Theoretical Computer Science 7 (1978) 217-236.
© North-Holiand Publishing Company

FINDING THE INTERSECTION OF TWO CONVEX
POLYHEDRA*

D. E. MULLER' and F. P. PREPARATA?
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, IL, U.S.A.

Communicated by M. Nivat
Received November 1977
Revised March 1978

Abstract. Given two convex polyhedra in three-dimensional space, we develop an algorithm to (i)
test whether their intersection is empty, and £} i <o to find ¢ separating plane, while (iii) if not to
find a point in the intersection and explicitly construct their intersection -polyhedron. The
algorithm runs in time O (n log n), vhere n is the sum of the numbers of vertices of the two
polyhedra. The part of *“e algorithm concerned with (iii) (constructing the intersection) is based
upon the fact that if a point in the intersection is known, then the entire intersection is obtained
fron. the convex hull of suitable geometric duals of the tao pelvkedra taken with respect to this
poiat.

1. In‘roduction

Finding the intersection of two convex polyhedra in three-dimensional space is a
classical problem in computational geometry [1]. A simple but time-consuming
solution to this problem is known, and it is so trivial that it is not even worth a
literature reference. It goes as follows. Let of and B be twe convex peiybedra; test
each face of s/ against each face of % to see if they intersect; if no inicrsection is
found, then the intersection of the two polyhedra is empty, otherwise it can be
simply construc:ed. It is clear that such an algorithm could use On *Yoperations if n
is the sum o’ the numbers of vertices of & and 9.

The search for a more efficient procedure has in the past met with no succe.:.
Several facts, however, suggested that a more efficient method should exist: first, it
is well-k.nown that two polygons in the plane can be intersected in time linear in the

-sum of their numbers of vertices [2]; second, several analogies exist between the
plane and the space, i.e., convex hulls of n-point sets (3] and maxima of sets of n
vectors [4] can be found in time O(n log r) in both two and three dimensions. Ii
spite of this, no generalization of the pelygon intersection aigouiiihin has been
found.

* This work was supported in part by the National Science Foundation under Grant MCS876-17321
and in part by the Joint Services Electronics Program under Contract DAAB-07-72-C-025¢.

! Also, Departments of Mathematics and of Computer Science.
2 Also, Departments of Electricaj Engineering and of Computer Science.

217

218 D.E. Muller, F.P. Preparata

In special cases, however, better than quadratic time methods have been known
for some time, Specifically, after the development of the Lee-Preparat- ~lzarithm
for locating a point in a planar subdivision [5], it was realized® that tlie intersection
of two polyhedra can be found in time O(n log’ n) if a vertex of one polyhedron lies
inside the other polyhedron. -

Alternately (see {1]. p 162}, Shamos conjectured that polyhedmn‘ intersection
could be obtained as a merge step of a d1v1de—and-conquer algorithm for the
intersection of half-spaces. :

In this paper we present an algorithm for sclving the problem of intersecting two
polyhedra in time O(n log n). The algorithm tests whether the intersection is empty
an<, il not, explicitly constructs it. The approach is based on the fact that, if a point
p in the intersection is known, the intersection can be obtained through geometric
dualization. Specifically, the two polyhedra are both transformed into their
geometric duals with respect to p, and the convex hull of the dual, which can be
found in time O(n log n), is the dual of the intersection polyhedron (Section 3).
‘When such a speciai point p is not available, by deploying known techniques in time
O(nlog n) we can test whether the interseciion is nonempty and, if so, obtain a
point in the intersection (Section 4). The aigorithm requires that each polyhedron
be represented by a very versatiie daia structure caiied the doubly connected edge
list, which can be obtained from a more conventional representation - produced by
the convex hull algorithm - in time linear in the number of vertices (Section 2).

2. Derivaticr ¢ a deubly connecte:. zdge list for a planar graph

Let V={v,,...,v,} and E={r ..., e.} be the sets of vertices and edges
respectively, of a planar graph er:bedded in the plane without crossing edges. We
assume that (V, E) is represented as follows. To vertex v;€ V there corresponds
ceil H|j] of an array H[1:n], which contains a pointer to the first term of the cyclic
list of the edges incident on v; arranged in the order in which they appear as one
proceeds counterclockwise around v;. The latter lists are realized by means of two
airays VERTEX[1:2m] and %/ XT[1:2m] so that (VERTEX([i], NEXTJ[{]) is the
format of the list nodes. This representation of the graph (V, E) is precisely the one
obtained by the algoritha: ~f Preparata and Hong [3] which constructs the convex
hull of a set of points in three dimensions: indeed the surface of a convex poly-
hedron iz topologically a planar graph. We shall call this collection of lists the
vertex-10-edge representation of a planar graph.

Although the vertex-to-edge list is one of the most commonly used represen-
ianons for a planar graph, it has the disadvantage that the dual graph, i.e., the graph
whnose vertices correspond to “aces of the original graph, it wo. readily available.

* Private communications between M. 1. Shamos and F. P, Freparata, May 1976, See also [1] p. 160.

The intersection of two convex pelyhedra 219

For this one would have to develop the face-to-edge representation of the original
graph in which each face refers to a cyclically ordered list of edges whicn enclose it.

A more convenient representation for this purpose is one which we shall call the
doubly connected edge list (DCEL), from which we can obtain equally easily
information either about the edges incident on a vertex or the edges enclosing a
face. We will now describe the DCEL and give in an appendix the algorithm by
which to obtain it from the more conventional vertex-to-cdge representation of the
graph in time proportional to the number n of vertices.

