Linear Programming

[V. ch5]: Duality Theory

Phillip Keldenich Ahmad Moradi

Department of Computer Science
Algorithms Department
TU Braunschweig

November 29, 2022

Motivation: Finding Upper Bounds
 A first example
 Resource Allocation Problem

The Dual Problem
 Duality Theorems

Associated with every linear program is another called its dual. The dual of this dual linear program is the original linear program (which is then referred to as the primal linear program).
$\rightsquigarrow \quad$ linear programs come in primal/dual pairs.
$\rightsquigarrow \quad$ every feasible solution for one of these two linear programs gives a bound on the optimal value for the other.

These ideas are important and form a subject called duality theory, the topic of this chapter.

We begin with an example:

$\max _{x}$	$4 x_{1}+$	$x_{2}+$	$3 x_{3}$
subject to	$x_{1}+$	$4 x_{2}$	≤ 1
	$3 x_{1}-$	$x_{2}+$	$x_{3} \leq 3$
	x_{1},	x_{2},	$x_{3} \geq 0$

Observe that
\rightarrow every feasible solution to this LP provides a lower bound on the optimal value, ζ^{*}.

We begin with an example:

$\max _{x}$	$4 x_{1}+\quad x_{2}+3 x_{3}$		
subject to	$x_{1}+4 x_{2}$	≤ 1	
	$3 x_{1}-$	$x_{2}+$	$x_{3} \leq 3$
	x_{1},	x_{2},	$x_{3} \geq 0$

Observe that
\rightarrow every feasible solution to this LP provides a lower bound on the optimal value, ζ^{*}.
\rightarrow The solution $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$ tells us that $\zeta^{*} \geq 4$

We begin with an example:

$\max _{x}$	$4 x_{1}+\quad x_{2}+3 x_{3}$		
subject to	$x_{1}+4 x_{2}$	≤ 1	
	$3 x_{1}-$	$x_{2}+$	$x_{3} \leq 3$
	x_{1},	x_{2},	$x_{3} \geq 0$

Observe that
\rightarrow every feasible solution to this LP provides a lower bound on the optimal value, ζ^{*}.
\rightarrow The solution $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$ tells us that $\zeta^{*} \geq 4$
\rightarrow Using the solution $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,3)$, we see that $\zeta^{*} \geq 9$

We begin with an example:

$$
\begin{array}{rccr}
\max _{x} & 4 x_{1}+ & x_{2}+ & 3 x_{3} \\
\text { subject to } & x_{1}+ & 4 x_{2} & \leq 1 \\
& 3 x_{1}- & x_{2}+ & x_{3} \leq 3 \\
& x_{1}, & x_{2}, & x_{3} \geq 0
\end{array}
$$

Observe that
\rightarrow every feasible solution to this LP provides a lower bound on the optimal value, ζ^{*}.
\rightarrow The solution $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$ tells us that $\zeta^{*} \geq 4$
\rightarrow Using the solution $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,3)$, we see that $\zeta^{*} \geq 9$ But, How good is this solution? Is it close to the optimal value?

We begin with an example:

$$
\begin{array}{rccr}
\max _{x} & 4 x_{1}+ & x_{2}+ & 3 x_{3} \\
\text { subject to } & x_{1}+ & 4 x_{2} & \leq 1 \\
& 3 x_{1}- & x_{2}+ & x_{3} \leq 3 \\
& x_{1}, & x_{2}, & x_{3} \geq 0
\end{array}
$$

Observe that
\rightarrow every feasible solution to this LP provides a lower bound on the optimal value, ζ^{*}.
\rightarrow The solution $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$ tells us that $\zeta^{*} \geq 4$
\rightarrow Using the solution $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,3)$, we see that $\zeta^{*} \geq 9$
But, How good is this solution?
Is it close to the optimal value?
To answer:
we need to give upper bounds

$\max _{x}$	$4 x_{1}+$	$x_{2}+$	
subject to	$x_{1}+$	$4 x_{3}$	
	$3 x_{2}-$		≤ 1
	$x_{2}+$	$x_{3} \leq 3$	
	x_{1},	x_{2},	x_{3}

We can find a bound as follows:

