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Ab&act; Given two convex polyhedra in three-dimensional -;pace, we develop an algorithm to (i) 
test whether thenr intersection is empty, and :‘:, __ I- \ x so to find E separating plane, while (iii) if not to 
find a point in the intersection and explicitly construct their intersection ,polyhedron. ‘I”w 
algorithm runs in time 0 (n log n), xvhere n is the sum of the numbers of vertices of the two 
polyhedra. The part of ‘4 e algonthm concerned with (iii) (constructing the intersection) is based 
upon the fact that if a point in the intersection is known, then the entire intersection is obtained 
fronn the convex hull of suitable geometric duals of the !\\o pc!+edra taken wit!-, respect to this 
poicrt. 

1. In’rodluction 

Finding the intersection of two convex polyhedra in three-dimensional space is a 

classical problem in computational geometry [ 11. A simple but time-consuming 

solution to &is problem is known,, and it is so trivial that it is not even worth a 

literature, reference. It goes as follows. Let J&J and 93 be twr Rolex poiykdra; test 
each face of J$ against each face of B to see if they intersect; If R:> irrkcrsection is 
found, then the Intersection of the two polyhedra is empty, otherwise it can be 
simply zcbnstruc;ed. It is cle:ar that such an algorithm could use CBtn *) opcTations if n 

is the ~,mn of the numbers of vertices of ~4 and 2% 
The ;ea.p.,h for a morp; efficient procedure has in the past met with no SUCC~X. 

Several f,acts, however, suggested that a more efficient method shoui 

is we&known that two polygons in the plane can be intersected in time linear in the 
sum of their numbers of vertices [Z]; second, several analogies exist between the 

pEane and the space, i.e., convex hulls of n-point sets [31 and maxi 

vectors [4] can be found ‘in time O(n lop n ) in bol:h two md t 
^_. -__- spite @I this, no g~~t;~ici~ratiofi of the -pe’,grgzn intersecttoA-3 ai@G?lr, in;as kli=k’l~ 

found w 
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In special cases, however, better ,;han quadratic time methods have been known 
for some time. SpecificaBly, after the development of the Lee-Prepa&- -!,n+thm 
f’or locating a point in a planar subdivision [5], it was realized3 that the intersection 
of two polyhedra can be found in the O(n log’ n) if a vertex of one polyhedron lies 
inside the other ‘@lyhedron. 

Alternately (see [I]_ pa 1621, Shamos conjectured that polyhedron intersection 
could be obtained as a merge step of a divide-anId-conquer algorithm for the 
intersection of half-spaces. 

In this paper we present an ahjorithm for +&vir,g the problem of intersecting two 
polyhedra in time O(n log n). The Agorithm tests whether the intersection is empty 
anti, il not, explicitly constructs i.t. The approach is based on the fact that, if a point 
p in thle intersection is known, the intersection can be obtained through geometric 
dualization. §pecificaf!y, the two polyhedra are both transformed into thei; 
geometric duals with respect to p, and the convex hull of the dual, which can be 
found m time O(;t log n), is the dual of the intersection polyhedron (‘section 3). 
When such a speciai point p is not available, by deploying known techniques in time 
Q(nlog n) we can test whether the intersection is nonempty and, if so, obtain a 
point in the intersection (Section 4). The algorithm requires that each polyhedron 
be reprcsentcd by a very vercatiie data structure caPied the doubiy connected edge 
List, which can be obtained from a more conventional representation - produced by 
the convex huh algorithm - in time linear in the number of vertices (Section 2). 

2, Derivatic~ 9 a dcnbly connectee!. Age fist for a planm graph 

Let T/={Q ,..., 0,) and E=IE ,..., e,,} be the sets of vertices and edges 
respectively, of a planar graph er.rbedded in the plane without crossing edges. We 
assume that (V, E) is represemed as follows. To vertex ZQ E V there corresponds 
ceii H[i] of an array H[l : n], ,which contains a pointer to the first term of the cyclic 
list of the edges incident on oj arranged in the order in which they appear as one 
proceeds counterclockwise around vi. The latter lists are realized by means of two 
al r:ays VERTEX[ 1: 2m] arid x 1 ;xT[ 1: 2171 j so that (VERTEX[i], NEXT[F’]) is the 
format of the list nodes. This representation of the graph (V, E) is precisely the one 
obtained by the algorithm ,>f Preparata atld Hong [3] which constructs the convex 
huh of 8 set of points in three dimension:s: indeed the surface of a convex poly- 
Redron is topologically a planar graph. We shall ccadl this collection of lists the 
vertex-to-edge representation of a planar graph. 

Although the vertex-to-edge list is one of the most commonly used represen- 
~fioi-~ ior a planar graph it has the disadvantage tha.t the dual graph, i.e., the graph 
wnti= s!ertices correspond to ‘laces of the original graj& Is ilirr readily available. 

Ii Private ~~~~~~~~~ltjo~~ between M. I. Shmss and F. P. Pxpa.rata, i&q 1976. See dso [l] p. 160. 
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For this one would have to develop the fci!ce-to-edge representation of the original 

graph in which each face refers to a cyclically ordered list of edges whicn enclose it. 

A more convenient representation for this purpose is one which we shall call the 

doubly corrnected edge list (DCEL), from which we can obtain equally easily 

information either about the edges incident on a vertex or the edges enclosing a 

face. We will now describe the DCEL and give in an appendix the algorithm by 

which to obtain it from the more conventional vertex-to-edge representation of the 

graph in time proportional to the number n of vertices. 