The main component of the DCEL of a planar graph (V, E) is the edge node.
T"here is a one-i0-one correspondence betweer edges and edge nodes, i.e., each
edge is represented only once, whereas in .. vertex-to-edge list each edge
* appeared twice. An edge node consists of four information fields V1, V2, F1, and
F2, and two pointer fields P1 and P2: therefore the corresponding data structure is
easily implemented with six arravs with the same names, each consisting of m cells.
The meanings of these fields are as follows. The field V1 contains the name of the
vertex which is the origin of the edge, whereas V2 contains the ferminus; in this
manner, the edge receives a conventional orientation. The fields, F'1 and F2 contain
the names of the faces which lie respectively on the left and on the right of the edge
oriented from V1 to V2. The pointer P1 (P2) points to the edge node containing
the first =dge encountered after (V1V2) when one proceeds counterclockwise
around V1 (V2). Names of faces and vertices may be taken as integers. As an
exampl~, a fragment of a graph and the corresponding fragment of the DCEL is
shown in Fig. 1.

It is now easy to see how the edges incident on a given vertex or the edges
enclosing a given face can be obtained from the DCEL. If the graph hias i vertices
and f faces, we can assume we have two arrays HV[1:n] and HF[1:f] of headers
of the vertex and face lists: these arrays can be filled by a scan of arrays V1 and F1
in time O(n). The following straightforward procedure, VERTEX(/}, obtains the
sequence of edges incidert on v; as a sequence of addresses stored in an array A.

V3
V1 \4 Fl Fe F1l P2
)
1 %
2 i
f2 ay | 1 2 11 2 | 2 | 03 1
Vo 9 -
i
a L :
) v, 2 4 L] | 3
' :
a3 | 2 3 2
Vg |

Fig. 1. IHlustration of the DCEL.

VERTEX())

@ wo_ s Af47 ~ e ITYIT Y 2 s]

L. DegER Allj€s do€e a1V |jj, <<
"y T2 Y7101 e 2 $Bannsm » . D17 A alon v < PO A1
s EX V LU ™™ UICE U S L L[l] OOV U T 1 &ju |
2 o s £ n. do
T VY anmAw W, 7 (e
4, beoin Alilea

T Toeem o
5. If Vi[a]=] then a « P1[a] else a « P2{a]
6. iei+l
end
end

P I) L Sh ko tanind $FALY s at - e s ~ Y a_ at PR Y, Py JU R SR . PG
Clearly VERTEX(/) runs in time proportional to the number of edges incident on
. Aceotooiiole aain onm davalom o mesasadine BAOEN wwhish abdaloo sha

. ANnaiogousyy, we fi GevCiop a proceaure, rAcLyj), wiicn oviains in
= Fesd? -\ Te) -] A’ ﬂﬂﬁﬂﬂ Anl‘lt\c;nm ‘: k" *ar Ol“ﬂn m, ﬂ“l" ‘,1 “':fk p ﬂ“" E‘1
W\iu&dlw Vi VWUEWwD Vllv&ua‘lllb J]’ v v luvllls 4 XY SALINE Y 4 YVivil 414 QiIE X 1,
espectively, in the above procedure VERTEX(/). Notice that the procedure

them clockwise about a face.
In an appendix to this paper we shall show that the DCEL of a planar graph can
be obtained from its vertex-to-erlge list in time linear in the number of vertices.

3. Finding the intersection of two polyhedra when a point in the intersection is
kzown

Assume that the two convex polyhedra &/ and % in three-dimensional Euclidean
szce are represented by DCEL’s. They are taken as having vertex sets Vi and Vg
r.md face sets Fy and Fg respectively. With each vertex v € Vg U Vg we associate

PV - TIPS U TR JUL G JUL GRS JUL GE | § TP R I S S o) | .
1 (31314 Lanesidil COooramated Xi\v), Xae j, A3 (V). willl cacii lad]tr’dur wC
nvanninta n half cornana hnssndad e 162 walnma and Anntntminas tha Aanseacsunreadises
as50C1awC a nan~sLace oounaca Oy itS pianic anda Containing wnc COrresponaing
nolvhedron The half.cmana of f ic degeribed by the ineauality
yvl} SAWNSE VS Eke A KRS LEISIZ N WY WA I BT WMWUIWA AUV UJ SAAN lllv“““ll‘:
m{fix1+na(lxa+ns(xs+d(f)=0 (1)

L 4 M VY-S V.. R I . . . N
WRCIC Bi\J), n.{[), n3{f) ANA 4{j) are€ iour parameiers cnaracieristic 9f J, norinai-
sewmed o blemt SO\ o Sielne 1 N A 1 MVewee mbalomdlern 2o b Aol o TYIDT £ ab. o

U 3 WAl U7 5 d Clluet 1, U, U1 T 1. YUl UDJOLLIYE D LU UUWdiIll & LU DL 106 L0
intarcartinn nf o and OB alang with tha ~ranrdinatac Af ite vastinae and tha
ARAVWE MWLYWL (> CAREINE U GIUIIE YYiILLIX LlEV VUVILINALLIQLWD VL ItO Yvitlived ailiul REES
parameters for its faces.

In thls pertion of the analysis it is a«umgcj that a pomt in the mtersegtlon of o

Wrthout loss of generahty, the point in the mtersectlon will be taken as the origin,
sincc if it is not the origin a sinipie translation of coordinates will make it the origin.
We begin by assuming that the origin is actually in the interior of each of the two
polyhedra and hence in the interior of their intersection. In this case zach face

The intersecti: 1 of two convex polvhedra 221

feFyqu Fg represents a half-space of the form ny(f)x; + na(f)xz+ns(f)xs+1=0.
In other words, the constant d(f)=1 for all faces f.

