
LINEAR PROGRAMMING

[V. CH9]: INTEGER PROGRAMMING

Phillip Keldenich Ahmad Moradi

Department of Computer Science
Algorithms Department

TU Braunschweig

January 23, 2023



MOTIVATION

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 2 / 24



MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 3 / 24



MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 3 / 24



MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.

LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 3 / 24



MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.

Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 3 / 24



MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!

Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 3 / 24



MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 3 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?

Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =
∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3: xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3: xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.

Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3: xv1 + (1− xv2 ) + (1− xv3 ) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 4 / 24



DEFINITION

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 5 / 24



DEFINITION

INTEGER PROGRAM

A linear program where all variables are restricted to Z is called integer program (IP).

A linear program where some (but not all) variables are restricted to Z is called mixed integer
program (MIP).

A linear program where all variables are restricted to {0, 1} is called 0-1-program or binary
program.

0-1-programs, IP and MIP are NP-complete.
They can be used to straightforwardly model many NP-complete problems.
Good solvers exist that can solve small to moderate size instances of many NP-hard problems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 6 / 24



BRANCH AND BOUND

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 7 / 24



BRANCH AND BOUND

SOLVING IPS

How do we solve integer programs?
Using a technique called Branch & Bound, or an extension of that; let’s show an example.

max 17x1 + 12x2 s.t.

10x1 + 7x2 ≤ 40

x1 + x2 ≤ 5

x1, x2 ≥ 0

x1, x2 ∈ Z

Solving the LP relaxation (of subproblem P0, the original problem) gives us
ζ0 = 68 + 1/3, x0

1 = 5/3, x0
2 = 10/3.

This tells us the optimal (integer) solution is not better than ζ0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 8 / 24



BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 9 / 24



BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 9 / 24



BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 9 / 24



BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 9 / 24



BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 9 / 24



BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 9 / 24



BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 9 / 24



BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 9 / 24



BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?
We could make it a leaf because its bound is not better than a solution we already found!
This is called pruning and important for making Branch & Bound efficient in practice.
Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 10 / 24



BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?

We could make it a leaf because its bound is not better than a solution we already found!
This is called pruning and important for making Branch & Bound efficient in practice.
Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 10 / 24



BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?
We could make it a leaf because its bound is not better than a solution we already found!

This is called pruning and important for making Branch & Bound efficient in practice.
Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 10 / 24



BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?
We could make it a leaf because its bound is not better than a solution we already found!
This is called pruning and important for making Branch & Bound efficient in practice.

Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 10 / 24



BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?
We could make it a leaf because its bound is not better than a solution we already found!
This is called pruning and important for making Branch & Bound efficient in practice.
Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 10 / 24



BRANCH AND BOUND

CONTINUING

Exploring a node of the search tree means:

solving the LP relaxation (most expensive step),

deciding whether and how to branch.

We usually explore nodes in a (sort of) depth-first order. This has several advantages:

Memory requirements: DFS needs essentially O(depth).
BFS needs to store a level of the tree (often Ω(nodes)).

Integer solutions are often deep in the tree. We need them to prune; earlier is better. When
aborting the search, e.g., due to a timeout, we want to have a good solution.

Warm Starting: In DFS, the next problem we solve is very often only one added constraint
away from the previously solved one. We can hope that we can use the previous optimal
basis as a starting point for solving the next problem with much fewer iterations than starting
from scratch. Let’s see how that could be done!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 11 / 24



BRANCH AND BOUND

CONTINUING

Exploring a node of the search tree means:

solving the LP relaxation (most expensive step),

deciding whether and how to branch.

We usually explore nodes in a (sort of) depth-first order. This has several advantages:

Memory requirements: DFS needs essentially O(depth).
BFS needs to store a level of the tree (often Ω(nodes)).

Integer solutions are often deep in the tree. We need them to prune; earlier is better. When
aborting the search, e.g., due to a timeout, we want to have a good solution.