The main component of the DCEL of a planar graph (V, E) is the edge node. 
ljhere is a one-‘Lo-one correspondence betweer! edges and edge nodes, i.e., each 

edge is represented only once, whereas in -’ iaru; vertex-to-edge list each edge 

:ippeared twice. An edge node consists of faur information fields V 2, V2, Fl , and 

F2, and two pointer fields PI and P2: therefore ;he corresponding, data structure is 

easily implemented with six arrays with the same names, each consisting of m cells. 

The meanings of these fields are as follows. The field Vl contains the name of the 

vertex which is the origin of the edge, whereas V2 contains the terminus; in this 

manner, the edge receives a conventional orientation. The fields, Fl and F2 contain 

the names of the faces which lie respectively on the left and on the right of the edge 

oriented frr)m Vl to V2. The pointer Pl (P2) point.s to the edge node containing 

the first p.dge encountered after (Vl V2) when one proceeds counterclockwise 

around Vl fV2). Names of faces and vertices may be taken as integers. As an 

exampl$?, a fragment of a graph and the corresponding fragment of the DCEL is 

shown in Fig. I. 

It is now easy to see how the edges incident on a gillen vertex or the edges 

enclosing a given face can be obtained from the DCEL. If the graph i:.?s ii *JCT:IFC 

and f faces, we can assume we have two arrays HV[ 1: n] md HF[ 1: f] of headers 

of the vertex and face lists: these arrays can be filled by a scan of arra;‘s VI and F 1 

in time O(n). The following straightforward procedure, VERTEX(j)., obtains the 

sequence of edges incident on vi as a sequence of addresses stored in an array A. 

Vl V2 Fl F2 Fl P2 
I 5 

ai I 1 I 2 I 1 I 2 il c2 

Fig. 1. IhsrmGm of the DCEL. 



‘ii. tso+a+HV[j], b-2 
2. ]:~jSheaacPl[a]elleerl*-P2[a] 
3. 
4, 
5. .IfVl[a]=j~~e~a~PIIa]el~eacP21a] 
6. iei*l 

end . 

end 

Clearly VERTEX(j) runs in time proportional to the number of edges incident on 
v+ Analogously, we can develop a procedure, FACE(j), which obtains the 
sequence of edges enclosing fi, by replacing HV and Vl with HF and F’ 1, 
regwctively, in the above procedure VERTEX(j). Notice that the procedure 
VERTEX traces the edges counterclockwise about a vertex while FACE traces 
them clockwise about a face. 

’ In an appendix to this paper we shall show t;hat the DCEL of a planar graph can 
be obtained frorm its vertex-to-edge list in time linear in the number of vertices. 

fhe iertersection of two polyhedra when a point in the intersectisa is 

Assume that the two convex polyhedra & and 9 in three-dimensional Euclidearn 
$MZ are represented by DCEL’s. They are taken as having vertex sets Vd and Va 
a& face sets ,PYY and F’ respectively. With each vertex v E Vd u Va we associate 
its three Cartesian coordinates xl(v), X&J), x3(v). With each face f~Fd.uFa we 
associate a halfwssace bounded by its plane and containing the corresponding 
polyhedron. The half= space of 4 is described by the inequality 

where nl(f), n:!(f), n3(f’) and d(f) are four parameters characteristic of f, norrnal- 
izd so that d(f) is either 1, 0, or -1. Our objective is to obtain a DCEL for t!ae 
~~te~~e~~~~ of and 28 along with the coordinates of its vertices and the 

ers for its faces. 
ersection of Sg 



The intersecti I of two convex polyhedra 271 

f~&uFs represents a half-space of the form 1z1(F)x1+rt2(f)~;‘fn3(f)x3+ 120, 
In other words, the constant d(f) = 1 for all faces f. 

Now, for each of the pslyhedra ~4 or 98 there is a corresponding polyhedron J&“’ 
or $B@‘, respectively, which we shall call i%s dual. The dual S&@’ of J$ is obtained by 
reinterpreting the coefficients nl(f), nz(f), ns(f) of each face f~ d;sa as Ihe coor- 
&rakes qf a corresponding vertex vf of J&? Conversely, the coordinaies x 1 (v ), 
Q(V), x3(v) of each vertex of Vd are reinterpreted as the coefficients of a cor- 
responding face fv of &? This transformation may be regarded as a conventional 
dualization about the unit sphere with center at the origk, i:,here: points at distance 
2 from the origin are transformed into planes at distance 1,/Z from the origin and 
oice versa ([7, p. 2331). AL similar procedure allow us to form the dual of 3. 

We note that this dualization procedure is only possible because the origin is in 
the interior of the polyhedron. In this case, the dual is also a convex polyhedron 
containing the origin. If the origin is not in the interior, then some of the inequaii- 
ties (1) would require d (jr) = 0 or - 1, and we have not defined dual points for such 
half-spaces. 

Let VzF' and Vz be the vertex sets of d(D) and CBCD’ respectively. It is easily 
seen that the convex hull of the union of &CD’ and B@) is the dIna of the 
intersection of & and B. Hence, in crder to find the intersection of .QQ and 9 we 
may simply use the algorithm of Preparata and Hong [ 1] to find tlhe convex hull of 
the set of vertices VT’ <.r V&y’ in time 0 (~1 log n), and upon taking the dual of the 

result de obtain the desired polyhedron. 
Now let us assume that the given point in the intersection of JXZ and 9, i.e., the 

origi.n, is not in the interior of their intersection. Then certain faces f~ F. u F’B 
have d(f) =: 0. In fact, these are exactly the faces which pass through the origin. Let 
F’ be the set ai such faces. To each f’ E F’ there is a corresponding inequality of the 
form 

nl(f’)x~ + nz(f)x2 + n3(f')x3 3: 0, (2) 

obtained from (1) by replacing d(f) by 0. A point x in the interior of sip n 93 must 

strictly satisf- all inequalities of type (1) with f~ F& u FB, that is, none ca 
equality. Sach a point x exists if and only if all inequalities of 
can be sa?isfied strictly bv some point. To determine whether t 
we first fdx x3 = 1 and write %he strict form of (2) as 

nl(f’)m + n2(f’)x2 > -n3(f’). 1’\ b- i 

Here, by normalizing the coefficients, we cm take ---a~)“‘> as either 1, 0, or - 1. 

