LINEAR PROGRAMMING

[V. CH6]: THE SIMPLEX METHOD IN MATRIX NOTATION

Phillip Keldenich Ahmad Moradi

Department of Computer Science Algorithms Department TU Braunschweig

December 14, 2022

MATRIX NOTATION

MATRIX NOTATION

PRIMAL SIMPLEX METHOD Primal Simplex Algorithm As usual, we begin our discussion with the standard-form linear programming problem:

$$\max_{x}\quad\sum_{j=1}^{n}c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n}a_{ij}x_{j}\leq b_{i},\quad i=1,2,\cdots,m$$

$$x_{j}\geq0,\quad j=1,2,\cdots,n$$

It is convenient to introduce slack variables as follows:

$$\boxed{x_{n+i}} = b_i - \sum_{i=1}^n a_{ij} x_j, \qquad i = 1, \dots, m$$

 w_i renamed as x_{n+i}

With these slack variables, we now write our problem in matrix form:

$$\max_{x} c^{T}x$$
subject to
$$Ax = b$$

$$x \ge 0$$

where

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & 1 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & 1 \\ \vdots & \vdots & \ddots & \vdots & & \ddots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} & & & 1 \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}, c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \\ 0 \\ \vdots \\ 0 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ x_{n+1} \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

Consider an iteration of the Simplex algorithm where ${\cal B}$ and ${\cal N}$ are the set of basic and non-basic indices

The *i*th component of Ax can be broken up into a *basic* and a *nonbasic* part

$$\sum_{j=1}^{n+m} a_{ij} x_j = \sum_{j \in \mathcal{B}} a_{ij} x_j + \sum_{j \in \mathcal{N}} a_{ij} x_j$$

to break up the matrix product Ax analogously, let

- B denote an $m \times m$ matrix whose columns are indexed by B. Similarly,
- N denote an $m \times n$ matrix whose columns are indexed by $\mathcal N$

Now, one could write A and x in a partitioned-matrix form as:

$$A = \begin{bmatrix} B & N \end{bmatrix}, x = \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix}$$

This is a rearrangement (basic columns/variables are listed first followed by the nonbasic columns/variables). Equality is not correct.

Now, we can write:

$$Ax = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix} = Bx_{\mathcal{B}} + Nx_{\mathcal{N}}$$

Similar partitionanting on c gives:

$$c^{T}x = \begin{bmatrix} c_{\mathcal{B}} \\ c_{\mathcal{N}} \end{bmatrix}^{T} \begin{bmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{bmatrix} = c_{\mathcal{B}}^{T}x_{\mathcal{B}} + c_{\mathcal{N}}^{T}x_{\mathcal{N}}$$

As an example, lets first write it in matirx form, then calculate the above values for $\mathcal{B} = \{1, 2\}$

$$\max_{x} 3x_{1} + 4x_{2} - 2x_{3}$$
subject to
$$x_{1} + 0.5x_{2} - 5x_{3} \le 2$$

$$2x_{1} - x_{2} + 3x_{3} \le 3$$

$$x_{1}, x_{2}, x_{3} > 0$$

MATRIX NOTATION

PRIMAL SIMPLEX METHOD Primal Simplex Algorithm

A dictionary has the property that the

basic variables are written as functions of the nonbasic variables

In matrix notation, we see that the constraint equations Ax = b can be written as

$$Bx_{\mathcal{B}} + Nx_{\mathcal{N}} = b$$

variables $x_{\mathcal{B}}$ can be written as a function of the nonbasic variables $x_{\mathcal{N}}$ iff the matrix B is *invertible*,

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Nx_{\mathcal{N}}$$

The fact that B is invertible means that its m column vectors are linearly independent and therefore form a basis for \mathbb{R}^m . This is why the basic variables are called *basic*,

Similarly, the objective function can be written as

$$\zeta = c_{\mathcal{B}}^T x_{\mathcal{B}} + c_{\mathcal{N}}^T x_{\mathcal{N}}$$

$$= c_{\mathcal{B}}^T \left(B^{-1} b - B^{-1} N x_{\mathcal{N}} \right) + c_{\mathcal{N}}^T x_{\mathcal{N}}$$

$$= c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$

Puting all together, we can write the dictionary associated with basis $\mathcal B$ as

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

Comparing against the component-form notation, we make the following identifications:

$$c_{\mathcal{B}}^{T}B^{-1}b = \bar{\zeta}$$

$$c_{\mathcal{N}} - (B^{-1}N)^{T} c_{\mathcal{B}} = [\bar{c}_{j}]$$

$$B^{-1}b = [\bar{b}_{i}]$$

$$B^{-1}N = [\bar{a}_{ij}]$$

bracketed expressions on the right denote vectors and matrices with the index i running over \mathcal{B} and the index j running over \mathcal{N} .

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

The basic solution associated with this dictionary is obtained by setting x_N equal to zero.

$$x_{\mathcal{N}}^* = 0, \quad x_{\mathcal{B}}^* = B^{-1}b$$

As an example, consider the same LP

write the initial dictionary. Do first pivot. You get a new basis $\mathcal{B} = \{2, 5\}$. Compute different part of this dictionary in matrix form and compare.

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

To write the associated dual dictionary using the negative transpose property, it is important to correctly associate *complementary pairs of variables*.