$\max _{x}$	$4 x_{1}+$	$x_{2}+$	$3 x_{3}$
subject to	$x_{1}+$	$4 x_{2}$	≤ 1
	$3 x_{1}-$	$x_{2}+$	$x_{3} \leq 3$
	x_{1},	x_{2},	$x_{3} \geq 0$

We can find a bound as follows:
\rightarrow Multiply the first constraint by 2 and add that to 3 times the second constraint

$\max _{x}$	$4 x_{1}+$	$x_{2}+$	$3 x_{3}$
subject to	$x_{1}+$	$4 x_{2}$	≤ 1
	$3 x_{1}-$	$x_{2}+$	$x_{3} \leq 3$
	x_{1},	x_{2},	$x_{3} \geq 0$

We can find a bound as follows:
\rightarrow Multiply the first constraint by 2 and add that to 3 times the second constraint
$\left.\begin{array}{ccc}2 \times(& x_{1}+ & 4 x_{2} \\ + & \leq 1\end{array}\right)$

Since each variable is nonnegative, we can compare the sum against the objective function

$$
\begin{gathered}
\zeta=4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11 \\
\Rightarrow \quad \zeta^{*} \leq 11
\end{gathered}
$$

$$
\begin{array}{rccr}
\max _{x} & 4 x_{1}+ & x_{2}+ & 3 x_{3} \\
\text { subject to } & x_{1}+ & 4 x_{2} & \leq 1 \\
& 3 x_{1}- & x_{2}+ & x_{3} \leq 3 \\
& x_{1}, & x_{2}, & x_{3} \geq 0
\end{array}
$$

We can find a bound as follows:
\rightarrow Multiply the first constraint by 2 and add that to 3 times the second constraint

$$
\left.\begin{array}{rlrl}
& \begin{array}{rlrl}
2 \times(& x_{1}+ & 4 x_{2} & \leq 1 \\
+ & 3 \times(& 3 x_{1}- & x_{2}+
\end{array} & x_{3} \leq 3
\end{array}\right)
$$

Since each variable is nonnegative, we can compare the sum against the objective function

$$
\begin{gathered}
\zeta=4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11 \\
\Rightarrow \quad \zeta^{*} \leq 11
\end{gathered}
$$

These bounds leave a gap, $9 \leq \zeta^{*} \leq 11$. Now,
better insight on the quality of feasible solutions!

Now, we ask:

\rightarrow Can we find better upper bounds?

Now, we ask:
\rightarrow Can we find better upper bounds?
To get a better upper bound, we apply the same upper bounding technique, but we replace the specific constraint multipliers with variables.

Now, we ask:
\rightarrow Can we find better upper bounds?
To get a better upper bound, we apply the same upper bounding technique, but we replace the specific constraint multipliers with variables.
\rightarrow Multiply the first constraint by $y_{1}(\geq 0)$ and add that to $y_{2}(\geq 0)$ times the second constraint

$y_{1} \times\left(1 x_{1}+\right.$	$4 x_{2}$	$\leq 1)$
+	$y_{2} \times\left(3 x_{1}-\right.$	$x_{2}+$
	$\left(y_{1}+3 y_{2}\right) x_{1}+$	$\left(4 y_{1}-y_{2}\right) x_{2}+$

Now, we ask:
\rightarrow Can we find better upper bounds?
To get a better upper bound, we apply the same upper bounding technique, but we replace the specific constraint multipliers with variables.
\rightarrow Multiply the first constraint by $y_{1}(\geq 0)$ and add that to $y_{2}(\geq 0)$ times the second constraint

$y_{1} \times\left(1 x_{1}+\right.$	$4 x_{2}$	$\leq 1)$
+	$x_{2} \times\left(3 x_{1}-\right.$	$\left.x_{3} \leq 3\right)$
	$\left(y_{1}+3 y_{2}\right) x_{1}+$	$\left(4 y_{1}-y_{2}\right) x_{2}+$

\rightarrow Enforce that each of the coefficients of the x_{i} 's be at least as large as the corresponding coefficient in the objective function, i.e.