Warm Starting: In DFS, the next problem we solve is very often only one added constraint
away from the previously solved one. We can hope that we can use the previous optimal
basis as a starting point for solving the next problem with much fewer iterations than starting
from scratch. Let’s see how that could be done!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 11 / 24



BRANCH AND BOUND

CONTINUING

Exploring a node of the search tree means:

solving the LP relaxation (most expensive step),

deciding whether and how to branch.

We usually explore nodes in a (sort of) depth-first order. This has several advantages:

Memory requirements: DFS needs essentially O(depth).
BFS needs to store a level of the tree (often Ω(nodes)).

Integer solutions are often deep in the tree. We need them to prune; earlier is better. When
aborting the search, e.g., due to a timeout, we want to have a good solution.

Warm Starting: In DFS, the next problem we solve is very often only one added constraint
away from the previously solved one. We can hope that we can use the previous optimal
basis as a starting point for solving the next problem with much fewer iterations than starting
from scratch. Let’s see how that could be done!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 11 / 24



BRANCH AND BOUND

CONTINUING

Exploring a node of the search tree means:

solving the LP relaxation (most expensive step),

deciding whether and how to branch.

We usually explore nodes in a (sort of) depth-first order. This has several advantages:

Memory requirements: DFS needs essentially O(depth).
BFS needs to store a level of the tree (often Ω(nodes)).

Integer solutions are often deep in the tree. We need them to prune; earlier is better. When
aborting the search, e.g., due to a timeout, we want to have a good solution.

Warm Starting: In DFS, the next problem we solve is very often only one added constraint
away from the previously solved one. We can hope that we can use the previous optimal
basis as a starting point for solving the next problem with much fewer iterations than starting
from scratch. Let’s see how that could be done!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 11 / 24



BRANCH AND BOUND

DUAL SIMPLEX WARM STARTING

Consider our original problem P0 and its related problem P2 (P0 with x1 ≥ 2).
Optimal dictionary for P0:

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

What happens when we add x1 ≥ 2?

We get a slack variable g1 = x1 − 2 = −1/3 − w1/3 + 7w2/3.
That variable is non-basic (because the constraint is violated) and makes the new dictionary
primally infeasible. It is dually feasible however, so we can use dual Simplex.

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

g1 = −
1

3
−

1

3
w1 +

7

3
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 12 / 24



BRANCH AND BOUND

DUAL SIMPLEX WARM STARTING

Consider our original problem P0 and its related problem P2 (P0 with x1 ≥ 2).
Optimal dictionary for P0:

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

What happens when we add x1 ≥ 2? We get a slack variable g1 = x1 − 2 = −1/3 − w1/3 + 7w2/3.

That variable is non-basic (because the constraint is violated) and makes the new dictionary
primally infeasible. It is dually feasible however, so we can use dual Simplex.

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

g1 = −
1

3
−

1

3
w1 +

7

3
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 12 / 24



BRANCH AND BOUND

DUAL SIMPLEX WARM STARTING

Consider our original problem P0 and its related problem P2 (P0 with x1 ≥ 2).
Optimal dictionary for P0:

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

What happens when we add x1 ≥ 2? We get a slack variable g1 = x1 − 2 = −1/3 − w1/3 + 7w2/3.
That variable is non-basic (because the constraint is violated) and makes the new dictionary
primally infeasible. It is dually feasible however, so we can use dual Simplex.

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

g1 = −
1

3
−

1

3
w1 +

7

3
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 12 / 24



BRANCH AND BOUND

CONTINUING OUR EXAMPLE

After exploring P3:

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 13 / 24



BRANCH AND BOUND

CONTINUING OUR EXAMPLE

After exploring P4, P5:

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 14 / 24



BRANCH AND BOUND

CONTINUING OUR EXAMPLE

After exploring P6, P7, P8:

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 15 / 24



BRANCH AND BOUND

FINAL SEARCH TREE

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 16 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).

While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi.
If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.

