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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

Associated with every linear program is another called its dual. The dual of this dual linear
program is the original linear program (which is then referred to as the primal linear program).

 linear programs come in primal/dual pairs.
 every feasible solution for one of these two linear programs gives a bound

on the optimal value for the other.

These ideas are important and form a subject called duality theory, the topic of this chapter.
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

We begin with an example:

max
x

4x1 + x2 + 3x3

subject to x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

Observe that

→ every feasible solution to this LP provides a lower bound on the optimal value, ζ∗.

→ The solution (x1, x2, x3) = (1, 0, 0) tells us that ζ∗ ≥ 4

→ Using the solution (x1, x2, x3) = (0, 0, 3), we see that ζ∗ ≥ 9

But, How good is this solution?

Is it close to the optimal value?

To answer:

we need to give upper bounds
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

max
x

4x1 + x2 + 3x3

subject to x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

We can find a bound as follows:

→ Multiply the first constraint by 2 and add that to 3 times the second constraint

2× ( x1 + 4x2 ≤ 1 )

+ 3× ( 3x1 − x2 + x3 ≤ 3 )

11x1 + 5x2 + 3x3 ≤ 11

Since each variable is nonnegative, we can compare the sum against the objective function

ζ = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11

⇒ ζ∗ ≤ 11

These bounds leave a gap, 9 ≤ ζ∗ ≤ 11 . Now,

better insight on the quality of feasible solutions!
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

Now, we ask:
→ Can we find better upper bounds?

To get a better upper bound, we apply the same upper bounding technique, but we replace the
specific constraint multipliers with variables.

→ Multiply the first constraint by y1(≥ 0) and add that to y2(≥ 0) times the second constraint

y1 × (1x1 + 4x2 ≤ 1)

+ y2 × (3x1 − x2 + x3 ≤ 3)

(y1 + 3y2)x1 + (4y1 − y2)x2 + (y2)x3 ≤ y1 + 3y2

→ Enforce that each of the coefficients of the xi ‘s be at least as large as the corresponding
coefficient in the objective function, i.e.

y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3

→ then we can compare the objective function against this sum (and its bound).

ζ = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + (y2)x3 ≤ y1 + 3y2
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

We now have an upper bound, y1 + 3y2, which we should minimize in our effort to obtain the best
possible upper bound.

We are naturally led to the following optimization problem:

min
y

y1 + 3y2

y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3

y1, y2 ≥ 0

 This problem is called the dual LP associated with the given LP.
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

GMPL Code 1: Primal model.

1 var x1 >=0;
2 var x2 >=0;
3 var x3 >=0;
4
5 subject to con1: x1 + 4*x2 <= 1;
6 subject to con2: 3*x1 - x2 + x3 <= 3;
7
8 maximize z: 4*x1 + x2 + 3*x3;
9

10 solve;
11
12 display x1.val, x2.val, x3.val, z.val;
13
14 end;
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

1 GLPSOL: GLPK LP/MIP Solver, v4.65
2 Reading model section from ex1_inSlides.mod...
3 .
4 .
5 .
6 Model has been successfully generated
7 GLPK Simplex Optimizer, v4.65
8 .
9 .

10 .
11 OPTIMAL LP SOLUTION FOUND
12 Time used: 0.0 secs
13 Memory used: 0.1 Mb (102265 bytes)
14 Display statement at line 12
15 x1.val = 0
16 x2.val = 0.25
17 x3.val = 3.25
18 z.val = 10
19 Model has been successfully processed
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

GMPL Code 2: Dual model.

1 var y1 >=0;
2 var y2 >=0;
3
4 subject to con1: y1 + 3*y2 >= 4 ;
5 subject to con2: 4*y1 - y2 >= 1 ;
6 subject to con3: y2 >= 3 ;
7
8 minimize z: y1 + 3*y2 ;
9

10 solve;
11
12 display y1.val, y2.val, z.val;
13
14 end;
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

1 GLPSOL: GLPK LP/MIP Solver, v4.65
2 Reading model section from ex1_dual_inSlides.mod...
3 .
4 .
5 .
6 Model has been successfully generated
7 GLPK Simplex Optimizer, v4.65
8 .
9 .