y_{1}	$+3 y_{2}$	≥ 4
$4 y_{1}$	$-y_{2}$	≥ 1
	y_{2}	≥ 3

Now, we ask:
\rightarrow Can we find better upper bounds?
To get a better upper bound, we apply the same upper bounding technique, but we replace the specific constraint multipliers with variables.
\rightarrow Multiply the first constraint by $y_{1}(\geq 0)$ and add that to $y_{2}(\geq 0)$ times the second constraint
$\left.\begin{array}{rlrl}y_{1} \times\left(1 x_{1}+\right. & 4 x_{2} & \leq 1) \\ + & y_{2} \times\left(3 x_{1}-\right. & x_{2}+ & \left.x_{3} \leq 3\right) \\ \hline & \left(y_{1}+3 y_{2}\right) x_{1}+ & \left(4 y_{1}-y_{2}\right) x_{2}+ & \left(y_{2}\right) x_{3}\end{array} \leq y_{1}+3 y_{2}\right)$
\rightarrow Enforce that each of the coefficients of the x_{i} 's be at least as large as the corresponding coefficient in the objective function, i.e.

$$
\begin{array}{ccc}
y_{1} & +3 y_{2} & \geq 4 \\
4 y_{1} & -y_{2} & \geq 1 \\
& y_{2} & \geq 3
\end{array}
$$

\rightarrow then we can compare the objective function against this sum (and its bound).

$$
\zeta=4 x_{1}+x_{2}+3 x_{3} \leq\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}-y_{2}\right) x_{2}+\left(y_{2}\right) x_{3} \leq y_{1}+3 y_{2}
$$

We now have an upper bound, $y_{1}+3 y_{2}$, which we should minimize in our effort to obtain the best possible upper bound.

We now have an upper bound, $y_{1}+3 y_{2}$, which we should minimize in our effort to obtain the best possible upper bound.

We are naturally led to the following optimization problem:

$$
\begin{array}{lll}
\min _{y} & y_{1}+3 y_{2} \\
& y_{1}+3 y_{2} \geq 4 \\
4 y_{1}- & y_{2} \geq 1 \\
& & y_{2} \geq 3 \\
& y_{1}, & y_{2} \geq 0
\end{array}
$$

We now have an upper bound, $y_{1}+3 y_{2}$, which we should minimize in our effort to obtain the best possible upper bound.

We are naturally led to the following optimization problem:

$$
\begin{array}{lll}
\min _{y} & y_{1}+3 y_{2} \\
& y_{1}+3 y_{2} \geq 4 \\
4 y_{1}- & y_{2} \geq 1 \\
& & y_{2} \geq 3 \\
& y_{1}, & y_{2} \geq 0
\end{array}
$$

$\rightsquigarrow \quad$ This problem is called the dual LP associated with the given LP.

GMPL Code 1: Primal model.

```
var x1 >=0;
var x2 >=0;
var x3 >=0;
subject to con1: x1 + 4*x2 <= 1;
subject to con2: 3*x1 - x2 + x3 <= 3;
maximize z: 4*x1 + x2 + 3*x3;
solve;
display x1.val, x2.val, x3.val, z.val;
end;
```

```
GLPSOL: GLPK LP/MIP Solver, v4.65
Reading model section from ex1_inSlides.mod...
.
.
Model has been successfully generated
GLPK Simplex Optimizer, v4.65
.
.
OPTIMAL LP SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (102265 bytes)
Display statement at line 12
x1.val = 0
x2.val = 0.25
x3.val = 3.25
z.val = 10
Model has been successfully processed
```

GMPL Code 2: Dual model.

```
var y1 >=0;
var y2 >=0;
subject to con1: y1 + 3*y2 >= 4 ;
subject to con2: 4*y1 - y2 >= 1 ;
subject to con3: y2 >= 3 ;
minimize z: y1 + 3*y2 ;
solve;
display y1.val, y2.val, z.val;
end;
```

```
GLPSOL: GLPK LP/MIP Solver, v4.65
Reading model section from ex1_dual_inSlides.mod...
.
.
Model has been successfully generated
GLPK Simplex Optimizer, v4.65
*
.
OPTIMAL SOLUTION FOUND BY LP PREPROCESSOR
Time used: 0.0 secs
Memory used: 0.1 Mb (94214 bytes)
Display statement at line 12
y1.val = 1
y2.val = 3
z.val = 10
Model has been successfully processed
```

As a another example, consider the Resource Allocation Problem.