Now, for each of the polyhedra o or 9 there is a corresponding polyhedron .4’
or B, respectively, which we shall call its dual. The dual o™ of of is obtaired by
1einterpreting the coefficients n1(f), n2(f), ns(f) of each face fe Fy as the coor-
dinates »f a corresponding vertex v; of AP Conversely, the coordinaies x;(v),
£2(v), x3(v) of each vertex of V, are reinterpreted as the coefficients of a cor-
responding face f, of #®”. This transformation may be regarded as a conventional
dualization about the unit sphere with center at the origin, where points at distance
I from the origin are transformed into planes at distance 1// from the origin and
vice versa ([7, p. 233]). A similar procedure allow us to form the dual of .

We note that this dualizatior procedure is only possible because the origin is in
the interior of the polyhedron. In this case, the dual is also a convex polyhedron
containing the origin. If the origin is not in the interior, then some of the inequali-
ties (1) would require d{(f)=0 or —1, and we have not defined dual points for such
half-spaces.

Let V7’ and V3 be the vertex sets of &’ and % respectively. It is easily
seen that the convex hull of the union of 4" and B is the dual of the
intersecticn of & and . Hence, in crder to find the intersection of & and B we
may simyply use the algorithm of Preparata and Hong [1] to find the convex hull of
the set of vertices V%’ 1 VE? in time O (r log), and upon taking the dual of the
result we obtain the desired polyhedron.

Now let us assume that the given point in the intersection of & and 4, i.e., the
origin, is not in the interior of their intersection. Then certain faces fe Fy U Fgy
have d(f)=0. In fact, these are exactly the faces which pass throuvgh the origin. Let
F' be the set of such faces. To each f' € F' there is a corresponding inequality of the
form

ni(f)x1+ na(f)x2+n3(f)x3 =0, (2)

obtained from (1) by replacing d(f') by 0. A point x in the interior of & N % must
strictly satisf-- all inequalities of type (1) with fe Fy U Fg, that is, none can be an
equality. Sach a point x exists if and only if all inequalities of type (2) with f'e F"
can be satisfied strictly by some point. To determine whether there is such a poirt
we first fix x3 =1 and write the strict form of (2) as

ni(fx1+ na(fx2> —ns(f'). 25

Here, by normalizing the coefficients, we can take —ni(f') as either [, 0, or - 1.
The question of whetner or not (2') can be satisfied for evary fe F'is a two-
dimensional problem of the type we are soiving here for the three-dimensional
case. The inequalities of (2') collectively represent a two-dimnensional convex set
which can be found ({1, p. 158]) in time O(n log n). Actually, a faster computation
of this convex set is possible: the inequalities of (2') can be partitionod into two sets,

i -5 R .- D\.E: Muller, F.P. Preparata
depending upon which of the two polyhedra they pertain to; each such set cor-
responds to a polygon in the plane xs=1, and thc desired convex set is the
intersection of the two polygons. It is known that finding these polygons and their
intersection runs in time at most proportional to n[1].

If no sojution is found in the above case, the case x3 = —1 must also be tried. This
problem is similar to the previous one except that —ns(f') is replaced by ns(f') in all
the inequalities (2°). ' '

Let us suppose that we have been able to strictly satisfy ali inequalities of the type
(2) with x3 =1 or —1 using the above method. Clearly, they will remain satisfied if
the vector x is multiplied by a positive scalar. To strictly satisfy all the remaining
inequalities in (1) whose right hand sides are all 1, we simply choose such a scala-
which makes all the left hand sides less than 1. The resulting point is in the interior
of A B,

If it is impossible to strictly satisfy all the inequalities of (2), then any one which
cannot be strictly satisfied, say

ri(f %1+ na(f)x2+ns(fx3=0

represents 2 plane through the origin which contains the intersection of of N .
Thus, the intersection of &/ and # may be found entirely within this plane. This
problem is analogous to the one discussed before and can be solved, as we saw, in
time O(n).

4. Finding a point in the intersection of two polyhedra

In the preceding section we have shown that the intersection of two convex
polyhedra can be obtained when a point in the intersection is known. Thus, if the
intersecticn is nonempty, all that is needed is to find one such point. The objective
of this section is the implementation of this task.

Given a convex polyhedron &, a plane is called a plane of support of & if it has at
least one point in common with & and 2ll interior points of & lie on one side of the
plane. Hereafter we shall enly consider planes of support parallel to the x3-axis and
briefly refer to them as vertical. The intersection of & with its v=:aucal planes of
support is, in general, an annular region R(sf) of the surface o which, in the
absence of dsgenerarizs, reduces to a cycle of edges. The projection of R («f) on the
{x1, x:} plcne 15 & convex polygon &* (Fig. 2), which is the convex hull of the
project.ons of the points of & on this plane.

The region R () is easiiy obtained from the DCEL description of & as follows.
For any face f; of o, the normal to f; is the vector (n,(f), na(fi), na(f)). It is
perpendicular to f; and points toward the interior of &, Given any edge ¢ of &, let f;
and f; be its adjacent faces. The:i: e € R(f) if and only if

na(fi) - n3(f)<0. 3)

The intersection of two convex polyhedra 223

X1
Fig. 2. A convex polyhedron &, the annular region R(sf) and the projection polygon &#/*.

Therefore, we begin by scanning the edge set of & until we find an edge e v/hich
belongs to R (&4). by verifying condition (3). At this point, we select one of the two
vertices of e, call it v. Among the edges incident on v there are either one or two
new edges, different from e, which beiong to R(#) and can be easily found by
applying the VERTEX procedure described earlier, to the DCE'L. Thus we can
advance 1a the construction of R (&), which will be con:pleted upoii re-encounter-
ing the initial edge e. Once R (&) has been computed, &* is trivially obtainec. All
of thes¢ operations can be carried out in time proportional to the number |V of
the vertices of /. Thus we have the first steps of the algorithm, given polvhedra &/
and B with |Vy|+|Va|=n:

Step 1. Find &¢* and #*. (This step runs in time O(n).)

