivision that  it induces: for local op- 
t imali ty in the x-direction, the subdivision into W ( Z )  and 

E(Z)  needs to be balanced; for local opt imal i ty  in the y- 
direction, the subdivision into N ( Z )  and S(Z)  needs to be 
balanced. The boundary between W ( Z )  and E ( Z )  is formed 
by bisectors for position Z. I t  follows from basic proper- 
ties of shortest path  maps tha t  the total  complexity of this 
boundary is O(n). (See, e.g., [40].) 

As we showed in Lemma 4, there is a neighborhood for 
each point Z E P where the objective function f is cubic, 
provided that  no bisector for Z meets a boundary vertex. 
This motivates the following lemma: 

L e m m a  9 There is a subdivision of P of worst-case com- 
plexity I = O(na), such that f is a cubic function within 
each piece of the subdivision. 

Proof. Lemma 4 implies that  we are done if we can com- 
pute a subdivision of the claimed complexity such that  we 
can move continuously between any two points in the in- 
terior of a connected cell of the subdivision, without any 
bisector encountering a vertex of the polygon during this 
motion. Provided tha t  there is a position Z for which a bi- 
sector encounters a vertex v of the polygon, this vertex v 
is contained in W ( Z )  as well as in E(Z) .  Thus, there axe 
two topologically different paths from Z to v, one fully con- 
talned in W ( Z ) ,  the other contained in E(Z) .  This implies 
that  there are two topologically different paths  from v to Z, 
i.e., Z must lie on a bisector of v. Therefore, the required 
subdivision is obtained by considering the O(n) bisectors of 
the O(n) polygon vertices. Each bisector has a complex- 
ity of O(n), so the subdivision is defined by the overlay of 
O(n 2) line segments, yielding an arrangement of worst-case 
complexity I -- O(na). Examples exist (see the full pa- 
per) to show that  this bound on I is t ight in the worst case. 
(Chiang and Mitchell [13] have studied similar arrangements 
that  arise in overlaying shortest path  maps in the Euclidean 
shortest path metric.) 

[] 

Considering the local opt ima on each cell of the arrange- 
ment allows us to obtain the following: 
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T h e o r e m  10 For geodesic L1 distances, a feasible point 
Z* = i x*, y*) in a polygonal region P with holes that mini- 
mizes the average distance f to all points in P can be found 
in worst-case time O(I + n log n). 

Proof. (sketch) The idea is to reduce the problem to a set 
of O(I) candidates, with O(1) such candidates in the in- 
terior or on the boundary of each cell. The function pa- 
rameters for f within each cell can be determined in total 
time 0 ( I  ÷ n log n) by traversing the arrangement and do- 
ing updates when changing from one cell to its neighbor. 
After determining the 0(I )  candidate locations, we can de- 
termine a best among them by computing their objective 
values, again in total time O(I ÷ n log n) by being careful 
how to update the objective function values. 

Thus, consider an arbitrary cell of the decomposition. If 
there is a local minimum interior to the cell, the gradient 
V f  must vanish. Since f is cubic within the cell, this means 
that we get a system of two quadratic equations (both com- 
ponents of the gradient must be zero) with two variables (x 
and y). Such a system can be solved in constant time using 
radicals. 

Similarly, we can determine the local optima with respect 
to variation along a boundary segment of a cell. For each 
segment, the gradient needs to be orthogonal to the segment. 
As in the straight-line case, this yields a quadratic equation 
that can be solved in constant time. 

Finally, there are O(I) vertices in the arrangement, each 
of which we consider as candidates. 

[] 

7 Many Centers 

We now consider the k-median problem of placing k centers 
into a polygonal region P, such that the overall average 
distance of all points p E P to their respective closest centers 
is minimized. We show that this problem is NP-hard for 
polygons with holes. 

Here, we give only an outline of the full proof. Our con- 
struction uses a reduction from PLANAR 3SAT. 

First, the planar graph corresponding to an instance I of 
PLANAR 3SAT is represented in the plane as a planar recti- 
linear layout, with each vertex corresponding to a horizontal 
line segment, and each edge corresponding to a vertical line 
segment that intersects precisely the line segments corre- 
sponding to the two incident vertices. There are well-known 
algorithms (e.g., [47]) that can achieve such a layout in linear 
time and linear space. See Figure 12. 