“F F’ it; ii 1%Cl- 

dimensi 2nal problem 



&#&id[qg upon ~irhich of tjk wo polyhedra thejr pertain too; each such set cor- 
responds to a polygon in the plane x3 = 1, and t!z: &sired convex set is the 
intersection of the two polygons, It is known that finding these polygons and their 
intersection runs in time at most proportional to n[ 11. 

If no solution is found in the above case, the case ~‘3 = -1 must also be tried. This 
problem is similar to the previous one except that -ns(f) is replaced by FQ(~) in all 
the inequalities (Z). 

Let w suppose that we have been able to strictly satisfy ali inequalities of the type 
(2) with x3 = 1 or -1 using the above method. CZearly, they will remain satisfied if 
the vector x is multiplied by a positive scalar. To strictly satisfy all the remainin 
inequalities in (1) whose right hand sides are all 1, we simply choose such a sca.!:in 
which makes all the left hand sides less than 1. The resulting point is in the interior 
of &n8. 

If it is impossible to strictly satisfy all the ineqtralities of (2), then anj; one w hich 
cannot be strictly satisfied, say 

dP’b1 + n2(f’)n2 + n3(f’)x3 = 0 

represents a plane through the origin which contains the intersection. of d n 3% 
Thus, the intersection of & and S may be found entirely within this plane. This 
problem is analogous to the one discussed before and can be solved, as we saw, in 
time O(n). 

4. Finding P point in the intersection of two polyhedra 

In the preceding section we have shown that the intersection of two convex 
polyhedra can be obtained when a point in the intersection is known. Thus, if the 
intersection is nonempty, all that is needed is to find one such point. The objective 
of this section is the implementation of this task. 

Given a convex polyhedron Se, a plane is called a plane of support of ~4 if it has at 
feast one point in common with SS? and all interior points of & lie on one side of the 
plane. Hereafter we shall only consider planes of support parallel to the x3-axis and 
briefiy refer to tfiem as twtkai. The intersection of L& with its vr;acal planes of 
support is, in general, an annular region R(d) of the surface ,FZ which, in the 
absence of dz~cne:ra&.~~ reduces to a cycle of edges. ‘I’he projection of R (Se) on the 
(~1, .F;> p!i ne zs ;L convex polygon &* (Fig. 2), whiich is the couvex hull of the 
~~oje~t~o~~ of the points of S$ on this plane. 

n R(Sa) is easily obtained from the DCEI, description of &Z as follows. 
ce fi: of &, the normal to fi- ik the vector (nl(fi), nz(fj), ns(fi)). It is 

ndicular tofi .snd points toward the interior of LZ,E. Given any edge e of AZ& let h 
and fi be its adjacent faces. Thp;t e E R (~3’) if and only if 
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Fig. 2. A CO~Y~W polyhedron .sf , the annular region R (J&‘) and the projection pol)lgon A?“. 

Therefore, we begin by scanning the edge set of cr$ until we find zn edge e which 

belongs to R(d). by verifying condition (3). At this point, we select one of the: two 

vertices of e, call it 21. Among the edges incident on v there are either one or two 

new edges, different from e, which belong to R(d) and can be easily found by 

applying tie V’ERTEX procedure dlescribed earlier, to the DCI’L. Thus WC can 

advance i:q the construction of R(d), which will be coi,;pleted ups; re-encounter- 

ing the initial edge e. Once R(d) has been computed, ~2’ is trivially obtained. A11 

of theqe operations can be carried out in time proportional to the number 1 V,+ of 

the vertices of &. Thus we have the first skps of the algorithm, given polyhedra ti 

andB with]V&al+IVa[=n: 

Step 1. Find &* and .%?*. (This step runs in time O(11 ).) 

Ste&o 2. Using Shamos-Hoey’s polygon intersection algorithm [ 11, find the irltcr- 

section of z&’ and a*. If the intersection is empty, hak, for & n 3’ is also empty. 

Else let p* be a r,oint in the intersection of &* and .GZ?*. (This step runs in time 

O(n), according 10 Cl].) 

Under thf; projection of s& to &*, p* = (x1@*), x2@*)) is in general the image of 

a vertical :,egment of ti which reduces to a single point in some cases. ln any I:ase, 

the preirrrage of p* in Se is easily found in time 0(/z) as follows. For each face f E 

we deteT*mine the x3-coordinate of the point on the corresponding pianc ~hsc~ 

projects to p*; specifically, this x3-coordinate is 

f-J’= min a(.f) and a”= max a(f). rl~df)<O n3tfP-O 
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Thm a’ and d, with a’~+ cr”, are the x3-coordinates of the extremes of the segment 
which is the preimage of p* in ~4; we similarly define /3’ and /3”, with P’ a /3“, for the 
analogous segment in 3. lf the two segments overlap, then any point in their 
common portion also belongs *to t&e nonempty intersection of & and W. Otherwise 
assume, without loss of gerA%idity, that a” > 6’. Then we define the near-sides, of .# 
and $9 to be the sets of faces (&jft is a f%ce of &, ra,(h)<O) and {gilgi is a face of 
a, n&+0), respectively. Clearly both near-sides are obtained in time O(l V&j + 
1 Va 1) = O(n) by traversing, in a straightforward manner, the DCEL descriptions of 
S$ and 58. By pro,jecting the near-sides ,of ~4 and 8 on the (~1, x2)-plane we obtain 
two planar straight-line graphs (PSLG”s) Gti and 9“ Jr& with respective vertex sets 
Vk and Vh, Thus we have: 

