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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

Associated with every linear program is another called its dual. The dual of this dual linear
program is the original linear program (which is then referred to as the primal linear program).

 linear programs come in primal/dual pairs.
 every feasible solution for one of these two linear programs gives a bound

on the optimal value for the other.

These ideas are important and form a subject called duality theory, the topic of this chapter.
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

We begin with an example:

max
x

4x1 + x2 + 3x3

subject to x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

Observe that

→ every feasible solution to this LP provides a lower bound on the optimal value, ζ∗.

→ The solution (x1, x2, x3) = (1, 0, 0) tells us that ζ∗ ≥ 4

→ Using the solution (x1, x2, x3) = (0, 0, 3), we see that ζ∗ ≥ 9

But, How good is this solution?

Is it close to the optimal value?

To answer:

we need to give upper bounds
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

max
x

4x1 + x2 + 3x3

subject to x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

We can find a bound as follows:

→ Multiply the first constraint by 2 and add that to 3 times the second constraint

2× ( x1 + 4x2 ≤ 1 )

+ 3× ( 3x1 − x2 + x3 ≤ 3 )

11x1 + 5x2 + 3x3 ≤ 11

Since each variable is nonnegative, we can compare the sum against the objective function

ζ = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11

⇒ ζ∗ ≤ 11

These bounds leave a gap, 9 ≤ ζ∗ ≤ 11 . Now,

better insight on the quality of feasible solutions!
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

Now, we ask:
→ Can we find better upper bounds?

To get a better upper bound, we apply the same upper bounding technique, but we replace the
specific constraint multipliers with variables.

→ Multiply the first constraint by y1(≥ 0) and add that to y2(≥ 0) times the second constraint

y1 × (1x1 + 4x2 ≤ 1)

+ y2 × (3x1 − x2 + x3 ≤ 3)

(y1 + 3y2)x1 + (4y1 − y2)x2 + (y2)x3 ≤ y1 + 3y2

→ Enforce that each of the coefficients of the xi ‘s be at least as large as the corresponding
coefficient in the objective function, i.e.

y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3

→ then we can compare the objective function against this sum (and its bound).

ζ = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + (y2)x3 ≤ y1 + 3y2
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

We now have an upper bound, y1 + 3y2, which we should minimize in our effort to obtain the best
possible upper bound.

We are naturally led to the following optimization problem:

min
y

y1 + 3y2

y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3

y1, y2 ≥ 0

 This problem is called the dual LP associated with the given LP.
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

GMPL Code 1: Primal model.

1 var x1 >=0;
2 var x2 >=0;
3 var x3 >=0;
4
5 subject to con1: x1 + 4*x2 <= 1;
6 subject to con2: 3*x1 - x2 + x3 <= 3;
7
8 maximize z: 4*x1 + x2 + 3*x3;
9

10 solve;
11
12 display x1.val, x2.val, x3.val, z.val;
13
14 end;
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

1 GLPSOL: GLPK LP/MIP Solver, v4.65
2 Reading model section from ex1_inSlides.mod...
3 .
4 .
5 .
6 Model has been successfully generated
7 GLPK Simplex Optimizer, v4.65
8 .
9 .

10 .
11 OPTIMAL LP SOLUTION FOUND
12 Time used: 0.0 secs
13 Memory used: 0.1 Mb (102265 bytes)
14 Display statement at line 12
15 x1.val = 0
16 x2.val = 0.25
17 x3.val = 3.25
18 z.val = 10
19 Model has been successfully processed
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MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

GMPL Code 2: Dual model.

1 var y1 >=0;
2 var y2 >=0;
3
4 subject to con1: y1 + 3*y2 >= 4 ;
5 subject to con2: 4*y1 - y2 >= 1 ;
6 subject to con3: y2 >= 3 ;
7
8 minimize z: y1 + 3*y2 ;
9

10 solve;
11
12 display y1.val, y2.val, z.val;
13
14 end;

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING NOVEMBER 29, 2022 11 / 25



MOTIVATION: FINDING UPPER BOUNDS A FIRST EXAMPLE

1 GLPSOL: GLPK LP/MIP Solver, v4.65
2 Reading model section from ex1_dual_inSlides.mod...
3 .
4 .
5 .
6 Model has been successfully generated
7 GLPK Simplex Optimizer, v4.65
8 .
9 .

10 .
11 OPTIMAL SOLUTION FOUND BY LP PREPROCESSOR
12 Time used: 0.0 secs
13 Memory used: 0.1 Mb (94214 bytes)
14 Display statement at line 12
15 y1.val = 1
16 y2.val = 3
17 z.val = 10
18 Model has been successfully processed
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MOTIVATION: FINDING UPPER BOUNDS RESOURCE ALLOCATION PROBLEM

As a another example, consider the Resource Allocation Problem.

Recall that

max
x

c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm
x1, x2, · · · , xn ≥ 0

where

cj = profit per unit of product j produced

bi = unit of raw material i on hand

aij = units raw material i required to produce one unit of product j
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MOTIVATION: FINDING UPPER BOUNDS RESOURCE ALLOCATION PROBLEM

If we produce one unit less of product j, then:

for each i, we free up aij units of raw material i.

Selling these unused raw materials for y1, y2, · · · , ym dollars/unit yields:

a1jy1 + a2jy2 + · · ·+ amjym dollars.