Step 2. Using Shamos—Hoey’s polygon intersection algorithm [1], find the inter-
section of #* and B *. If the intersection is empty, halc, for & N3 is also empty.
Else let p* be a point in the intersection of &* and #B*. (This step runs in time
O(n), according to [1].)

Under the projection of & to &*, p* = (x1(p™), x2(p™)) is in generai the image of
a vertical segment of &/ which reduces to a single point in some cases. In any case,
the preimage of p* in & is easily found in time O(n) as follows. For each face f = F.,
we dete'mine the x3-coordinate of the point on the corresponding planc which
projects to p*; specifically, this x3-coordinate is

a(f)=—(ni(lx1(p*)+na(Hx2p™)+ d(f))/ ra().
Let

a'= min a(f) and a”"= max a(f).
na(f)<0 n1(f)=>0

224 ' - D.E. Muiler, F.F. Preparata

Then o' and a", with a' 3= «", are the x3-coordinates of the extremes of the segment
which is the preimage of p* in &f; we similarly define 8’ and 8", with B8’ = 8", for the
analogous segment in %B. If the two segments overlap, then any point in their
common portion also belongs to the nonempty intersection of &f and . Otherwise
assume, without loss of generality, that "> g8'. Then we define the near-sides of of
and & to be the sets of faces {/j|f; is a face of o, ny(f;)<0} and {gig; is a face of
B, na(g:)>0}, respectively. Clearly both near-sides are obtained in time O(| V| +
|Val)=0O(n) by traversing, in a straightforward manner, the DCEL descriptions of
o4 and B. By projecting the near-sides of &/ and # on the (x1, x2)-plane e obtain
two plarar straight-line graphs (PSLG’s) G« and (g, with respective vertex sets
V¢ and Vg, Thus we have:

Step 3. If the pre-images of p* in o and #@ under an xs-projection have a
common intersection, then halt, for any point in this intersection is internal o
o r B. Otherwise obtain G« and Ga. (The pre-images of p* are found in constant
time; G and Gg are found in time O(n).)

Let & be the closed domain contained in the intersection of &* and ¢8*. For each
point ue P it is convenient to define the function 8(u), called xs-distance, as
follows. If afu) and B(u1) are the xs-coordinates of the points on the faces of the
near-sides of &/ and %, respectively, which both project to u, then

8(u)=a(u)—pu).

Let us now analyze the function §(u) defined on %. Imagine superimposing Gy
and Gg to create a new vertex, conveniently called a pseudo-vertex, at the inter-
section of each edge of Gy with an edge of Gg. Denoting by V* the set of
pseudo-vertices thus obtained, we can define a new PSLG G* with vertex set
Vau Vg u V* The vertices of Viy and Vi will be called true vertices. Thus the
domain & is subdivided into regions by G*. Notice that inside any region of Gy the
function a(v) is linear in the (x;, x;) coordinates at v; similarly, for the function
B(v) inside any region of Gg. Thus in any region induced by G* in &, the function
8(v)=a(v)--B(v)is linear in x;(v) and x,(v). Moreover, ¢ (v) is convex-downward
and 8 (v} is convex-upward; it follows that 8(v) is a convex-downward function. We
conclude that the minimum of § occurs at a vertex of G*. Notice that |V*!, and
henve [V w Vg U V¥, could be O(n?): in fact, it is not hard to construct two
planar graphs, each with » vertices, so that, when superimposed, (r—1)* inter-
sections of edges are obtained.

Since, by hypothesis, a(p*)=a" and B(p*)=p8', we conclude that 8(p*)=
a”—B'>0. It follows that the intersection of & and # is nonempty if and only if,
for some ve 9@, 8(v)<0. Therefore, either we find one such point, or show that
Miny:26(v)>0.

To this end, we begin by evaluating & at true vertices of G* in @. This is easily
done if, for each a € V' we determine a region r(a) of G to which a belongs. If

The intersection of two convex polyhedra ; 225

r(a) is not the infinite region of the plane in the subdivision induced by G, then
r(a) corresponds to a unique face of the polyhedron %, and §(a) is easily computed.
Similarly, we can compute §(b) for each b e Vg in 9. The determination of r(a)
has been called the location of point ¢ in the planar subdivision induced by G [£]
aad could be done one point at a time. However, a faster algerithm has been
ricently developed [6] for collectively locating all the points of a set. According to
this technique the members of V' can all be located in regions of the pianar
subdivision induced by Gg in time O((c| V| +|V&|) log V|- |V&]), for constant ¢,
and, reciprocally, the members of Vg can all be located in regions of the planar
subdivision induced by Gy in time O((|V'g|+¢c| V&) log|Vy|-|V&l|). Therefore in
votal time O((Vu|+|Va|) log (V| [Va]))=O0(Val+|Val) log (V! |Val)=
O(n log n) all the true vertices can be located. Once a vertex, say, of ¥V has been
located in Gg, the x3-coordinates of its preimages in & and % are obtained in
constant time. This is summarired as follows:

Step 4. Locate each true vertex of Gy in the planar subdivision induced by G
and vice versa. (This can be done in time O(n log n) usiig the algorithm of [6].) If
there are no true vertices in & go to Step 7. Else evaluate § at each true vertex of
G* (This can be done in additional time O(n).)