Sfep 3. If the pre-images of p” in & and B under an xz-projection have a 
common intersection, then halt, for any point in this intersection is internal :a 
~4 n 9. otherwise obtain Gs~ and Gs. (The pre-images of p* are found in constant 
time; GA and Ga are found in time C(n).) 

Let 9~ be thp 4o-A domain conta*? 4 _._I__ _ 1. ed in the intersection of &* and $8”. For each 
point u E 93 it is convenient to define the function S(U), called x3-distance, als 

follows. If a!u) and /3(&r) are the x3-coordinates of the points on the faces of the 
near-sides of ~2 and 48, respectively, which both pro:ject to u, then 

S(u)= a(u)-#3(u). 

Let us now analyze the function S(u) defined on 23. Imagine superimposing Gd 
and GB to create a new vertex, comveniently called a pseirdo-vertex, at the inter- 
section of each edge of Gpr with an edge of GB. Denoting by V” the set of 
pseudo-vertices thus obtained, we can define a new PSLG G”: with vertex se:t 
V$! w Vb u V*. The vertices of VL and Vh will bie: called true vetzices. Thus the 
domain 53 is subdivided into regions by G*. Notice that inside any region of Gd the 
function a(o) is linear in the (x1> ~2) coordinates at v; similarly, for the function 
@(u) inside any region of Ga. Thus in any region induced by G* in 9, the ,functio:n 

(tl)= ~Y~zY~--/~(v) is linear in x1(v) and q(v). Moreover, U(V) is convex-downward 
and ,/3 (tr $ is convex-upward ; it follows that S (v ) is a convex-downward function. We 
conc:lade that the minimum of 8 occurs at a vertex of G*. Notice tRat iV*f, an:! 
hen* IVL u Vb u V*i, could be C(n’:): in fact, it is not hard to construct two 
planar graphs, each with Y vertices, so that, when superimposed, (V - I)* inter- 
s~~~io~s of s,fges are obtained. 

by hypothesis, a@*)= a” and @(p*) = /3’, we conclude that $(p*)=: 
0. I’t follows that the intersection of ~4 and $9 is nonempty if and only if, 

E 9, S(v)bO. Therefore, either $we find one such point, or show that 

begin by evaluating S at ue vertices of G* in 9. This is easil;! 
r each I;ir E v’k wc determine a re on r(a) of Ga to which a belongs. If 
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r(a) 3s not the infinite region of the plane in the subdivision indllced by &?, then 

r(a) corresponds to a unique face of the polyhedron 3, and s(a) is easily computed. 

Similarly, we can compute S(b) for each b E V& in 9. The determination of r(a ) 

h 3s been called the location of point a in the planar subdivision induced by C;a [5] 

alld could be done one point at a time. However, a faster ali;orithm has been 

r,:cently developed f6] for collectively locating aii the pcintc of a set. According to 

t$s techclique the members of V 2 can all be located in r&gions of the pianar 

subdivision induced by Ga in time O((c 1 VL I+ 1 V& 1) log: VL 10 I V& I>, for constant c., 

:ind, reciprocally, the members of V & can all be located in regions of the planar 

:;ubdivision induced by Gd in time O((l VL( + cl Vb 1) log I V.I. I I& I). Therefore in 

iota1 time O((~VLZI+IVL~I) log (l~ZI*I~~Ij)=O((l~~l~I~~l! log (Ik*‘~l*Ib3l))= 
O(n log n) all the true vertices can be located. Once a vertex, say, of V> has been 

located in (I&, the x3-coordin:ites of its preimages in .s&’ and B are obtained in 

constant time. This is summarked as follows: 

Step 4. Locate each true vertex of Gd in the planar subdivision induced by G2 

and vice versa. (This can be done in time O(n log n) usi~ig the algorithm of [6].) If 

there are no true vertices in 9 go to Step 7. Else evaluate S at each true vertex of 

G* (This can be done in additional time O(n).) 

Suppose at first that there are true vertices in 9, and zssume that for some txe 

vertex o (say, v E V$) we have S(o) 6 0. The vertical line through D intercepts the 

near-Me of ti in a vertex a and the nearside of 9 in a point 6, and obviously 

a(v)=~&)~x~(b)=~(v). Thus, we have a point p* for which a(p*)>p(p*) and a 

point v for which a! (V)S p(v). Consider now the plane, parallel to the x3-axis and 

containing the points p* and v. The intersection of this plane with the two poly- 

hedra & and 9 is shown in Fig. 3 (where the points p’ and p” have been defined). -- 
By convexit)l, the segments 3 and bp” are entirely contained in & and .%3 respec- 
tive,ly, and se their point of intersection q belongs to the sntersecticon of & and 93. 