If xi is integral, update B = x
i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 17 / 24



BRANCH AND CUT

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 18 / 24



BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.

One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 19 / 24



BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 19 / 24



BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 19 / 24



BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 19 / 24



BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 19 / 24



BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 19 / 24



BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 19 / 24



BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 19 / 24



BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 20 / 24



BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?

No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 20 / 24



BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.

Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 20 / 24



BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 20 / 24



BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 20 / 24



BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 20 / 24



BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 20 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE

With a given optimal dictionary, equivalent cuts (to the general scheme introduced before) can be
found like in the following example.

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13−
5

9
w1 −

8

9
w2

x1 is not integral. Reorganize equation so all variables are on one side:

x1 +
5

54
w1 +

1

54
w2 =

11

3
.

Rounding the left-hand side coefficients makes the left-hand side smaller and integral:

x1 + 0w1 + 0w2 ≤ ⌊11/3⌋ = 3 ⇒ x1 ≤ 3.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 21 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE

With a given optimal dictionary, equivalent cuts (to the general scheme introduced before) can be
found like in the following example.

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13−
5

9
w1 −

8

9
w2

x1 is not integral. Reorganize equation so all variables are on one side:

x1 +
5

54
w1 +

1

54
w2 =

11

3
.

Rounding the left-hand side coefficients makes the left-hand side smaller and integral:

x1 + 0w1 + 0w2 ≤ ⌊11/3⌋ = 3 ⇒ x1 ≤ 3.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 21 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE

With a given optimal dictionary, equivalent cuts (to the general scheme introduced before) can be
found like in the following example.

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13−
5

9
w1 −

8

9
w2

x1 is not integral. Reorganize equation so all variables are on one side:

x1 +
5

54
w1 +

1

54
w2 =

11

3
.

Rounding the left-hand side coefficients makes the left-hand side smaller and integral:

x1 + 0w1 + 0w2 ≤ ⌊11/3⌋ = 3 ⇒ x1 ≤ 3.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 21 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

Adding x1 ≤ 3 adds a (basic, integral!) slack variable w4 = 3− x1 = 3−
11

3
+

5

54
w1 +

1

54
w2:

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

w4 = −
2

3
+

5

54
w1 +

1

54
w2

We can continue with dual Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 22 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

Adding x1 ≤ 3 adds a (basic, integral!) slack variable w4 = 3− x1 = 3−
11

3
+

5

54
w1 +

1

54
w2:

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

w4 = −
2

3
+

5

54
w1 +

1

54
w2

We can continue with dual Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 22 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

Adding x1 ≤ 3 adds a (basic, integral!) slack variable w4 = 3− x1 = 3−
11

3
+

5

54
w1 +

1

54
w2:

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

w4 = −
2

3
+

5

54
w1 +

1

54
w2

We can continue with dual Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 22 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

Adding x1 ≤ 3 adds a (basic, integral!) slack variable w4 = 3− x1 = 3−
11

3
+

5

54
w1 +

1

54
w2:

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

w4 = −
2

3
+

5

54
w1 +

1

54
w2

We can continue with dual Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 22 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED
After one dual Simplex pivot:

ζ =
179

3
−

7

27
w4 −

73

54
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 −

1

10
w2

w3 = 9 − 6w4 + w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

Gomory cut on x2 −
2

5
w4 +

1

10
w2 =

13

5
: x2 − w4 ≤ 2.

ζ =
179

3
−

7

27
w4 −

73

54
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 −

1

10
w2

w3 = 9 − 6w4 + w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

w5 = −
3

5
+

3

5
w4 +

1

10
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 23 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED
After one dual Simplex pivot:

ζ =
179

3
−

7

27
w4 −

73

54
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 −

1

10
w2

w3 = 9 − 6w4 + w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

Gomory cut on x2 −
2

5
w4 +

1

10
w2 =

13

5
: x2 − w4 ≤ 2.