Recall that

$$
\begin{aligned}
\max _{x} & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \cdots, x_{n} \geq 0
\end{aligned}
$$

where
$c_{j}=$ profit per unit of product j produced
$b_{i}=$ unit of raw material i on hand
$a_{i j}=$ units raw material i required to produce one unit of product j

If we produce one unit less of product j, then: for each i, we free up $a_{i j}$ units of raw material i.

If we produce one unit less of product j, then: for each i, we free up $a_{i j}$ units of raw material i.

Selling these unused raw materials for $y_{1}, y_{2}, \cdots, y_{m}$ dollars/unit yields: $a_{1 j} y_{1}+a_{2 j} y_{2}+\cdots+a_{m j} y_{m}$ dollars.

If we produce one unit less of product j, then: for each i, we free up $a_{i j}$ units of raw material i.

Selling these unused raw materials for $y_{1}, y_{2}, \cdots, y_{m}$ dollars/unit yields:

$$
a_{1 j} y_{1}+a_{2 j} y_{2}+\cdots+a_{m j} y_{m} \text { dollars. }
$$

Only interested if this revenue exceeds lost profit on each product j :

$$
a_{1 j} y_{1}+a_{2 j} y_{2}+\cdots+a_{m j} y_{m} \geq c_{j}, \quad j=1,2, \cdots, n .
$$

If we produce one unit less of product j, then:
for each i, we free up $a_{i j}$ units of raw material i.
Selling these unused raw materials for $y_{1}, y_{2}, \cdots, y_{m}$ dollars/unit yields:

$$
a_{1 j} y_{1}+a_{2 j} y_{2}+\cdots+a_{m j} y_{m} \text { dollars. }
$$

Only interested if this revenue exceeds lost profit on each product j :

$$
a_{1 j} y_{1}+a_{2 j} y_{2}+\cdots+a_{m j} y_{m} \geq c_{j}, \quad j=1,2, \cdots, n .
$$

Now, consider a buyer offering to purchase our entire inventory. Subject to above constraints, buyer wants to minimize cost:

$$
\min _{y} \quad b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{m} y_{m}
$$

And the following linear program needs to be solved

$$
\begin{array}{cc}
\min _{y} & b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{m} y_{m} \\
\text { subject to } & a_{11} y_{1}+a_{21} y_{2}+\cdots+a_{m 1} y_{m} \geq c_{1} \\
\vdots \\
& a_{1 n} y_{1}+a_{2 n} y_{2}+\cdots+a_{m n} y_{n} \geq c_{n} \\
& y_{1}, y_{2}, \cdots, y_{m} \geq 0
\end{array}
$$

$\rightsquigarrow \quad$ This problem is called the dual LP associated with the given LP.

Motivation: Finding Upper Bounds
 A first example
 Resource Allocation Problem

The Dual Problem
 Duality Theorems

Given a linear programming problem in standard form,

$$
\begin{aligned}
\max _{x} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1,2, \cdots, m \\
& x_{j} \geq 0, \quad j=1,2, \cdots, n
\end{aligned}
$$

Given a linear programming problem in standard form,

$$
\begin{aligned}
\max _{x} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1,2, \cdots, m \\
& x_{j} \geq 0, \quad j=1,2, \cdots, n
\end{aligned}
$$

the associated dual linear program is given by

$$
\begin{aligned}
\min _{y} & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { subject to } & \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j}, \quad j=1,2, \cdots, n \\
& y_{i} \geq 0, \quad i=1,2, \cdots, m
\end{aligned}
$$

Primal Problem

$$
\max _{x} \sum_{j=1}^{n} c_{j} x_{j}
$$

subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1,2, \cdots, m$

$$
x_{j} \geq 0, \quad j=1,2, \cdots, n
$$

Dual in "Standard" Form

$$
-\max _{y} \sum_{i=1}^{m}-b_{i} y_{i}
$$

subject to $\quad \sum_{i=1}^{m}-a_{i j} y_{i} \leq-c_{j}, \quad j=1,2, \cdots, n$

$$
y_{i} \geq 0, \quad i=1,2, \cdots, m
$$

\rightsquigarrow Original problem is called the primal problem.