The cooadinates of q are thus obtained by straightforward calculations. 
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&stie next that S(u)>0 forall true vertices t, E YL w Vg, and let 0” be a true 
venex such that 8(u*)=min{b(~) 1 ti E V& u_V&}. We cyclically teat each of the 
edges of z$ incident upon vs to determine whether the function S decreases as one 
moves a&~-.+ ,edgo away. from v?. 3f it -fails to decrease for all edges incident 
upen v*, lthhen u* is an absolute minimum of the function 8. Since t!O(ti*)>O, the 
polyhedra & and 33 do not intersect. 

Srep 5, Obtain u*. If o* is an absolute minimum and S(u*)> 0, halt, for A! n 33 :=: 
B; if 8(~*):*0 but v* is not an zibsolute minimum, go to Step 6; if S[U*)S 0, the:n 
there is a point q E&A@ obtained as the intersection of the diagonals of the 
trapezoid formed by the q-projection pre-images of p* and U* in d a.nd 3. (AlI of 
this work can be done in time O(H)*) 

The remainllng case is when) S(u”)> 0 but v* is not an absolute minimum. Then S 
decreases as one moves along at least one of the edges - call it e - incident upon Y”% 
and on this edge we locate a pseudo-vertex g. One such pseudo-vertex must exist, 
for other%+ 41,~ minimali@ of E&F*) would be contradicted. Let r(@) be the V C”” 
region of Gas to which D* belongs (known from Step 4); to locate pseudo,-vertex 17, 
we cyclically test each edge of r(u”) in turn and find the one which intersects e..4 
Clearly &(p)<S(u*). 

Step 6. Locate a pseudo-vertex p adjacent to u*, such that S@)<S(rY@). 13 

s’(p)~ 0, then, since S(u*)> 0, there is a point q E d n $3, which may be found a; iz 
Step 5; otherwise go to Step 7. 

. We must now consider two cases. The fu-st is when there are no true vertices i:n 
9 (Step 4); then the boundaries of J$* and 3’ must intersect, so the point p* may 
be chosen at an intersection of these boundaries and is therefore a pseudo-vertex. 
The second ::_lse is when S@)->O (Step 6). Both these cases are treated by using an 
algorithm, called the wandehzg algorithm, which wanders among the pseudo- 
vertices of G* and which uses at most O(n) time. Thus we have: 

Step 7. If t,he test of Step 4 fails use p*, while if the test of Step 6 falls use p, as the 
starting point of the wandering algorithm (to be described below), either to find a 
oseudo-vertex p’ such thait S(p)< 0, to which the method of Step 5 can be applied, 
or %~d a pseudo-vertex p,,, such that S(p,) = minve &3(u). (We shall show below 
that the wandering algorithm runs in tune O(n).) 

Before describing the wandering algorith.m, we observe that the starting point c,f 
it is a pseudo-vertex, either p CT p*, which has a smaller value of 8 than any trur: 
vertex. ff we imagine, for purpo:~es of proof. a contour line of 8 
or p” we enclose a region W z 533 w.bich contains a pseudo- 
rn~~~~rn b@,,& We note that :C@ must be convex. Also let 322 and EiB be the set!; 
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of edges of Gd and G* respectively which intersect 3. Since no true vesrtices lie id 

92, each edge in Sk u Eb must sepprate B into two convex regions No two edges 
in & can intersect in 3, nor can two edges in E &. Also, the function 8 is convex 
downward as one travels along any edge of Efd w Eb and its minimum must lie 

somewllere in 3, because the boundary of 3 is a contour line for 6. We shall call 
a point on an edge e E E$ v Eb where S has a minimum value, a minimum point 
of the edge e. It is unique except in degenerate cases. Tlie value of S at thi;$ point will 

be called the mininrum value of the edge e and denoted by min(e). 
We assume momentarily that the faces of both polyhedra are triangles an 

they are not, that we shall triangulate both polyhedra. Notice that in the tri- 
angulated polyhedra the number of faces remains less than twice the number n of 
vertices and the number of edges remains less than three times n, so they remain 
O(n). Each pseudo-vertex p’ i 2 9 is the intersection of two edges e: f E’d and 
ebEE& sr,S is therefore shared by four regions in G”; the union of these four 
regions is referred to as the crown of p’ and is the locus of the points which can be 
reached from p’ without crossing any edge. Notice that eh is shared by two 
triangular faces of Gd, whose union is a quadrilateral region; a similar remark holds 
for ei. Thus the crown is the intersection of these two quadrilateral regions, and the 
crown boundary contains either R, or 10, or 12 pseudo-vertices (see Fig. 421, b, c, 
respectively). The fact that the number of crown vertices is bounded is a 
consquence of the hypothesis that the polyhedra have been triangulated. 

t 

4 

(4 (b) !d 

Fig. 4. Illustration of the possible cases for the crown cf a pseudo-vertex. 
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m -o~)urse, the step is / $oided ,yand-~:~he%lgo&hm terminates if p’ attains the 
m&nun v&e& *@-along: the-edges &and e6 intersecting‘in pf: in this case if 8 is 
pc.&ive the two polyhedra do not intersect (case (iii) in Section 5). In the other case 
(8 decreases either along e: or &) the advancing step is effected, and in actual 
prfqie can be carrie$ out without exploring the rentire crown of p’-, .but simply 
fdowing .a P~~h-~~,e~~-al~~w~ich-S:de~e~es. 