Suppose at first that there are true vertices in &, and essume that for some trne
vertex v (say, v € Viy) we have 8§(v)=<0. The vertical line through v intercepts the
near-siZe of & in a vertex a and the nearside of B in a point b, and obviously
a(v)=x3(a)<xs(b)=B(v). Thus, we have a point p* for which a(p*)>B(p*)and a

‘point v for which a(v)=<pB(v). Consider now the plane, parallel to the x;-axis and
containing the points p* and v. The intersection of this plane with the two poly-
hedra o and % is shown in Fig. 3 (where the points p’ and p” have been defined).
By convexity, the segments -&F and IF are entirely contained in & and & respec-
tively, and so their point of intersection g belongs to the :ntersection of &« and %.
The coordinates of g are thus obtained by straightforward calculations.

b 8

.
Q@ /

pll
Fig. 3. Finding 2 point in the intersection when &(p*)>0 and 8(v)< 0.

226 R : - - D.E. Muler, F.P. Freparata -

- Assume next that 8(v)> 0 for all true vertices v € Vig U Vs, and let v* be a true
veriex such that §(v*)=min{8(v)|ve Vi U Vig}. We cyclically test each of the
edges of &f incident upon v* to determine whether the function 8 decreases as one
moves. along the- edg:‘: away from. v*. If it fails to decrease for all edges incident
upcn v*, then v* is an absolute minimum of the fu'lctlon 8 Since 8(v*)>0, the
polyhedra &f aad A do not intersect. =

Step 5. Obtain v*. If v* is an absolute minirnum and 8(v*)>0, halt, for o N B =
4; if (v*)>0 but v* is not an absolute minimum, go to Step 6; if 6(v*)=<0, then
there is a point g € & N B, obtained as the intersection of the diagonals of the
trapezoid formed by the xs;-projection pre-images of p* and v* in o and 3. (All of
this work caa be done in time O(n).)

The remaining case is when 8§(v*)>0 but v* is not an absolute minimum. Then 8
decreases as one moves along at least one of the edges — call it e — incident upon v™,
and on this ¢dge we locate a pseudo-vertex p. One such pseudo-vertex must exist,
for ctherwise the mtmmahty of &(v*) would be contradicted. Let r(v*) be the
region of Gy to which v* belongs (known from Step 4); to locate pseudo-vertex p,
we cyclically test each edge of r{v*) in turn and find the one which intersects e.*
Clearly 6(p) < 8(v*).

Step 6. Locate a pseudo-vertex p adjacent to v*, such that 8(p)< &(v™*). If
5(p)=<0, then, since 5(v*)>0, there is a point q € of ~ B, which may be found as in
Step 5; otherwise go to Step 7.

We must now consider two cases. The first is when there are no true vertices in
9 (Step 4); then the boundaries of #* and %* must intersect, so the point p* may
be chosen at an intersection of these boundaries and is therefore a pseudo-vertex.
The second ¢ase is when 8{p)> 0 (Step 6). Both these cases are treated by using an
algorithm, called the wandering algorithm, which wanders among the pseudo-
vertices of G* and which uses at most O(r) time. Thus we have:

Step 7. If the test of Step 4 fails use p*, while if the test of Step 6 fails use p, as the
starting point of the wandering algorithm (to be described below), either to find a
pieudo-vertex j such that §(5)=<0, to which the method of Step S can be applied,
or find a pseudo-vertex p,, such that 8(p,,) =min,.v+8(v). (We shall show below
that the wandering algorithm runs in time O(n).)

Before describing the wandering algorithm, we observe that the starting point cf
it is a pseudo-vertex, either p or p*, which has a smaller value of § than any true
vertex. 1f we imagine, for purposes of proof. a contour line of 8 passing through p
or p* we enclose a region # =2 which contains a pseudo-vertex p, having
minimum 8(p,.). We note that ® must be convex. Also let E'y and El3 be the sets

* If v* happens to belong to more than one region of Gg, then the edges of all such regions may have
to be tested to find the unique one which intersects ¢, In any case, the number of such tests is G{n).

The intersection of two convex polyhedra

™I
(2]
~J

of edges of Gy and G» respectively which intersect . Since no true vertices lie in
R, each edge in Ey U Ej» must separate R into two convex regions No two edges
in Ey can intersect in R, nor can iwo edges in E. Also, the function § is convex
downward as one travels along any edge of Eyw Ej and its minimum must lie
somewhere in &, because the boundary of & is a contour line for §. We shall call
a point on an edge ¢ € E;y U Eg where 8 has a minimum value, a minimum point
of the edge e. It is unique except in degenerate cases. Thie value of § at thiz point will
be called the minimum value of the edge e and denoted by min(e).

XLy _ . . - -

ssume momentarily that the face

s
@

regions is referred to as the crown of p’ and is the locus of the points which can be
reached from p’' without crossing any edge. Notice that e, is shared by two
triangular faces of Gy, whose union is a quadrilateral region; a similar remark holds
for e5. Thus the crown is the intersection of these two quadrilateral regions, and the
crown boundary contains either &, or 10, or 12 pseudo-vertices (see Fig. 4a, b, c,
respectively). The fact that the number of crown vertices is bounded is a
cons: quence of the hypothesis that the polyhedra have been triangulated.

{a) (b) (c)

Fig. 4. Illustration of the possible cases for the crown of a pseudo-vertex.