Primal Problem

$\max _{x} \sum_{j=1}^{n} c_{j} x_{j}$
subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1,2, \cdots, m$

$$
x_{j} \geq 0, \quad j=1,2, \cdots, n
$$

\rightsquigarrow Original problem is called the primal problem.
\rightsquigarrow A problem is defined by its data
(notation used for the variables is arbitrary).

Dual in "Standard" Form

$$
-\max _{y} \sum_{i=1}^{m}-b_{i} y_{i}
$$

subject to $\quad \sum_{i=1}^{m}-a_{i j} y_{i} \leq-c_{j}, \quad j=1,2, \cdots, n$

$$
y_{i} \geq 0, \quad i=1,2, \cdots, m
$$

Primal Problem

$\max _{x} \sum_{j=1}^{n} c_{j} x_{j}$
subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1,2, \cdots, m$

$$
x_{j} \geq 0, \quad j=1,2, \cdots, n
$$

Dual in "Standard" Form

$$
\begin{aligned}
-\max _{y} & \sum_{i=1}^{m}-b_{i} y_{i} \\
\text { subject to } & \sum_{i=1}^{m}-a_{i j} y_{i} \leq-c_{j}, \quad j=1,2, \cdots, n \\
& y_{i} \geq 0, \quad i=1,2, \cdots, m
\end{aligned}
$$

\rightsquigarrow Original problem is called the primal problem.
\rightsquigarrow A problem is defined by its data (notation used for the variables is arbitrary).

Primal Problem

$$
\max _{x} \sum_{j=1}^{n} c_{j} x_{j}
$$

subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1,2, \cdots, m$

$$
x_{j} \geq 0, \quad j=1,2, \cdots, n
$$

\rightsquigarrow Original problem is called the primal problem.
\rightsquigarrow A problem is defined by its data
(notation used for the variables is arbitrary).

Dual in "Standard" Form

$$
\begin{aligned}
-\max _{y} & \sum_{i=1}^{m}-b_{i} y_{i} \\
\text { subject to } & \sum_{i=1}^{m}-a_{i j} y_{i} \leq-c_{j}, \quad j=1,2, \cdots, n \\
& y_{i} \geq 0, \quad i=1,2, \cdots, m
\end{aligned}
$$

Theorem Dual of dual is primal.

Theorem (Weak Duality)

if $\left(x_{1}, \cdots, x_{n}\right)$ is feasible for the primal problem and $\left(y_{1}, \cdots, y_{m}\right)$ is feasible for the dual problem, then

$$
\sum_{j} c_{j} x_{j} \leq \sum_{i} b_{i} y_{i}
$$

Proof.

$$
\begin{aligned}
\sum_{j} c_{j} x_{j} & \leq \sum_{j}\left(\sum_{i} y_{i} a_{i j}\right) x_{j} \\
& =\sum_{i} \sum_{j} y_{i} a_{i j} x_{j} \\
& =\sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y i \\
& \leq \sum_{i} b_{i} y_{i}
\end{aligned}
$$

An important question:

Is there a gap between the largest primal value and the smallest dual value?

An important question:

Is there a gap between the largest primal value and the smallest dual value?

An important question:
Is there a gap between the largest primal value and the smallest dual value?

\rightsquigarrow Answer is provided by the Strong Duality Theorem (coming later).

Consider the exmple:
Initial primal and dual dictionaries are provided.

Primal				
$\zeta=$	$0-$	$3 x_{1}+$	$2 x_{2}+$	$1 x_{3}$
$w_{1}=$	$0-$	$0 x_{1}+$	$x_{2}-$	$2 x_{3}$
$w_{2}=$	$3+$	$3 x_{1}-$	$4 x_{2}-$	x_{3}

Dual

$-\xi=$	$0+$	$0 y_{1}-$	$3 y_{2}$
$z_{1}=$	$3-$	$0 y_{1}-$	$3 y_{2}$
$z_{2}=$	$-2-$	$1 y_{1}+$	$4 y_{2}$
$z_{3}=$	$-1+$	$2 y_{1}+1 y_{2}$	

Consider the exmple:
Initial primal and dual dictionaries are provided.