An bdditional algo&& si@pliC&ion is that; as uve shall show, polyhedra ~b and 
3 need not be triangulated before applying the -w&Pdering algorithm. In fact 9 only 
those. faces of Gd and PGa will be triangulated vhich arr aetu&y traversed by the 
wandering algorithm.’ Specifically, let p’, the intelsection of CL ,and r& be t,“le 
current mudo-vertex (see Fig. 5). Referring for simirplicity ouiy to polyhedron Cpp, 

Fig. 5. Partial triangulation of 90. 

let f~ and f2 be the two faces of Gd sharirAg eh. In the doubly connected eds? fast oi 
@a we can obtain in constant time the edges e,” and er which follow eb in the 
qdge-sequences of fi and f2, respectively. Ef fx is not a triangle, we connect the 
non-overlapping extremes of ez and ei, and we do likewise for f2. The introduction 
of any such new edge in the doubly-connected edge list requires the modification of 

rs and the use of two other cells for construction of the appropriate 
this caQ also be done in constant time. We conjecture that this insertion 

necmmy, but the present proof on the time performance of the 

rithm moves from p’ to p” only if S(p”)CS(p’), it is 
oblong that the atlgmithm will teminatc at ;; point p, such that 8(&J is the 

~~~~u~ value of S for all do-vertices in 3. Even though the tofzl number of 
-verticm in @ soul 0(n2), we shall now prove that the number of 
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Recall that for an edge e in either Gd or Ga, min(e) denotes the minimum value 
of S on e. Let pseudo-vertex p’ be the intersection of e: E E$ and e6 E EL; we now 
define m(p’)=max(min(eh),min (eb)). Clearly S(p’)rm(p’). 

Leva 4.1. Let p’ be a pseudo-vertex in 6’2 ; if m (p’) = 6(p, ), thm S(p’) = m (p’) =: 

Wttl). 

Frroof. tit us assume the contrary and obtain a contradiction. In Fig. 6 let a’ and 6’ 
represent minimum points on eh and eb respectively which are nearest ta p’. By our 
assumption, a(~‘) = S(V) = S@*) and hence by convexity, every point along. the 
line segment E between a’ and b’ also has this same S value. Let ~11 b% the 
pseudo-vertex closest to Q’ in the portion of e: between ‘a’ and p’ (possibIy, cal and 
p’ coincide). The line segment. i crosses a region of G* bordering with a’a 1. Since 
the value of S is linear within this region and it achieves the minimum value 6(P,,,) 
at an interior point, it must have this value throughout the entire region. Hence, 
S(al) = SCpm), contradicting our assumption that a’ is the nearest minimum point to 
p’ on eh. This proves SQ’) = S(P,,,) Cl 

Fig. 6. Illustration for the proof of m(p’)= G(p,)4sS(p’)= m(p’). 

Assuming ww that S(p’)>S(p,), we see by Lemma 1, that m(~‘)‘S(p,). Wbefi 
the w;a-.ldering algorithm is applied at p’, it steps to a new pseudo-vertex p”. 

2. m (p”) < m ($7. 

We distiirlguis 
(11) ?’ and p” do not belong to flae same edge. Let p’ IX the intersection ol eh anti 

eb ard let p” be th intersection of eZ and eb” (see * L=t Ppn be GX 
~s~~~r~-ve~~ex in 9 efined above. We claam that 2 s e from pVq7 00 P” 



Fig. 7. IlIustration of the proof that m(p”)< mlfp’). 

candent intersect the interior of the region f of G* to whose boundary p’ and p” 
belong, except at p”* An fact, if it did, any such point of intersection wculd, by 
convexity, have a value of 6 as low as S(p”). Since p” is a minimum point of f, this 
would imply that all the points of f have the same value of 6, contradicting 
S&I’)> a~$“). As a consequence, either eg or eS separates pm from p’, so pm belongs 
to the shaded regions in Fig. 7(a). 

Assume, without 1~s of generality, that g’, and hence eh, is separak.2 from pK by 
e,“. Then, since ek does not cross c,” in 3, the straight line between pm and the 
minimum point of e: intersects e,” in a point u ‘I. By convexity, min(& ) 3!: 6 (42” j, with 
equality occurri;ng only if min (eh) = S(p,). Assuming equality, since we have seen 
that m(r’)> @pm) and we have min(eL) = Qa”) = min(eE) = a&,,,), we obtain 
#&‘j 3 min(eI ). Assuming instead that min(e L) > S(u”), since by definition m (p’) 2 
minfe:) and S(s”& min(ez), we also obtain HI (p’)> min(ez). 

Two subcases must be considered. First, assume $, and hence & is also 
separz&d from pm by ea. Then by an identical. argument m(p’)> min(&), so 
IZ [PI)> mfp") = max(min(el), min(e&‘)). Second, assume it is not, as in Fig. 7(a). We 
now &ow that r;-tn(e~~~&n(e~) thus reaching the same concksion. In fact, since 
S(Jp”) k the minimum value in fP the minimum point on e,” is either at p” or along & on 

osite side of p” from fi A straight line dra.&n between this minimum point and 
sects ez at a point b” such that s(b”)s .min(ez), by the convexity argument 
her. But S(b”)a min(eL]9 whence min(e,i)a min(e[), as claimed. 

~‘5 belong to the cne edge. Without loss of generality, let p’ bc the 
in on of eb and e; and let P” be the intersection of eg and ei (see Fig. 7(b)). 
By %he convexity argument, b: is separated from pm by ez (i.e., pm belo;lgs to the 

s in case {I), we can show that EPI (p’);~ min(eL)> min(e,“). To 
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prove that min(ei js min(szj we note that the minimum point of ei must be p”, for 
otherwise p” would not attain the minimum of 6 in the crown of p’. Thus m (p”) = 
