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A new algorithm, CONVEX, that determines which points of a planar set are vertices of the 
convex hull of the set is presented. It is shown that CONVEX operates in a fashion similar 
to the sorting algorithm QUICKERSORT. Evidence is given which indicates that in some 
situations CONVEX is preferable to earlier algorithms. A Fortran implementation, intended 
to minimize execution time, is presented and an alternative, which minimizes storage require- 
ments, is discussed. 
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INTRODUCTION 

The convex hull of a planar set is the minimum-area convex polygon containing 
the planar set. A convex polygon is clearly determined b y  its vertices. Graham [1] 
suggests an algorithm for determining which points of a planar set are vertices of 
its convex hull. Because his algorithm requires sorting the points, if there are N 
points then at  least O(N log N) operations are needed to determine the vertices. 
Recently, Preparata  and Hong [3, 4] have shown tha t  there exist sets of points for 
which every algorithm requires at  least O(N log N) operations to  determine the 
vertices of the convex hull. Jarvis [2] gives an algorithm which requires O(N.C) 
operations, where C is the number of vertices. For  some configurations of the 
points in the plane (those with small values of C) the algorithm given by  Jarvis 
will be faster than the algorithm of Graham; for other configurations i t  m ay  be 
slower. An adaptive algorithm, CONVEX, is presented here which never requires 
more than O(N.C) operations to determine the vertices of the convex hull and 
may  require substantially fewer. However, CONVEX may  require more opera- 
tions than  Graham's  algorithm for some configurations of points. Evidence is 
presented which suggests tha t  in applications CO N V EX  is preferable to the "sort- 
ing" algorithms [1, 3, 4] and to Jarvis's algorithm [2]. 

METHOD 

Operationally, this algorithm is analogous to the sorting algorithm Q U I C K E R S O R T  
[5]. At  each step Q U I C K E R S O R T  partitions the input  array with respect to a 
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particular point and yields two output arrays, one containing those elements of 
the input array which are smaller than the point and the other containing those 
elements which are larger. QUICKERSORT continues to partition the subarrays 
until subarrays of length 1 are obtained. CONVEX partitions the input array 
with respect to a particular line, yielding two arrays of points. For convenience 
the two sides of the partitioning line will be referred to as "above" and "below." 
The key to the speed of CONVEX is that not every subarray need be partitioned. 
Consider the points inside a triangle with vertices which are vertices of the convex 
hull; these points cannot be vertices of the convex hull. I t  is possible to eliminate 
these points from further consideration by choosing the partitioning lines to be 
sides of such a triangle. 

TREE REPRESENTATION 

This algorithm may be interpreted as a preorder traversal of a particular binary 
tree. The root of the tree represents the original set of points. The left son of each 
node of the tree represents the subset of points above a partitioning line and the 
right son represents the subset below. The leaves of the tree represent either null 
subsets or subsets inside a triangle whose vertices are vertices of the convex hull. 
On the left half of the tree left sons are visited first; on the right half of the tree 
right sons are visited first. 

PARTITIONING 

At each step the subset of points represented by the current node of the tree is 
partitioned by algorithm SPLIT. As input, SPLIT requires a line joining two ver- 
tices of the convex hull and a set of points distinct from these vertices. I t  produces 
as output (1) the subset A of points above the line, (2) the point farthest above the 
line if A ~ 0 (the empty set), (3) the subset B of points below the line, and (4) 
the point farthest below the line if B ~ 0. If the equation of the line is Z ( X ,  Y )  
= a -{- b X  -t- Y = O, then Z(Xo,  Yo) determines for a point (X0, Y0) its position 
relative to the line. Points which lie on the line are not vertices of the convex hull 
and may be neglected in succeeding computations. The initial partitioning line 
joins any two vertices; for simplicity they are chosen to be the points with mini- 
mum and maximum X-coordinates. 