Primal $\zeta=$	$0-$	$3 x_{1}+$	$2 x_{2}+$	$1 x_{3}$	
$w_{1}=$	$0-$	$0 x_{1}+$	$x_{2}-$	$2 x_{3}$	
$w_{2}=$	$3+$	$3 x_{1}-$	$4 x_{2}$ -	x_{3}	\rightsquigarrow Dual is negative transpose of primal.

Dual

$-\xi=$	$0+$	$0 y_{1}-$	$3 y_{2}$
$z_{1}=$	$3-$	$0 y_{1}-$	$3 y_{2}$
$z_{2}=$	$-2-$	$1 y_{1}+$	$4 y_{2}$
$z_{3}=$	$-1+$	$2 y_{1}+1 y_{2}$	

Consider the exmple:
Initial primal and dual dictionaries are provided.

$\begin{gathered} \text { Primal } \\ \zeta= \end{gathered}$	0 -	$3 x_{1}+$	$2 x_{2}+$	$1 x_{3}$	
$w_{1}=$	$0-$	$0 x_{1}+$	$x_{2}-$	$2 x_{3}$	
$w_{2}=$	$3+$	$3 x_{1}-$	$4 x_{2}$ -	x_{3}	\rightsquigarrow Dual is negative transpose of primal.

Dual

$-\xi=$	$0+$	$0 y_{1}-$	$3 y_{2}$
$z_{1}=$	$3-$	$0 y_{1}-$	$3 y_{2}$
$z_{2}=$	$-2-$	$1 y_{1}+$	$4 y_{2}$
$z_{3}=$	$-1+$	$2 y_{1}+1 y_{2}$	

Consider the exmple:
Initial primal and dual dictionaries are provided.

Consider the exmple:
Initial primal and dual dictionaries are provided.

After first pivot

Primal

ζ	$=$	$\frac{3}{2}-$	$\frac{3}{2} x_{1}-$	$\frac{1}{2} w_{2}+$
w_{1}	$=\frac{3}{4}+\frac{3}{4} x_{3}$			
x_{2}	$=\frac{3}{4}+\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{9}{4} x_{3}$	

Dual

$$
\begin{array}{rrr}
-\xi= & -\frac{3}{2}-\frac{3}{4} y_{1}-\frac{3}{4} z_{2} \\
\hline z_{1}= & \frac{3}{2}-\frac{3}{4} y_{1}-\frac{3}{4} z_{2} \\
y_{2}= & \frac{1}{2}+\frac{1}{4} y_{1}+\frac{1}{4} z_{2} \\
z_{3}= & -\frac{1}{2}+\frac{9}{4} y_{1}+\frac{1}{4} z_{2}
\end{array}
$$

After first pivot

Primal

ζ	$=\frac{3}{2}-$	$\frac{3}{2} x_{1}-$	$\frac{1}{2} w_{2}+$	$\frac{1}{2} x_{3}$
w_{1}	$=\frac{3}{4}+\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{9}{4} x_{3}$	
x_{2}	$=\frac{3}{4}+\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{1}{4} x_{3}$	

[^0]
Dual

$$
\begin{array}{rrr}
-\xi= & -\frac{3}{2}- & \frac{3}{4} y_{1}- \\
\hline z_{1}= & \frac{3}{4} z_{2} \\
y_{2}= & \frac{3}{4} y_{1}-\frac{3}{4} z_{2} \\
z_{3}= & -\frac{1}{4} y_{1}+\frac{1}{4} z_{2} \\
& \frac{9}{4} y_{1}+\frac{1}{4} z_{2}
\end{array}
$$

After first pivot

Primal

ζ	$=\frac{3}{2}-$	$\frac{3}{2} x_{1}-$	$\frac{1}{2} w_{2}+$	$\frac{1}{2} x_{3}$
w_{1}	$=\frac{3}{4}+\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{9}{4} x_{3}$	
x_{2}	$=\frac{3}{4}+\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{1}{4} x_{3}$	

\rightsquigarrow negative transpose property intact.
\leadsto Primal is feasible, dual is not.