Next, the layout is modified such that the line segments 
corresponding to a vertex and all edges incident to it are 
replaced by a loop - see Figure 13 (top). At each vertex 
corresponding to a clause, three of these loops (correspond- 
ing to the respective literals) meet. Finally, the edges of 
all loops are replaced by a sequence of small squares that 
are interconnected by narrow corridors; also, each vertex for 
a clause is replaced by a single small square and linked to 
the adjacent variable loops by three narrow corridors. See 
Figure 13 (bottom) for the overall picture. 

Let 3k be the total number of squares in all variable 
loops. It can be checked that there is a placement of k 
variables with a low overall average distance of points to 
their closest centers (i.e., a low objective function value), if 
and only if there is a placement such that each square has 
a center or is next to a square with a center. This means 
that each clause square must be next to a square with a 

x 
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X4 
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x l  x2  

C2 ~ , ~ C3 

X3 
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Figure 12: The graph GI for the Planar 3SAT instance I = 
(xl Yx2 Vx3) A (~1V~3 Yx4) A (~2 Yx3 V~4), and its geometric 
representation. 

center. We prove that this is possible if and only if there is 
a satisfying truth assignment for the PLANAR 3SAT instance 
I. Details are contained in the full version of the paper. 

8 Conclusions 

In this paper, we have given the first exact algorithmic 
results for the Weber problem for a continuous set of de- 
mand locations. We have shown that for L1 distances in the 
plane, we can determine an optimum center in polynomial 
time, with the complexity ranging from O(n) for the case of 
geodesic distances in simple polygons, to O(n 2) for straight- 
line distances in general polygonal regions, and O(n 4) for 
geodesic distances in polygons with holes. 

Our results rely on a careful understanding of the local 
optimality criteria. Our local optimality conditions gener- 
alize to the case of more general (non-uniform) nonnegative 
demand densities b(p) by using the following observation. 
Regardless of the demand density function, any center loca- 
tion Z E P induces a subdivision of P into E(Z) and W(Z) ,  
and N(Z) and S(Z) by shortest-path bisectors. Then the lo- 
cal optimality condition on Z requires that E(Z) and W(Z),  
and S(Z) and N(Z) are balanced in the following sense: in- 
stead of requiring that E(Z) and W(Z),  and N(Z) and S(Z) 
have the same area, we consider the points Z where the inte- 
grals fvew(z) b(p)dp and fpeE(Z) b(p)dp, and fpCN(Z) b(p)dp 
and fpes(z)b(p)dp are the same. Points with these prop- 
erties are called b-medians. Similar ideas can be used for 
describing boundary points. If, for a particular b, there is a 
limited number of b-medians, they can be computed in poly- 
nomial time, and it is possible to compare objective values 
in polynomial time, then we can determine a (Lcenter for the 
given region. This includes the case in which the demand 
function is given by point weights in combination with a 
uniform demand distribution over P,  which is a problem 
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C] 
- 

~X4 
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Figure 14: In three-dimensional space, there may not be a 
feasible point that  is a median of P in all coordinates. 

Figure 13: Replacing variables by loops (left); final polygon 
(right) 

formulated by Wesolowsky and Love [55]. It is also easy to 
see that the above methods can be applied for the case in 
which F ¢ D. 

Approximation algorithms for the Euclidean case can be 
devised based on generalizing the L1 metric results to fixed 
orientation metrics. The local optimality conditions become 
more complex; however, the inherent algebraic complexity 
remains the same, for any metric whose disks are convex 
polygons. 

Our methods can also be applied in higher dimensions, 
by generalizing the local optimality conditions and carrying 
through the analysis in a very similar manner to the two- 
dimensional case. Figure 14 shows that a generalization of 
Lemma 6, however, does not hold in three-dimensional space 
(the main reason being that any axis-parallel plane cuts the 
region into not more than two pieces), so we cannot use the 
same idea to exploit simplicity for achieving a better com- 
plexity than in the case with holes. However, we can still 
use a subdivision into cells and study the objective function 
within each cell. As in the two-dimensional case, the objec- 
tive function is cubic for each coordinate, if P is a polyhedral 
region. 
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