Only interested if this revenue exceeds lost profit on each product j:

a1jy1 + a2jy2 + · · ·+ amjym ≥ cj , j = 1, 2, · · · , n. .

Now, consider a buyer offering to purchase our entire inventory. Subject to above constraints,
buyer wants to minimize cost:

min
y

b1y1 + b2y2 + · · ·+ bmym
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MOTIVATION: FINDING UPPER BOUNDS RESOURCE ALLOCATION PROBLEM

And the following linear program needs to be solved

min
y

b1y1 + b2y2 + · · ·+ bmym

subject to a11y1 + a21y2 + · · ·+ am1ym ≥ c1
...

a1ny1 + a2ny2 + · · ·+ amnyn ≥ cn
y1, y2, · · · , ym ≥ 0

 This problem is called the dual LP associated with the given LP.
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THE DUAL PROBLEM

Given a linear programming problem in standard form,

max
x

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, 2, · · · ,m

xj ≥ 0, j = 1, 2, · · · , n

the associated dual linear program is given by

min
y

m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≥ cj , j = 1, 2, · · · , n

yi ≥ 0, i = 1, 2, · · · ,m
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THE DUAL PROBLEM

Primal Problem

max
x

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, 2, · · · ,m

xj ≥ 0, j = 1, 2, · · · , n

Dual in ”Standard” Form

−max
y

m∑
i=1

−biyi

subject to
m∑
i=1

−aijyi ≤ −cj , j = 1, 2, · · · , n

yi ≥ 0, i = 1, 2, · · · ,m

 Original problem is called the
primal problem.

 A problem is defined by its data
(notation used for the variables is arbitrary).

 Dual is ”negative transpose” of primal.

Theorem Dual of dual is primal.
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THE DUAL PROBLEM DUALITY THEOREMS

THEOREM (WEAK DUALITY)
if (x1, · · · , xn) is feasible for the primal problem and (y1, · · · , ym) is feasible for the dual problem, then∑

j

cjxj ≤
∑
i

biyi
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THE DUAL PROBLEM DUALITY THEOREMS

PROOF.

∑
j

cjxj ≤
∑
j

(
∑
i

yiaij)xj

=
∑
i

∑
j

yiaijxj

=
∑
i

(
∑
j

aijxj)yi

≤
∑
i

biyi
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THE DUAL PROBLEM DUALITY THEOREMS

An important question:
Is there a gap between the largest primal value and the smallest dual value?

 Answer is provided by the Strong Duality Theorem (coming later).
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THE DUAL PROBLEM DUALITY THEOREMS

Consider the exmple:
Initial primal and dual dictionaries are provided.

Primal
ζ = 0− 3x1 + 2 x2 + 1 x3

w1 = 0− 0x1 + x2 − 2x3

w2 = 3 + 3x1 − 4x2 − x3

Dual
−ξ = 0 + 0y1 − 3y2

z1 = 3− 0y1 − 3y2

z2 = −2 − 1y1 + 4y2

z3 = −1 + 2y1 + 1y2

 Dual is negative transpose of primal.

 Primal is feasible, dual is not.

 Use primal to choose pivot: x2 enters, w2 leaves.

 Make analogous pivot in dual: z2 leaves, y2 enters.
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THE DUAL PROBLEM DUALITY THEOREMS

After first pivot

Primal
ζ = 3

2
− 3

2
x1 − 1

2
w2 + 1

2
x3

w1 = 3
4
+ 3

4
x1 − 1

4
w2 − 9

4
x3

x2 = 3
4
+ 3

4
x1 − 1

4
w2 − 1

4
x3

Dual
−ξ = − 3

2
− 3

4
y1 − 3

4
z2

z1 = 3
2
− 3

4
y1 − 3

4
z2

y2 = 1
2
+ 1

4
y1 + 1

4
z2

z3 = − 1
2

+ 9
4
y1 + 1

4
z2

 negative transpose property intact.

 Primal is feasible, dual is not.

 Use primal to pick pivot: x3 enters, w1 leaves.

 Make analogous pivot in dual: z3 leaves, y1 enters.
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THE DUAL PROBLEM DUALITY THEOREMS

After second pivot

Primal
ζ = 5

3
− 4

3
x1 − 5

9
w2 − 2

9
w1

x3 = 1
3
+ 1

3
x1 − 1

9
w2 − 4

9
w1

x2 = 2
3
+ 2

3
x1 − 2

9
w2 + 1

9
w1

Dual
−ξ = − 5

3
− 1

3
z3 − 2

3
z2

z1 = 4
3
− 1

3
z3 − 2

3
z2

y2 = 5
9
+ 1

9
z3 + 2

9
z2

y1 = 2
9
+ 4

9
z3 − 1

9
z2

 negative transpose property remains intact.

 Primal and dual are both optimal.

 Simplex Alg. applied to primal, solves both the
primal and the dual.
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THE DUAL PROBLEM DUALITY THEOREMS

THEOREM (STRONG DUALITY)
If the primal problem has an optimal solution,

x∗ = (x∗1, x
∗
2, · · · , x∗n)

then the dual also has an optimal solution,

y∗ = (y∗1 , y
∗
2 , · · · , y∗m)

and ∑
j

cjx
∗
j =

∑
i

ciy
∗
i

 If primal has an optimal solution, then there is no duality gap.

 Let’s prove it.
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