Dual

$$
\begin{array}{rrr}
-\xi= & -\frac{3}{2}-\frac{3}{4} y_{1}-\frac{3}{4} z_{2} \\
\hline z_{1}= & \frac{3}{2}-\frac{3}{4} y_{1}-\frac{3}{4} z_{2} \\
y_{2}= & \frac{1}{2}+\frac{1}{4} y_{1}+\frac{1}{4} z_{2} \\
z_{3}= & -\frac{1}{2}+\frac{9}{4} y_{1}+\frac{1}{4} z_{2}
\end{array}
$$

After first pivot

Primal

ζ	$=\frac{3}{2}-$	$\frac{3}{2} x_{1}-$	$\frac{1}{2} w_{2}+$	$\frac{1}{2} x_{3}$
w_{1}	$=\frac{3}{4}+\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{9}{4} x_{3}$	
x_{2}	$=\frac{3}{4}+\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{1}{4} x_{3}$	

\rightsquigarrow negative transpose property intact.
\rightsquigarrow Primal is feasible, dual is not.

Dual
\rightsquigarrow Use primal to pick pivot: x_{3} enters, w_{1} leaves.

After first pivot

Primal

ζ	$=$	$\frac{3}{2}-$	$\frac{3}{2} x_{1}-$	$\frac{1}{2} w_{2}+$
w_{1}	$=\frac{3}{4} x_{3}$			
x_{2}	$=\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{9}{4} x_{3}$	
	$\frac{3}{4} x_{1}-$	$\frac{1}{4} w_{2}-$	$\frac{1}{4} x_{3}$	

\rightsquigarrow negative transpose property intact.
\rightsquigarrow Primal is feasible, dual is not.
\rightsquigarrow Use primal to pick pivot: x_{3} enters, w_{1} leaves.
\rightsquigarrow Make analogous pivot in dual: z_{3} leaves, y_{1} enters.

Dual

$$
\begin{array}{rrr}
-\xi= & -\frac{3}{2}-\frac{3}{4} y_{1}-\frac{3}{4} z_{2} \\
\hline z_{1}= & \frac{3}{2}-\frac{3}{4} y_{1}-\frac{3}{4} z_{2} \\
y_{2}= & \frac{1}{2}+\frac{1}{4} y_{1}+\frac{1}{4} z_{2} \\
z_{3}= & -\frac{1}{2}+\frac{9}{4} y_{1}+\frac{1}{4} z_{2}
\end{array}
$$

After second pivot

Primal

$$
\begin{array}{ccccc}
\zeta= & \frac{5}{3}- & \frac{4}{3} x_{1}- & \frac{5}{9} w_{2}- & \frac{2}{9} w_{1} \\
\hline x_{3}= & \frac{1}{3}+ & \frac{1}{3} x_{1}- & \frac{1}{9} w_{2}- & \frac{4}{9} w_{1} \\
x_{2}= & \frac{2}{3}+ & \frac{2}{3} x_{1}- & \frac{2}{9} w_{2}+ & \frac{1}{9} w_{1}
\end{array}
$$

Dual

$$
\begin{array}{rrrr}
-\xi= & -\frac{5}{3}- & \frac{1}{3} z_{3}- & \frac{2}{3} z_{2} \\
\hline z_{1}= & \frac{4}{3}-\frac{1}{3} z_{3}-\frac{2}{3} z_{2} \\
y_{2}= & \frac{5}{9}+\frac{1}{9} z_{3}+\frac{2}{9} z_{2} \\
y_{1}= & \frac{2}{9}+\frac{4}{9} z_{3}-\frac{1}{9} z_{2}
\end{array}
$$

After second pivot

Primal

$$
\begin{array}{ccccc}
\zeta= & \frac{5}{3}- & \frac{4}{3} x_{1}- & \frac{5}{9} w_{2}- & \frac{2}{9} w_{1} \\
\hline x_{3}= & \frac{1}{3}+ & \frac{1}{3} x_{1}- & \frac{1}{9} w_{2}- & \frac{4}{9} w_{1} \\
x_{2}= & \frac{2}{3}+\frac{2}{3} x_{1}- & \frac{2}{9} w_{2}+ & \frac{1}{9} w_{1}
\end{array}
$$

\rightsquigarrow negative transpose property remains intact.