.._-
3
O
j=3
&
2
oy
—*
2
=1
T
=
o
—_
=
—
=
-
-
o]
—
[
oL
I
[
oy
s

a constant, ana .o can their values of 6. We now give the

Advancing siep of the wandering algorithm: A pointer is moved from the current
pseudo-veriex p’ to a pseudo-veriex p” which atteins the minimum value of &
among all pseudo-vertices in the crown of p’.

positive the two polyhedra do not mtersect (caee (m) in Sect:on 5) In the other case
(6 decreases either along e, or ¢}) the advancing step is effected, and in actual
practlce can be camed out without explormg the entire. crown. of p - but simply

, ,,'phﬁcatmn 1is. t‘1at, aswe bh’zlll show polyhedra .sﬂ and

C ' ulat bcfore applymg the wandermg algorithm. In fact, only
those: faces of Gu and Ga wall be tnangulated which are actually traversed by the
wandering algorithm. Specxﬁcally, let:p’, the -intersection of ¢, and ej, be the
current pseudo-vertex (see Fig. 5). Referring for simplicity ouiy 10 polyhedron &

Fig. 5. Partial triangulation of .

let f; and £, be the two faces of G4 sharirg e/. In the doubly connected edge list 6i
Gx we can obtain in constant time the ¢dges e and e which follow e’ in the
edge-sequences of f; and f,, respectively. If f; is not a triangle, we connect the
non-overlapping extremes of e; and e}, and we do likewise for f,. The introduction
of any such new edge in the doubly-connected edge list requires the modification of
two pointers and the use of two other cells for construction of the appropriate
record. All this can also be done in constant time. We conjecture that this insertion
is not really necessary, but the present proof on the time performance of the
aigorithm depends upon it. ‘

Since the wandering algorithm moves from p’ to p” only if 5(p")<8(p"), it is
obvious that the algorithm will terminatc at - point p,, such that S(p,.) is the
minimum value of & for all pseudo-vertices in . Even though the total number of
pseudo-vertices in # could be O(n?), we shall now prove that the number of
advancing steps is at most O(n).

The intersection of two convex polyhedra 229

Recall that for an edge e in either Gy or Gg, min(e) denotes the minimum value
of & on e. Let pseudo-vertex p' be the intersection of e, € Ey and e}, € E; we now
define m(p’)=max (min (e,), min (¢)). Clearly §(pY=m(p’).

Lemma 4.1. Lez p’ be a pseudo-vertex in 72 if m(p')=8(pm), then §(p')=m(p")=
&5(pm).

Proof. Let us assume the contrary and obtain a contradiction. In Fig. 6 let a’ and b’
represent minimum points on ¢, and e}, respectively which are nearest to p'. By our
assumption, 8(a’)=8(b")=68(p.) and hence by convexity, every point along the
line segment { between a’ and &' also has this same & value. Let a; be the
pseudo-vertex closest to a’ in the portion of e, between a’ and p’ (possibly, a; and
p’ coincide). The line segment [crosses a region of G* bordering with a'a;. Since
“the value of & is linear within this region and it achieves the minimum vzlue §(p..)
at an interior point, it must have this value throughout the entire region. Hence,
8(a,)= &{pn), contradicting our assumption that a’ is the nearest minimum point to
p' on e,. This proves 8(p)=8(pm) O ’

Fig. 6. MMustration for the proof of m(p')=8(p.)=8(p')=m(p").

Assuraing now that 8(p’)> 8(pm), we see by Lemma 1 that m(p")>8(p). When
the wandering algorithm is applied at p’, it steps to a new pseudo-vertex p”.

Lemmau 4.2. m(p")<m(p").

Proof. We distinguish two cases:

(1) »' and p" do not belong to the same edge. Let p’ be the intersection ol en and
e, and let p” be the interscction of e, and e; (see Fig. 7(a)). L2t pn be the
pseudo-vertex in & defined above. We claim that a straight line from p. to p”

230 - - D.E. Muller, F.P. Preparata

Minimum =
Prutof eg =

Minimum
Point of e%

Fig. 7. Nllustration of the proof that m(p")< m(p").

carnot intersect the interior of the region f of G* to whose boundary p' and p”
belong, except at p”. in fact, if it did, any such point of intersection wculd, by
convexity, have a value of § as low as §(p”). Since p” is a minimum point of f, this
would imply that all the points of f have the same value of 8, contradicting
8(p')> 8(p"). As a consequence, either e; or e, separates p,, from p’, so p,, belongs
to the shaded regions in Fig. 7(a).

Assurre, without Ioss of generality, that p’, and hence ey, is separaic. irom p,, by
e;. Then, since e, does not cross ¢, in &, the siraight line betwesn p,, and the
minimum point of ¢, intersects e in a point a”. By convexity, min{e .)= 8(a”), with
equality occurring oaly if min (e,)= 6(pn.). Assuming equality, since we have seen
that m(p')>6(pm) and we have min(e,)=358(a")=min(ez)=8(pm), we obtain
{5 ;> min(ey). Assuming instead that min(e,)> 8(a"), since by definition m(p')=
min{e.) and §(a")=min(e;), we also obtain m(p')>min(e;).

Two subcases must be considered. First, assume p’, and hence e) is also
separated from p, by ej. Then by an identical argument m(p')>min(ef), so
m{p"y>m(p")= max(min(e;), min(e})). Second, assume it is not, as in Fig. 7(a). We
now show that mun(ep)< min(ez) thus reaching the same conclusion. In fact, since
2{p")#s the minimum value in f, the minimum point on e; is either at p” or along ez on
the opposite side of p” from f. A straight line drawn between this minimum point and
P intersects e at a point b” such that 6(b")<min(ez), by the convexity argument
used earlier. But 8(b")=min(e}), whence min(e;)= min(e;), as claimed.

{2) p' and p"- belorg to the s2me edge. Without loss of generality, let p' be the
intersection of ¢, and e} and let p” be the intersection of e, and e}, (see Fig. 7(b)).
By the convexity argument, ¢, is separated from p,, by eg (i.e., p» belcags to the
shaded region). As in case {1), we can show that m(p')=min(e,)>min(e?). To

The intersection of two convex polyhedra 231

prove that min{e;)< min{e;) we note that the minimum poiit of ¢; must be p”, for
otherwise p” would not attain the minimum of & in the crown of p’. Thus m(p")=
max(min(e;), min{e;))=min(e;)<m(p'), as claimed. [}

'Theorem 4.3. The number of advacing steps performed by the wardering algorithm is
3(n).