max(min(ez j, mime:)) - mime,“) < m (p’), as claimed. Kl 

‘I’kwem La,% The number of advacing steps performed by the wacdering algorithm is 
D(PZ j. 

Proof. We have shown that as the wandering algorithm moves from one pseudo- 
vertex p’ to the next, the value of m (p’) decreases at each stzp. Each value of m (p’) 

is the minimum vahre of one of the edges in EL uE&. Hence, the number of 
distinct values which PIZ( p’) can assume is no greater than jE>l+ )EL 1, which is O(n). 
The number of steps taken by the aIgorithm therefore is O(n). Cl 

Since the time taken by the wandering algorithm is O(n), the time taken by the 
entire algorithm remains O(n log n j. 

5. An application: Finding a separating plane 

The preceding method can be used to solve efficiently the important problem of 
linear separability in three dimensions, i.e., testing whether two finite :ets of points 
A and I3 are separable by means of a plane, and, if so, finding. .rpe SUL!I plane. 

Sin& two finite set!:, of points are linearly separable if auJ only if theu convex 
hulls do not intersect IIS], we begin by obtaining the respsctivp c(3nvex huils of the 
sets A and B by means of the Preparata-Hong algorithm [3]. Letting IAl + iRI = II, 
this task, which is completed in time O(n log n j, yields two convex polyhedra ~2 
and 3 such that 1 V&j f 1 VB\ G n. We now apply to .& and 93 the algorithm described 
in Section 4: any time the algorithm declares that & and 93 do not intersect, we 
construct a separating plane. 

We now recall tiiat & and B are found to be disjoint in three ex.clusive cases, 

already, referred to in Section 4: 
(i) afte; projecting R(d) and R(% j on the plane (xl, x2), the polygons &” and 

28” are disjoint (Step 2); 
(ii) after evaluating 6 at all true vertices of G” we find that a{~‘“)= 

rninV,v;!uvsi, S(u)> 0 and u* is an absolute minimum (Step 5); 
(iii) :ifter applying the wandering algorithm we find that S@,>> 0. 
In case (i) it is sufficient to find a straight line 1 separating ~2’ arid 9I*. since a 

plane containing I and perpendicular to the plane (X ,, .x2) separates .d an 

line I c:lin be feund in time O(a) by an obvious rn~d~~c~~i~~ of the Psepar 

algorit%n for planar convex hulls ([3, p. 90Jj. 
Cases (ii) and (iii) can be handle jointly by the Following consider ations. 

than constructing one separating plane, we construct a locus of sep3ratrw pia~af~s 



a& m&e a selection in this 1ocu.s~~ Let u be the point at which the algorithm 
terminates -v&h, the result that a2 and @ do not intersect; obviously, either u = v * 
or u 2=. pm. Also let u*’ and u” be the pre-images of u (with respect to x3-projection) 
in & and 3, respectively. d Assume at first that u = v* and, without loss of generality, 
let $4 be a vertex (in Vd). Consider the cycle F of the faces shal:ing u’; for each 
fe FF khagine applying the vector @r(f), no, no) = n(f) to the origin; recall that 
e(f) is normal to f and pointing toward the interior of SQ. Then the set of directions 
{~(fi 1 f~a;‘) defines a convex cone Cd such that any direction internal to it is 
normal to a supporting plane of &. Notice now that, when u = pm+ point u’ belongs 
to sonr- edge P* of JXZ and Cd degenerates into a plane wedge delimited by the 
normals to the t-wo faces of ,d which share e,. 

Rx uw the cozwex ccme C’a is analogously defined, with the only modificatic.+n that 

the directions of the veztors n(f) are reversed. The cone can assume the following 
forms: if ri = v*, then Ca is either nondegenerate, or a plane wedge, or a half-line, 
depending upon whether u” in 48 is either a vertex, or a point in an edge, or a point 
in a face, respectively; if u =pm, then Ca is a plane wedge. 

The solution to our problem is Cd A C’a. Notice, however, that this intersection 
consists of a single ray in the following two cases: 

(I) IZ =pnz, in which case the ray is the common normal to the edges which 
contain u’ and u” in rs& and 98, respectively; 

(2) u = u* and u” is a point in a face of 3, in which case the ray is the normal to 
this face. l’n the remaining cases (U = v*, u’ is a vertex, and u” is either a vertex of 3 

point in ar: edge; Cd is nondegensrate, hence it intersects either the plane x3 = 1 or 
the plane ~3 = -1 in a polygon. Suppose without loss of generality, that C, inter- 
sects the plane x3 = 1: the polygon can be found in time O(n) by scanning the cycle 
it of the faces sharing u’. PIext we intersect C’s with x2 = 1 and obtain either a _ 
Tpolygon or _ a s?raight-line segment- o in any case the problem is reduced to finding the 
intersection of two plane polygons, which can be solved in time Q(n) [I]. This 
enables us to find a vector orthogonal to a separating plane; the cunstruction is 
completed by requiring that the plane contain a point internal to the segment F ‘14 “. 

ULLS, we conclude that the Gonstruction of a separating plane of two three- 
dimensional-sets of @*tq_ if :L ZC exists, can by, effected in time O(n log n). 

As we said in Section 2, the vertex-to-edge list of a planar graph is a collection of 
9 referred to as inputedg~ lists, stored in arrays H[l : n], VERTEX[l : 2nt], 

EXT[l : 24. In the DCEL, we can identify n cycles of edges arou 
loetie~ cy&~, and f cycles of edges around a face, called face cycles. ‘I’he 