Dual

$$
\begin{array}{rrrr}
-\xi= & -\frac{5}{3}- & \frac{1}{3} z_{3}- & \frac{2}{3} z_{2} \\
\hline z_{1}= & \frac{4}{3}-\frac{1}{3} z_{3}-\frac{2}{3} z_{2} \\
y_{2}= & \frac{5}{9}+\frac{1}{9} z_{3}+\frac{2}{9} z_{2} \\
y_{1}= & \frac{2}{9}+\frac{4}{9} z_{3}-\frac{1}{9} z_{2}
\end{array}
$$

After second pivot

$$
\begin{array}{ccccc}
\text { Primal } \\
\zeta= & \frac{5}{3}- & \frac{4}{3} x_{1}- & \frac{5}{9} w_{2}- & \frac{2}{9} w_{1} \\
\hline x_{3}= & \frac{1}{3}+ & \frac{1}{3} x_{1}- & \frac{1}{9} w_{2}- & \frac{4}{9} w_{1} \\
x_{2}= & \frac{2}{3}+ & \frac{2}{3} x_{1}- & \frac{2}{9} w_{2}+ & \frac{1}{9} w_{1}
\end{array}
$$

$$
\rightsquigarrow \text { negative transpose property remains intact. }
$$

\rightsquigarrow Primal and dual are both optimal.

Dual

$$
\begin{array}{rrrr}
-\xi= & -\frac{5}{3}- & \frac{1}{3} z_{3}- & \frac{2}{3} z_{2} \\
\hline z_{1}= & \frac{4}{3}- & \frac{1}{3} z_{3}- & \frac{2}{3} z_{2} \\
y_{2}= & \frac{5}{9}+\frac{1}{9} z_{3}+\frac{2}{9} z_{2} \\
y_{1}= & \frac{2}{9}+\frac{4}{9} z_{3}-\frac{1}{9} z_{2}
\end{array}
$$

After second pivot

$$
\begin{array}{ccccc}
\text { Primal } & & & \\
\zeta= & \frac{5}{3}- & \frac{4}{3} x_{1}- & \frac{5}{9} w_{2}- & \frac{2}{9} w_{1} \\
\hline x_{3}= & \frac{1}{3}+ & \frac{1}{3} x_{1}- & \frac{1}{9} w_{2}- & \frac{4}{9} w_{1} \\
x_{2}= & \frac{2}{3}+ & \frac{2}{3} x_{1}- & \frac{2}{9} w_{2}+ & \frac{1}{9} w_{1}
\end{array}
$$

Dual

$$
\begin{array}{rrrr}
-\xi= & -\frac{5}{3}- & \frac{1}{3} z_{3}- & \frac{2}{3} z_{2} \\
\hline z_{1}= & \frac{4}{3}- & \frac{1}{3} z_{3}- & \frac{2}{3} z_{2} \\
y_{2}= & \frac{5}{9}+\frac{1}{9} z_{3}+\frac{2}{9} z_{2} \\
y_{1}= & \frac{2}{9}+\frac{4}{9} z_{3}-\frac{1}{9} z_{2}
\end{array}
$$

\rightsquigarrow negative transpose property remains intact.
\rightsquigarrow Primal and dual are both optimal.
\rightsquigarrow Simplex Alg. applied to primal, solves both the primal and the dual.

Theorem (Strong Duality)

If the primal problem has an optimal solution,

$$
x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \cdots, x_{n}^{*}\right)
$$

then the dual also has an optimal solution,

$$
y^{*}=\left(y_{1}^{*}, y_{2}^{*}, \cdots, y_{m}^{*}\right)
$$

and

$$
\sum_{j} c_{j} x_{j}^{*}=\sum_{i} c_{i} y_{i}^{*}
$$

\rightsquigarrow If primal has an optimal solution, then there is no duality gap.

Theorem (Strong Duality)

If the primal problem has an optimal solution,

$$
x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \cdots, x_{n}^{*}\right)
$$

then the dual also has an optimal solution,

$$
y^{*}=\left(y_{1}^{*}, y_{2}^{*}, \cdots, y_{m}^{*}\right)
$$

and

$$
\sum_{j} c_{j} x_{j}^{*}=\sum_{i} c_{i} y_{i}^{*}
$$

\rightsquigarrow If primal has an optimal solution, then there is no duality gap.
\rightsquigarrow Let's prove it.

[^0]: \rightsquigarrow negative transpose property intact.