Recall that, we have appended the primal slack variables to the end of the original variables:

$$(x_1,\ldots,x_n,w_1,\ldots,w_m) \rightarrow (x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})$$

Recall that,

- dual slacks are complementary to the primal originals, and
- dual originals are complementary to the primal slacks

using similar index for complementary variables,

$$(z_1,\ldots,z_n,y_1,\ldots,y_m)\to (z_1,\ldots,z_n,z_{n+1},\ldots,z_{n+m})$$

$$\zeta = c_{\mathcal{B}}^T B^{-1} b - \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

and the corresponding dual dictionary:

$$-\xi = -c_{\mathcal{B}}^T B^{-1} b - \left(B^{-1} b \right)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = \left(\left(B^{-1} N \right)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right) + B^{-1} N z_{\mathcal{B}}$$

The dual solution associated with this is obtained by setting z_B equal to zero:

$$z_{\mathcal{B}}^* = 0, \quad z_{\mathcal{N}}^* = \left(B^{-1}N\right)^T c_{\mathcal{B}} - c_{\mathcal{N}}$$

Using the shorthand $\zeta^* = c_{\mathcal{B}}^T B^{-1} b$, we can write Primal dictionary as

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

and dual dictionary as

$$-\xi = -\zeta^* - (x_{\mathcal{B}}^*)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = z_{\mathcal{N}}^* + (B^{-1}N)^T z_{\mathcal{B}}$$

Primal Dictionary

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

Dual Dictionary

$$-\xi = -\zeta^* - (x_{\mathcal{B}}^*)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = z_{\mathcal{N}}^* + (B^{-1}N)^T z_{\mathcal{B}}$$

Lets elaborate on details of an iteration of the primal Simplex algorithm.

STEP 1. Check for optimality

if $z_{\mathcal{N}}^* \geq 0$ stop

#Primal feasibility and complementary is already maintained, just check dual feasibility.

STEP 2. Select Entering Variable

Else: pick $j \in \mathcal{N}$ with $z_i^* < 0$.

// variable x_i is the entering variable.

Primal Dictionary

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

Dual Dictionary

$$-\xi = -\zeta^* - (x_{\mathcal{B}}^*)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = z_{\mathcal{N}}^* + (B^{-1}N)^T z_{\mathcal{B}}$$

STEP 3. Compute Primal Step Direction $\Delta x_{\mathcal{B}}$

Having selected the entering variable, we let

$$x_{\mathcal{N}} = te_j$$

where e_j denote the unit vector that is zero in every component except for a one in the position associated with index j,

$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1}Nte_i$$

Hence, the step direction $\Delta x_{\mathcal{B}}$ for the primal basic variables is given by

$$\Delta x_{\mathcal{B}} = B^{-1} N e_j$$

STEP 4. Compute Primal Step Length, t

We wish to pick the largest $t \ge 0$ for which

$$x_{\mathcal{B}}^* \ge t\Delta x_{\mathcal{B}}.$$

(every component of x_B remains nonnegative)

Since, for each $i \in \mathcal{B}^*, x_i^* \geq 0$ and $t \geq 0$

$$\frac{1}{t} \ge \frac{\Delta x_i}{x_i^*}, \quad \forall i \in \mathcal{B}$$

Hence, the largest t for which all of the inequalities hold is given by

$$t = \left(\max_{i \in \mathcal{B}} \frac{\Delta x_i}{x_i^*}\right)^{-1}$$
 # convention for $\frac{0}{0}$ is to set such ratios to 0

if $t \leq 0$ stop $/\!\!/primal$ is unbounded

STEP 5. *Select Leaving Variable* The leaving variable is chosen as any variable $x_i, i \in \mathcal{B}$, for which the maximum in the calculation of t is obtained.

Primal Dictionary

$$\begin{vmatrix} \zeta = \zeta^* - (z_N^*)^T x_N \\ x_B = x_B^* - B^{-1} N x_N \end{vmatrix}$$

Dual Dictionary

$$-\xi = -\zeta^* - (x_{\mathcal{B}}^*)^T z_{\mathcal{B}}$$
$$z_{\mathcal{N}} = z_{\mathcal{N}}^* + (B^{-1}N)^T z_{\mathcal{B}}$$

Essentially all that remains is to explain changes to the objective function.

STEP 6. Compute Dual Step Direction Δz_N

Since in dual dictionary z_i is the entering variable, we see that

$$\Delta z_{\mathcal{N}} = -\left(B^{-1}N\right)^T e_i$$

STEP 7. Compute Dual Step Length, s

Since we know that j is the leaving variable in the dual dictionary,

$$s = \frac{z_j^*}{\Delta z_j}$$

Primal Dictionary

$$\zeta = \zeta^* - (z_{\mathcal{N}}^*)^T x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}}$$

Dual Dictionary

We now have everything we need to update the data in the dictionary:

STEP 8. Update Current Primal and Dual Solutions

$$\begin{bmatrix} x_j^* \leftarrow t \\ x_{\mathcal{B}}^* \leftarrow x_{\mathcal{B}}^* - t\Delta x_{\mathcal{B}} \end{bmatrix}$$

STEP 9. Update Basis

$$\mathcal{B} \leftarrow (\mathcal{B} \setminus \{i\}) \cup \{j\}$$

As an example, Lets solve the following LP

$$\begin{array}{lll} \max_{x} & 4x_{1} + & 3x_{2} \\ \text{subject to} & x_{1} - & x_{2} \leq 1 \\ & 2x_{1} - & x_{2} \leq 3 \\ & + & x_{2} \leq 5 \\ & x_{1}, & x_{2} \geq 0 \end{array}$$