10 .
11 OPTIMAL SOLUTION FOUND BY LP PREPROCESSOR
12 Time used: 0.0 secs
13 Memory used: 0.1 Mb (94214 bytes)
14 Display statement at line 12
15 y1.val = 1
16 y2.val = 3
17 z.val = 10
18 Model has been successfully processed
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MOTIVATION: FINDING UPPER BOUNDS RESOURCE ALLOCATION PROBLEM

As a another example, consider the Resource Allocation Problem.

Recall that

max
x

c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm
x1, x2, · · · , xn ≥ 0

where

cj = profit per unit of product j produced

bi = unit of raw material i on hand

aij = units raw material i required to produce one unit of product j

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING DECEMBER 2, 2022 13 / 43



MOTIVATION: FINDING UPPER BOUNDS RESOURCE ALLOCATION PROBLEM

If we produce one unit less of product j, then:

for each i, we free up aij units of raw material i.

Selling these unused raw materials for y1, y2, · · · , ym dollars/unit yields:

a1jy1 + a2jy2 + · · ·+ amjym dollars.

Only interested if this revenue exceeds lost profit on each product j:

a1jy1 + a2jy2 + · · ·+ amjym ≥ cj , j = 1, 2, · · · , n. .

Now, consider a buyer offering to purchase our entire inventory. Subject to above constraints,
buyer wants to minimize cost:

min
y

b1y1 + b2y2 + · · ·+ bmym
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MOTIVATION: FINDING UPPER BOUNDS RESOURCE ALLOCATION PROBLEM

And the following linear program needs to be solved

min
y

b1y1 + b2y2 + · · ·+ bmym

subject to a11y1 + a21y2 + · · ·+ am1ym ≥ c1
...

a1ny1 + a2ny2 + · · ·+ amnyn ≥ cn
y1, y2, · · · , ym ≥ 0

 This problem is called the dual LP associated with the given LP.
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THE DUAL PROBLEM

Given a linear programming problem in standard form,

max
x

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, 2, · · · ,m

xj ≥ 0, j = 1, 2, · · · , n

the associated dual linear program is given by

min
y

m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≥ cj , j = 1, 2, · · · , n

yi ≥ 0, i = 1, 2, · · · ,m

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING DECEMBER 2, 2022 17 / 43



THE DUAL PROBLEM

Given a linear programming problem in standard form,

max
x

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, 2, · · · ,m

xj ≥ 0, j = 1, 2, · · · , n

the associated dual linear program is given by

min
y

m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≥ cj , j = 1, 2, · · · , n

yi ≥ 0, i = 1, 2, · · · ,m

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING DECEMBER 2, 2022 17 / 43



THE DUAL PROBLEM

Primal Problem

max
x

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, 2, · · · ,m

xj ≥ 0, j = 1, 2, · · · , n

Dual in ”Standard” Form

−max
y

m∑
i=1

−biyi

subject to
m∑
i=1

−aijyi ≤ −cj , j = 1, 2, · · · , n

yi ≥ 0, i = 1, 2, · · · ,m

 Original problem is called the
primal problem.

 A problem is defined by its data
(notation used for the variables is arbitrary).

 Dual is ”negative transpose” of primal.

Theorem Dual of dual is primal.
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Theorem Dual of dual is primal.
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THE DUAL PROBLEM DUALITY THEOREMS

THEOREM (WEAK DUALITY)
if (x1, · · · , xn) is feasible for the primal problem and (y1, · · · , ym) is feasible for the dual problem, then∑

j

cjxj ≤
∑
i

biyi
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THE DUAL PROBLEM DUALITY THEOREMS

PROOF.