ζ =
179

3
−

7

27
w4 −

73

54
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 −

1

10
w2

w3 = 9 − 6w4 + w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

w5 = −
3

5
+

3

5
w4 +

1

10
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 23 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED
After one dual Simplex pivot:

ζ =
179

3
−

7

27
w4 −

73

54
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 −

1

10
w2

w3 = 9 − 6w4 + w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

Gomory cut on x2 −
2

5
w4 +

1

10
w2 =

13

5
: x2 − w4 ≤ 2.

ζ =
179

3
−

7

27
w4 −

73

54
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 −

1

10
w2

w3 = 9 − 6w4 + w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

w5 = −
3

5
+

3

5
w4 +

1

10
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 23 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

After one final dual Simplex pivot:

ζ =
179

3
−

7

27
w5 −

73

54
w2

x1 = 2 −
5

3
w5 +

1

6
w2

x2 = 3 +
2

3
w5 −

1

6
w2

w3 = 3 − 10w5 + 2w2

w1 = 18 + 18w5 − 2w2

w4 = 1 +
5

3
w5 −

1

6
w2

We found the optimal integral solution without branching!

In theory, we can always solve integer programs like this only by adding cutting planes. However,
for numerical and efficiency reasons, this is not really practical.

Instead, cutting planes are incorporated into a Branch & Bound solver by adding a limited number
of cutting planes after solving a linear relaxation when it seems beneficial. Algorithms that follow
this paradigm are called Branch & Cut algorithms and are the basis of modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 24 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

After one final dual Simplex pivot:

ζ =
179

3
−

7

27
w5 −

73

54
w2

x1 = 2 −
5

3
w5 +

1

6
w2

x2 = 3 +
2

3
w5 −

1

6
w2

w3 = 3 − 10w5 + 2w2

w1 = 18 + 18w5 − 2w2

w4 = 1 +
5

3
w5 −

1

6
w2

We found the optimal integral solution without branching!

In theory, we can always solve integer programs like this only by adding cutting planes. However,
for numerical and efficiency reasons, this is not really practical.

Instead, cutting planes are incorporated into a Branch & Bound solver by adding a limited number
of cutting planes after solving a linear relaxation when it seems beneficial. Algorithms that follow
this paradigm are called Branch & Cut algorithms and are the basis of modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 24 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

After one final dual Simplex pivot:

ζ =
179

3
−

7

27
w5 −

73

54
w2

x1 = 2 −
5

3
w5 +

1

6
w2

x2 = 3 +
2

3
w5 −

1

6
w2

w3 = 3 − 10w5 + 2w2

w1 = 18 + 18w5 − 2w2

w4 = 1 +
5

3
w5 −

1

6
w2

We found the optimal integral solution without branching!

In theory, we can always solve integer programs like this only by adding cutting planes. However,
for numerical and efficiency reasons, this is not really practical.

Instead, cutting planes are incorporated into a Branch & Bound solver by adding a limited number
of cutting planes after solving a linear relaxation when it seems beneficial. Algorithms that follow
this paradigm are called Branch & Cut algorithms and are the basis of modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 24 / 24



BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

After one final dual Simplex pivot:

ζ =
179

3
−

7

27
w5 −

73

54
w2

x1 = 2 −
5

3
w5 +

1

6
w2

x2 = 3 +
2

3
w5 −

1

6
w2

w3 = 3 − 10w5 + 2w2

w1 = 18 + 18w5 − 2w2

w4 = 1 +
5

3
w5 −

1

6
w2

We found the optimal integral solution without branching!

In theory, we can always solve integer programs like this only by adding cutting planes. However,
for numerical and efficiency reasons, this is not really practical.

Instead, cutting planes are incorporated into a Branch & Bound solver by adding a limited number
of cutting planes after solving a linear relaxation when it seems beneficial. Algorithms that follow
this paradigm are called Branch & Cut algorithms and are the basis of modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 23, 2023 24 / 24


	Motivation
	Definition
	Branch and Bound
	Branch and Cut