AN EXAMPLE 

In order to clarify the operation of this algorithm, the following example is pre- 
sented. Figure 1 displays a planar set of points, the input to the algorithm. Only 
those points which are important to the operation of the algorithm, the output 
vertices of the convex hull, have been labeled. Table I presents in order the input 
and output of successive partitioning steps with a legend describing the different 
subsets of points. Figure 2 is the associated binary tree. 

SPEED OF COMPUTATION 

The number of operations required by this algorithm is of the same order as the 
total number of points at all the nodes of the binary tree; this is equal to the total 
number of points passed to SPLIT. I t  is possible that the tree is of height N and 
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Fig. 1. Sample input to CONVEX with vertices labeled and partit ioning lines drawn 

Table I. Successive Calls to SPLIT for Sample Points of Figure 1 
(A dash indicates that  the information is not relevant to the operation of the 

algorithm.) 

Input  Output 

Above Below 
Subset Line 

Subset Extreme Subset Extreme 

1 AF 2 D 10 G 
2 AD 3 B 7 
3 AB 9 4 
4 B D  5 C a 
5 BC ¢ 6 
6 CD ¢ ~ 
7 DF 8 E ~, 
8 DE ¢ 9 
9 EF ~ ~ 
I0 FG 11 - -  
U GA • - -  

Legend 

Subset Subset Points Points 
number number 

1 all 9 above DF, below DE 
2 above AF 10 below FA 
3 above AD 11 below FA, above FG 
4 above AD, below AB ~ inside A ABD 
5 above BD ~ inside A BCD 
6 above BD, below BC ~ inside ~ ADF 
7 above AF, below AD ~ inside A DEF 
8 above DF • inside A AFG 

hence  the re  a re  a t o t a l  of N(N + 1) /2  poin ts .  Cons ider ,  for  example ,  t h e  se t  of 
po in t s  which  lie on  t h e  b o u n d a r y  of a circle  a t  angles  0, ~r, 7r/2, v / 4 ,  r / 8 ,  . . . .  
I t  is also poss ible  t h a t  t he  t ree  is of he igh t  1 a n d  hence  t h e r e  a re  on ly  N poin ts ,  
if  al l  t he  po in t s  l ie on a l ine.  

E a c h  t i m e  a S P L I T  is p e r f o r m e d  e i the r  (1) a new v e r t e x  of  t h e  convex  hul l  is 
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Fig. 2. Binary tree of successive calls to SPLIT in Table I 

found or (2) it is determined that the partitioning line is an edge of the convex 
hull. Since the number of edges equals the number of vertices, say C, the total 
number of operations required is certainly less than or equal to O(N. C) but this 
upper bound may be extremely crude. It  should be noted that if a point is not on 
the convex hull then it must be passed to SPLIT at least three times before it 
may be eliminated from consideration. Thus a practical lower bound for the total 
number of points passed to SPLIT is 3N -~ O(1). 

Since the time required by this algorithm depends on the particular configuration 
of points, it seems natural to consider samples from different probability distribu- 
tions. For points sampled from a circular Gaussian distribution, it is known [5] 
that for sufficiently large N the E(C) is O(~/(log N)). In this case the crude bound 
for the expected number of operations is O(N~/(log N)). For a sample from a 
uniform distribution on the interior of a circle the E(C) is O(N 1/~) for large N [5]. 
Here the crude bound becomes O(N4/a). 

Pseudorandom samples were generated for sample sizes 10, 32, 100, 316, and 
1000 for five distributions: (1) uniform on the boundary of a circle, (2) uniform on 
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Table II. Average Number of Operations for Nine Random Samples from 
Each of Five Distributions 

(Numbers in parentheses are estimated standard deviations of the averages. Bottom number 
in each cell is average number of vertices. All numbers rounded to integers.) 