∑
j

cjxj ≤
∑
j

(
∑
i

yiaij)xj

=
∑
i

∑
j

yiaijxj

=
∑
i

(
∑
j

aijxj)yi

≤
∑
i

biyi
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THE DUAL PROBLEM DUALITY THEOREMS

An important question:
Is there a gap between the largest primal value and the smallest dual value?

 Answer is provided by the Strong Duality Theorem (coming later).
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THE DUAL PROBLEM DUALITY THEOREMS

Consider the exmple:
Initial primal and dual dictionaries are provided.

Primal
ζ = 0− 3x1 + 2 x2 + 1 x3

w1 = 0− 0x1 + x2 − 2x3

w2 = 3 + 3x1 − 4x2 − x3

Dual
−ξ = 0 + 0y1 − 3y2

z1 = 3− 0y1 − 3y2

z2 = −2 − 1y1 + 4y2

z3 = −1 + 2y1 + 1y2

 Dual is negative transpose of primal.

 Primal is feasible, dual is not.

 Use primal to choose pivot: x2 enters, w2 leaves.

 Make analogous pivot in dual: z2 leaves, y2 enters.
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THE DUAL PROBLEM DUALITY THEOREMS

After first pivot

Primal
ζ = 3

2
− 3

2
x1 − 1

2
w2 + 1

2
x3

w1 = 3
4
+ 3

4
x1 − 1

4
w2 − 9

4
x3

x2 = 3
4
+ 3

4
x1 − 1

4
w2 − 1

4
x3

Dual
−ξ = − 3

2
− 3

4
y1 − 3

4
z2

z1 = 3
2
− 3

4
y1 − 3

4
z2

y2 = 1
2
+ 1

4
y1 + 1

4
z2

z3 = − 1
2

+ 9
4
y1 + 1

4
z2

 negative transpose property intact.

 Primal is feasible, dual is not.

 Use primal to pick pivot: x3 enters, w1 leaves.

 Make analogous pivot in dual: z3 leaves, y1 enters.
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THE DUAL PROBLEM DUALITY THEOREMS

After second pivot

Primal
ζ = 5

3
− 4

3
x1 − 5

9
w2 − 2

9
w1

x3 = 1
3
+ 1

3
x1 − 1

9
w2 − 4

9
w1

x2 = 2
3
+ 2

3
x1 − 2

9
w2 + 1

9
w1

Dual
−ξ = − 5

3
− 1

3
z3 − 2

3
z2

z1 = 4
3
− 1

3
z3 − 2

3
z2

y2 = 5
9
+ 1

9
z3 + 2

9
z2

y1 = 2
9
+ 4

9
z3 − 1

9
z2

 negative transpose property remains intact.

 Primal and dual are both optimal.

 Simplex Alg. applied to primal, solves both the
primal and the dual.
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THE DUAL PROBLEM DUALITY THEOREMS

THEOREM (STRONG DUALITY)
If the primal problem has an optimal solution,

x∗ = (x∗1, x
∗
2, · · · , x∗n)

then the dual also has an optimal solution,

y∗ = (y∗1 , y
∗
2 , · · · , y∗m)

and ∑
j

cjx
∗
j =

∑
i

ciy
∗
i

 If primal has an optimal solution, then there is no duality gap.

 Let’s prove it.
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THE DUAL PROBLEM DUALITY THEOREMS

The strong duality theorem tells us that:

If the primal has an optimal solution → the dual also has one and there is no duality gap

What if the primal problem does not have an optimal solution?

 In case of unbounded primal, weak duality shows that the dual must be infeasible.

 Similarly, an unbounded dual will have an infeasible primal.

there is still another possibility:

 both the primal and the dual problems could be infeasible.
(strong duality theorem does not hold globally)
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THE DUAL PROBLEM DUALITY THEOREMS

Four possibilities:

– Primal optimal, dual optimal (no gap).