Proof. We have shown that as the wandering aigorithin moves from one pseudo-
vertex p' to the next, the value of m(p') decreases at each step. Each value of m(p")
is the minimum value of one of the edges in Ex uE%. Hence, the number of
distinct values which m {p') can assume is no greater than |Ely| +|E &}, which is O(r).
The number of steps taken by the algorithm therefore is O(n). O

Since the time taken by th¢: wandering algorithm is O{n), the time taken by the
entire algorithm remains O(n log n).

5. An application: Finding a separating plane

The preceding method can be used to solve efficiently the important problem of
linear separability in three dimensions, i.e., testing whether two finite : ets of points
A anc B are separable: by means of a plane, and, if so, finding - ne such plane.

Since two finite sets. of points are linearly separable if ai:d only if their convex
hulls do not intersect [8], we begin by obtaining the respective convex huils of the
sets A and B by means of the Preparata—Hong algorithm [3]. Letting |A|+ B! = n,
this task, which is completed in time O(n log n), yields two convex polyhedra &
and A such that | V| +|Va|<n. We now apply to of and & the algorithm described
in Section 4: any time the algorithm declares that & and % do not intersect, we
construct a separating plane.

We now recail tuat of and % are found to be disjoint in three exclusive cases,
already referred to in Section 4:

(i) afte: projecting R(s¢) and R(%) on the plane (x,, x»), the polygons &/* and
R are disjoint (Step 2);

(ii) a'ter evaluating & at all true vertices of G* we find that 8(v™*)=
Minyevyuved(v)>0 and v* is an absolute minimum (Step 5);

(iii) after applying the wandering algorithm we find that é(p,)>0.

In case (i) it is sufficient to find a straight line / sepzrating &¢* and B*. since a
plane containing / and perpendicular to the plane (x;, x2) separates «f and 2. The
line ! can be found in time O(r) by an obvious modification of the Preparate—Hong
algoritam for planar convex hulls ([3, p. 90]).

Cases (ii) and (iii) can be handled jointly by the following considerations. Rather
than constructing one separating plane, we construct a locus of separating pianes

]
W
(8
L]

and make a selection in this locus. Let u be the point at which the algcrithm
terminates with the result that & and # do not intersect; obviously, either u = p*
or u = pm. Also let 4’ and u” be the pre-images of u (with respect to x3-projection)
in o and B, respectively. Assume at first that u = v* and, without loss of generality
let ' be a vertex (in V). Consider the cycle F of the faces shar ing u'; for each
f<F, imagine applying the vector (nl(£), n2(f), na(f)) = n(f) to the origin; recall that
£(f) is normal to f and pointing toward the interior of &f. Then the set of directions
{a(j)s f EI‘} dennes a convex cone (,d such that any direction internal to it is

e e o s o o of and £V Aaccmacmbac fate a lama wredam dalieaiiad ke +ba
{0 SOn.¢ €age t’a Of & ana Cy acgencral 4 pian€ weage aciimited oy e
mnveinic $n tha faon Famnane nf of whin charoa o
BVULIA WU LI « WV LIAVWAS UL o WilIVILE dilAalw CLqg.
Faor u” the convex cone Ce is analoeously defined, with the onlv modificaticn that
i nvex cone Lz 1S anarogous:y aeiineq, v 1th the only modincaticn that
the directions of ihe vectors n(f) are reversed. The cone can assume th_‘ following

forms: if u = v*, then Cg is either nondegenerate, or a plane wedge, or a half-line,
depending upon whether u” in & is cither a vertex, or a point in an edge, or a point
in a face, respectively; if ¥ = p.,, then Cg is a plane wedge.

The solution to our problem is Cy N Cg. Notice, however, that this intersection
consists of a single ray in the following two cases:

(1) &t = pm, in which case the ray is the common normal to the edges which
contain ¥’ and u” in & and %, respectively;

(2) u=v* and " is a point in a face of &, in which case the ray is the normal to

F of faces sharing u'. Next we intersect th X2= 1 and obtam elther a
pclygon or a straight-line segmeiit: in any case th prooiem is reduced to finding the
intersection of two plane polygons, which can bte solved in time O{n) [1]. This
enables us to find a vector orthogonal to a separating plane; the cuistruction is
completed by requiring that the plane contain a point internal to the segment u's".
Thus, we conclude that the construction of a separating plane of two threes
dimensional sets o1 oointe. if it exists, can be effected in time O(n log n).

A s oroa B2
Appendix
8 we g2id in Section 2. the verrex-to-edege list of a nlanar oranh ic a collection of
- W WIRENS EAL W WRANWEL dvy RALW VT WIBWA WV WMEVY LI0L VI G piGlaGi 53 uyxl I0 O YVILVWLIL/LL VL
edge lists, referred to as input edgz lists, stored in arrays H[1:n}, VERTEX[1:2m)

and NEXT[1:2m]. In the DCEL, we can identify » cycles of edges around a vertex,
called vertex cycles, and f cycles of edges around a face, called face cycles. The
construction of the DCEL is carried out in two phases. In the first phase, we fill the
arrays V1, V2, P1, and P2, hereby constructing the vertex cycles. In the second

The intersection of two convex polyhedra 233

phase we generaie the names of the faces and fill the arrays Fi and F2, hereby
constructing the face cycles.