on Uniform on Uniform on Uniform on Circular Circular 
boundary of interior of interior of Gaussian exponential 

circle circle square 

10 23 (0) 21 (1) 21 (0) 21 (0) 21 (0) 
10 5 6 5 5 

32 145 (0) 98 (2) 99 (2) 93 (O) 90 (0) 
32 9 9 8 7 

100 707 (5) 343 (4) 330 (6) 305 (2) 299 (2) 
100 15 12 9 8 

316 2998 (7) 1153 (5) 1141 (24) 975 (7) 966 (9) 
314" 22 15 11 9 

1000 11913 (19) 3691 (10) 3616 (68) 3094 (18) 3021 (8) 
958* 33 19 12 10 

* These numbers artificially reduced due to truncation error; see "Implementation." 

the interior of a circle, (3) uniform on the interior of a square, (4) circular Gaussian, 
(5) circular (double) exponential. The  fifth distribution has a density which is 
proportional to exp (v / (X ~ + y2)); the conditional distribution on any ray from 
the origin is s tandard exponential. The  total  number of points passed to S P L I T  
and the number of vertices of the convex hull were recorded. Average values for 9 
samples are given in Table II .  

The bot tom number in each cell in Table I I  is C, the average value of C. Notice 
tha t  N .  C grows more quickly, for each distribution, than the average number  of 
points passed to S P L I T  (the upper number in each cell). Hence this algorithin is 
an improvement on Jarvis's algorithm, at  least for these situations. Notice also 
that ,  except for the extreme case represented by  the first column, N log N grows 
more quickly than the average number of points passed to SPLIT .  Hence this 
algorithm is an improvement on the "sort ing" algorithms for these s i tuat ions .  

IMPLEMENTATION 

The application for which this algorithm was originally intended requires repeated 
use of the program on different subsets of a sample of only a few hundred points. 
This suggested the use of indirect addressing and a liberal use of storage in an ef- 
fort  to increase the speed. A linked list is used to refer to vertices of the convex 
hull allowing insertions to be made at  fixed cost no mat te r  how many  vertices have 
been found. The following loop in the calling program will allow the transfer of 
successive vertices (in counterclockwise order) from the array X to the array Y. 

K = IL(1) 
DO 1 I = 1, NH 
J = IH(K) 
Y(1, I) = X(1, J) 
Y(2, I) = X(2, J) 

1 K = IL(K) 

A different implementation of the algorithm is possible. To minimize the use of 
storage, data  points could be rearranged in place in a manner  similar to Q U ICK ER-  
SORT. In fact, the vertices of the convex hull could be moved to the initial ele- 
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ments of the data array. Then the only additional storage required would be for a 
pushdown stack to store the pointers to subarrays not yet partitioned. For this 
alternative implementation right sons (in the binary tree) would be visited first 
on the left half of the tree and left sons first on the right half. There would prob- 
ably be considerable loss in speed of execution. The program presented here re- 
quired less than 11 seconds of CPU time on an IBM 370/158 (in BC mode) to 
produce the first column of numbers in Table II. This time includes generating the 
samples, printing the results, and all related calculations for what is admittedly 
an extreme case. 

The only difficulty which has arisen while using this program can be noted in the 
last two cells of the first column in Table II. When the convex hull has a large 
number of vertices, adjacent sides are nearly parallel and truncation (roundoff) 
error can significantly affect the results. Increasing the precision of the arithmetic 
alleviates this problem. 

There are several configurations of points which are handled by the program 
CONVEX in a special way. Whenever the input contains only one or two points 
they are the vertices of the convex hull (unless they are identical in the case when 
there are two). Whenever all the points lie on a vertical line, this is detected and 
the two extremes are returned without any calls to SPLIT. Vertical boundaries are 
given special treatment: (1) When the two points which determine the initial 
partition are chosen, care is taken to assure that they are vertices and not just 
boundary points. (2) When partitioning, SPLIT uses the information whether the 
set being partitioned is above or below the initial partitioning line to determine 
its output. 

There is no feature inherent in the basic idea of this algorithm which prevents 
implementation for dimensions higher than 2. However, because the vertices of 
the convex hull in higher dimensions cannot be ordered, the programming details 
will be considerably more complicated. Of course in higher dimensions the gains 
to be made by this procedure are smaller; in fact, in N - 1 dimensions all N points 
are vertices of the convex hull if they are linearly independent. 
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