– Primal unbounded, dual infeasible (no gap).

– Primal infeasible, dual unbounded (no gap).

– Primal infeasible, dual infeasible (infinite gap).

 Example LP with infinite gap.

max
x

2x1 − x2

subject to x1 − x2 ≤ 1

−x1 + x2 ≤ −2
x1, x2 ≥ 0

Lets check primal and dual infeasiblity.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING DECEMBER 2, 2022 27 / 43



THE DUAL PROBLEM DUALITY THEOREMS

Sometimes it is necessary to recover an optimal dual solution when only an optimal primal
solution is known. (without having access to the optimal primal dictionary)

THEOREM (COMPLEMENTARY SLACKNESS)
suppose x = (x1, . . . , xn) and y = (y1, . . . , ym) are primal and dual feasible solutions. They are optimal
for their respective problems iff

xjzj = 0 ∀j = 1, 2, · · · , n,
wiyi = 0 ∀i = 1, 2, · · · ,m.

where w = (w1, . . . , wm) and z = (z1, . . . , zn) are the corresponding primal and dual slack variables.

 Let’s prove it.
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THE DUAL PROBLEM DUALITY THEOREMS

Now, knowing this theorem, suppose that we have a nondegenerate optimal primal basic solution

(x∗1, . . . , x
∗
n)

we wish to find a corresponding optimal dual solution. Note that if the primal slack values
(w∗

1 , . . . , w
∗
m) are not given they could be easily computed. (how?)

Now the dual constraints are ∑
i

yiaij − zj = cj , j = 1, . . . , n

n equations in m+ n unknowns. But m of which are known to be 0 through complementary
slackness theorem (why?)

we are left with just n equations in n unknowns.
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DUAL SIMPLEX ALGORITHM

MOTIVATION: FINDING UPPER BOUNDS
A first example
Resource Allocation Problem

THE DUAL PROBLEM
Duality Theorems

DUAL SIMPLEX ALGORITHM

A DUAL-BASED PHASE I ALGORITHM
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DUAL SIMPLEX ALGORITHM

One could simply apply the simplex method to the dual problem.

 You could do that on primal side, without writing down dual dictionaries
(negative transpose property provides you all needed data)

It could be seen simply as

 a new way of picking the entering / leaving variables in a sequence of primal dictionaries,

The algorithm is called dual simplex algorithm.
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DUAL SIMPLEX ALGORITHM

Lets see dual simplex algorithm in an example.

Consider the following example:

max
x

−x1 − x2

subject to −2x1 − x2 ≤ 4

−2x1 + 4x2 ≤ −8
−x1 + 3x2 ≤ −7
x1, x2 ≥ 0

and its dual

min
y

4y1 − 8y2 − 7y3

subject to −2y1 − 2y2 − y3 ≥ −1
−y1 + 4y2 + 3y3 ≥ −1
y1, y2, y3 ≥ 0

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING DECEMBER 2, 2022 32 / 43



DUAL SIMPLEX ALGORITHM

Introducing primal/dual slacks wi/zj , the initial dictionaries look like

P

ζ = − 1x1 − x2

w1 = 4 + 2x1 + x2

w2 = −8 + 2x1 − 4x2

w3 = −7 + x1 − 3x2

D
−ξ = − 4y1 + 8 y2 + 7 y3

z1 = 1− 2y1 − 2y2 − y3

z2 = 1− y1 + 4y2 + 3y3

Note that:

dual dictionary is feasible, whereas the primal one is not.
How to proceed: phase I with primal or directly apply simplex to with dual
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DUAL SIMPLEX ALGORITHM

P

ζ = − 1x1 − x2

w1 = 4 + 2x1 + x2

w2 = −8 + 2x1 − 4x2

w3 = −7 + x1 − 3x2

D
−ξ = − 4y1 + 8 y2 + 7 y3

z1 = 1− 2y1 − 2y2 − y3

z2 = 1− y1 + 4y2 + 3y3

 (y2, z1) entring/leaving pair in the dual dictionary
 their complementary variables w2 and x1 come in leaving/entering pair for primal dictionary.