Informally, phase-1 of the algorithm works as follows. The input edge lists are
scanned one at a time, in the order v, v, . .., v,. While scanning the input edge list
of v; an edge (v;, v;) is entered into the DCEL only if i >j: in this manner we ensure
that each edge is entered only once. Thus any edge (o), v,) with h <(j is already
present in the DCEL, since it was entered while scanning the input edge list of v,
earlier in the execution of the algorithm. All that is needed now is therefore the
realization of the appropriate linking cf such (v;, vy) into its position in the vertex
cycle of v;. To effect it we must deiermine the location of (vj, vy) in the DCEL. This
can be done as follows with additional storage O(n). Suppose that, while scanring
the input edge list of v,, the edge (vs, v;) is to be entered (obviously h <j). This
edge is linked permanently into the vertex cycle of v, and temporarily into a list cof
edges of the form (v,, v;), with r <j. The members of the latter list referred to as the
temporary list of v;, are linked in reverse order to that of their occurrence during the
execution of the algorithm. Thus this list can be managed with only one pointer
stored in an array LAST[1:n]. With these provisions, the iscation of {(vs, v;) is
easily obtained: in fact, prior to linking the vertex-cycle of v; we scan the wemporary
list of v; starting from YT.AST[j] and store the location of (vs, v;) into c2li B{h] of an
auxiliary array B[1:n]. Notice that the latter array is only scratch memory and wiil
be used repeatedly for each v, Therefore the additional storage needed consists of
the =trays LAST and B, both of size O(n), and of program variables ai, ao, v, t, 1, [.

We can now give the aigorithm.

Construct Vertex Cycles
1. begin a<1
2 forj< 1 step ! until n do

LAST[j]« A (Comment: initialize LAST)
for j < 1 step 1 until ndo
begin /< LAST[/]
While [# A do
begin p« V1[/]
Blpl<l
l« P2[l}

E-G %

0 N o

end
Comment: Loop 5-8 fetches the locations of ali edges
(v,. v;) with r<j by scanning the temporary list of v, and
stores them into the array B. This step is obvicusly void for
i=1
9. t< Hij},
10. r« VERTEX]:]

DfE;_:‘Mull‘e'r,-. F.P. Preparata..

.lf r>] than

o begin V1[a]<j, V2[al«r
13 : ' HV[jl< as«a. u<1
14. P2{a)« LASTI/]
15, . o LASTIriea . .
16, = i - gea+l
G Comment* Steps 10—1,. m:txahze the vertex cycle for v;
i7. - else HV[jl«aeeBir], u«2

Comment: Steps 8-17 process the first member (9, v;) of the
input edge list of v;. If this edge was not previously encour.-
tcred steps ‘11-16 are executed; specifically, the edge is
entered in step 12. Variable a, is used to denocie the locaion
of the last member f the vertext cycle being constructed.

18. Wkile NEXT[¢] # H[j] do
19, begin 7« NEXT][t]
20. r «~ VERTEX]!]
21, it r>j then
22. begin Vla]<j V2[aler
23. P2[a]«1.AST][r]
4. LAST{[r]« Pulao] < a,
25. ap<a, u<1
26. a<a+i

end

else
27. begin Pu[ao)« B[r]
S. ao+Brl,u<2
end
end
29. Pufao] « HV[j]
end

end

Comment: Steps 18-29 complete the construction of the vertex cycle
for v;. Specifically, loop 18-28 successively processes the edges
incident on v; and either ¢aters them into the vertex cycle (Steps
21-26) or simply links them intc it (Steps 27-28). Step 29 closes ihe
vertex cycle.

To evaluate the running time of the algorithm just described, notice that each
edpe is processed exactly twice: once to be entered into a vertex cycle and into a

The intersection. of twe convex polvhedra 235

temporary list, the second time to be linked appropriately. Both these operations
take constant time, and since the number n of edges is O(n), O(n) time is used to fill
the arrays V1, V2, P1, and P2.

To complete the construction of the DCEL we must construct the face cycles.
The next aigorithm, CONSTRUCT FACE CYCLES, starts from the partial
DCEL which is produced by the CONSTRUCT VERTEX CYCLES pro-
cedure. The algorithm will scan the DCEL, using an integer a as a counter. If
F1[a] and F2[a] have already been filled, it advances to te subsequent edge;
otherwise it generates the name of new face (using a counter s) and traces the
edges enclosing it filling the appropriate F-fields. The algorithm terminates
when 2m filling operations have been performed: an integer k is used to control
this event.

Construct face cycles

1. begin for j < 1 step 1 until mdo F1[j]l« F2[jj< A
2. aesekel
3. While k <2m do
4, begin If Fi[al# A and F2[al# .\ thena<a+1
5. else begin If F1[a]=A then u<lelse u<2
6. Fulal<s, c « Vulal, HF [s] < ao< a,
Lek+1
7. a < Pujla]
8. While g # a¢ do
9. begin if Vi[a]=c then u « 2 else u <1
10. Fulaj<s,ceVulal,k<k+1
11. a «~ Pula)
end
12. ses+1

end
end

Sinc: in the latter algorithm each field F1{a] or F2{a] is being processed at mcst
twice (once to be filled in steps 6 or 10, and possibly once to be just inspected in
step 43, the running time is O(n). This and the analogous result for the vertex cycle
algori:hm substantiate our claim that the DCEL can be obtained in time Ofn) from
the original vertex-to-edge list.

$ {1} M.L Shamos, Computatm-a' Geametry, Department of Computer Science, Yale University (1977):
. 1obe pubhshed by Springr-Verlag.
[21 M. l. Shamt)s, Geometric Complexity, Proc. Seventh Ann. ACM Symp on Theory of Computing

[151 ,;P, Pxepnrata, Loca on of 2 set of points in 2 pIanar subdwnslon (submltted fox publication);
Available in: Steps into Computational Geometry, Report ACT-1, Coordmated Scnence Labora-
tory, University of Illinois, Urbana (February 1977).

{71 G. Ewald, Geometry: An Introduction (Wadsworth, Belment, Ca, 1971).

{81 3. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions, 1 (Springer-Veriag,
Berlin, 1970). .

b 4

[g