~n~t~~ion of the IXEL is carried out in two phases. In -the first phase, we fill zhe 
VI 

9 7 ‘r -41 2, hereby ~~onstr~~ting the vertex cycles. In the secon 



The intersection af two convex polyhedra 233 

phase \‘JZ generaie the names of the faces and fill the arrays Fi and F2, hereby 

constructing the face cycles, 

Informally, phase-l of the algorithm works as follows. The input edge lists are 

scanned one at a time, in the order 2, .., u2, . . . , o,*. While scanning the input edge list 

of Vi an edge (Vi, Vi) is entered into the DCEL only if i > j: in this manner we ensure 

that each edge is entered only once. Thus any edge (Q uh) with h <:j is already 

presect in the DCEL, since it was entered while scanning the input edge list of uh 

earlier in the execution of the algorithm. All that is needed now is therefore the 

realization of the appropriate linking of such (Vi, oh) into its position in the vertex 

cycle of Uj. To effect it we musL + determine the location of (Vi, uh) in the DCEL. This 

can be done as foCsJvs with additional storage O(n). Suppose that, while scanning 

the input edge list of oh, the edge (vh, Vi) is to be entered (obviously h < j). This 

edge is linked permanently i%o the vertex cycle of vh and temporarily into a list cf 

edges of :he form (v,, vi), with r ( j. The members of the latter list referred to as the 

temporary list of vi, are linked in reverse UI~..,~ -+v to that of their occurrence during the 

execution of the algorithm. Thus this list can be mrryaged with only one pointer 

stored in an array LAST[l : n]. With these provisions, the ;;cz4on of (uh, Uj) is 

easily obtained: in fact, prior to linking the vertex-cycle of vi we scan the rc;‘P-Forary 

list of vj starting from T,_AST[j] and store the location of (vh, vi) into ceil B[h] of an 

auxiliery array B[ 1: n]. Notice that the latter array is only scratch memory and wiY1 

be used repeatedly for each v+ Therefore the additional storage needed consists of 

the wrrays LAST and B, both of size O(n), and of program variables a i, a~, U, i, I, 1. 

We can now give the algorithm. 

Coglstruct Vertex Cycles 

1. begi;1 a+1 

2. for j + 1 step I until n do 

LAST[j] + A (Comment: mitialize LAST) 

3. for, j + 1 step P until n do 
4 “a’. begis ! e- L.A.ST[j] 

5. While I # A do 
6. begin F c Vl[lj 

7. %I‘+-J 
8. I+- PZ[Z] 

9. 
10. 

ent: Loop 5-8 fetches the locations of hII 2 

(vrF vi) with r < j by scam g the tempcrary 6ist of L’, and 

stores them into the array ‘This step is obvicusly VOlC! for 

j= 1. 

tc- 

P+- TEX]a) 



17. 

18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 

27, 
2% 

29. 

.*+&Ed : ‘-:,. -, /- 
Corbmt: Steps M-15 in&&e the vertex cycle for Us 
else! IPV[jf *- 40 Mqr], zf + 2 
Camnk steps 8-17 process the first member (un q) of the 
input edge list oi: q. If this edge Was not previouigy encouri- 
twz! steos 11-16 are executed; specifically, the e&e is . . 
entered in step 12. Variable a0 is used to denote the locaGon 
of the last member of the vertext cycle ‘being constructed. 
W.Me +NiXT[# J ic Hf j] do 

begim f + E;IEXT[tJ 
r + VERrnX[t] 
H r>j then 

end 

Comqeat: S?cps 18-29 complete the construction of the vertex cycle 
for Cj. Specifically, 1.00~ 18-28 successively processes the edges 
incident on q and either enters them into the vertex cycle (§teps 
21-26) or simply finks them into it (Steps 27-28).‘Step 29 closes ihe 
vertex cycle. 

To evaluaw the running time of the algorithm just described, notice that each 
rowssed exactFf twiw: once to be entered into a vertex cycle and into a 
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temporary list, the second time to be linked appropriately. Both these operations 
take constant time, and since the number n of edges is O(n), O(n) time is used to fill 
the arrays Vl, V2, Pl, and P2. 

To complete the construction of the DCEL we must construct the face cycles. 
The next algorithna, CONSTRUCT FACE CYCLES, starts from the partial 
DCEL which is produced by the CONSTRUCT VERTEX CYCLES pro- 
cedure. The algorithm will scan the DCEL, using an integer a as a counter. If 
Flfa] and F2[a] have already been filled, it advances to t5e subsequent edge; 
otherwise it generates the name of new face (using a coumer s) and traces the 
edges enclosing it filling the appropriate F-fields. “5~ :ilgorithm terminates 
when 2m filling operations have been performed: an integer k is used to control 
this event. 

Csnstruct face cycles 

1. 
2. 
3. 
4. 
5. 
6. 

7. 
8. 
9. 

10. 
11. 

12. 

begin forjtl step 1 until mdoFl[j]tF2[j]+/1 

a+s+k+l 

While k s2m do 
begin IfFl[a]#A andF2[a]#,! theaa+a+l 

else begin If Fl[a] = A then u t 1 else u + 2 
Fu[a)cs,ct Vllia],HF[s]+an+a, 

ktk+l 

a +Pu[a] 
While U#U”dO 

begin Ef Vl[a]=c then ut-2 else u+l 
Fu[a;cs,cbV~(a],kck+l 

a ‘dz+2] 

end 

Sc-S-t-1 

end 

Sine 5 in the latter algorithm each field F1 [a] or F2[a 1 is being processed at mc st 
twice (once to be filled in steps 6 or 10, and possibly once to be just ins 
s%ep 4q, the rurming ti is and the analsgokas res& for the ~6: 
algori: hm substantiate our claim that the DCIEL can be obtained in time Oln ) fro 

the original vertex-to-edge list. 
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