how do you select this pair without looking at dual dictionary?
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DUAL SIMPLEX ALGORITHM

after doing the pivot:

P

ζ = −4− 0.5w2 − 3x2

w1 = 12 + w2 + 5x2

x1 = 4 + 0.5w2 + 2x2

w3 = −3 + 0.5w2 − 1x2

D
−ξ = 4− 12y1 − 4z1 + 3 y3

y2 = 0.5− y1 − 0.5z1 − 0.5y3

z2 = 3− 5y1 − 2z1 + 1y3

Negative transpose property and Dual feasibility preserved.

dual: (y3, y2) entring/leaving
primal: (w3, w2) leaving/entring
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DUAL SIMPLEX ALGORITHM

after doing the pivot:

P

ζ = −7− w3 − 4x2

w1 = 18 + 2w3 + 7x2

x1 = 7 + w3 + 3x2

w2 = 6 + 2w3 + 2x2

D

−ξ = 7− 18y1 − 7z1 − 6y2

y3 = 1− 2y1 − z1 − 2y2

z2 = 4− 7y1 − 3z1 − 2y3

Negative transpose property and Dual feasibility preserved.

both dictionaries are optimal
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DUAL SIMPLEX ALGORITHM

Dual simplex method can be entirely described in terms of the primal dictionaries:

Note that the dictionary must be dual feasible (coefficients of the nonbasic variables in the primal
objective row must be nonpositive). Given this:

Leaving variable selection:
Pick the basic variable whose constant term in the dictionary is the most negative
(if no one is negative, the dictionary is optimal)

Entering variable selection:
Scan the row selected above and pick the column with largest negated ratio
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A DUAL-BASED PHASE I ALGORITHM

Lets illustrate it using an example:

max
x

−x1 + 4x2

subject to −2x1 − x2 ≤ +4

−2x1 + 4x2 ≤ −8
−x1 + 3x2 ≤ −7
x1, x2 ≥ 0
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A DUAL-BASED PHASE I ALGORITHM

Lets look at initial primal and dual dictionaries:

P
ζ = − 1x1 + 4 x2

w1 = 4 + 2x1 + x2

w2 = −8 + 2x1 − 4x2

w3 = −7 + x1 − 3x2

D
−ξ = − 4y1 + 8 y2 + 7 y3

z1 = 1− 2y1 − 2y2 − y3

z2 = −4 − y1 + 4y2 + 3y3

Neither the primal nor the dual dictionary is feasible→we need to do Phase I.

A new idea for Phase I :
Change the primal objective function so we can produce a dual feasible dictionary and proceed with dual
simplex.
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A DUAL-BASED PHASE I ALGORITHM

let us temporarily change the primal objective function to

η = −x1 − x2

performing dual simplex to this modified problem, we get the final optimal dictionary as

η = −7− w3 − 4x2

w1 = 18 + 2w3 + 7x2

x1 = 7 + w3 + 3x2

w2 = 6 + 2w3 + 2x2

Phase I is done: bring the original objective function and continue with primal simplex.
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A DUAL-BASED PHASE I ALGORITHM

ζ = −x1 + 4x2

= −(7 + w3 + 3x2) + 4x2

= −7 + w3 + x2

Hence, the starting dictionary for Phase II is:

ζ = −7− w3 + 1 x2

w1 = 18 + 2w3 + 7x2

x1 = 7 + w3 + 3x2

w2 = 6 + 2w3 + 2x2

and immediately, we detect unboundedness.
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A DUAL-BASED PHASE I ALGORITHM

How could one detect infeasibility using this new Phase I algorithm?

The primal problem is infeasible if and only if the modified problem is dual unbounded.
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