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PERFORMANCE MEASURES

We saw that the simplex method (equipped with anti-cycling rules) will solve any linear
programming problem for which an optimal solution exists. The question, now, is how fast it will
solve such a problem.

Performance measures are:

worst case
looks at all problems of a given “size” and asks how much effort is needed to solve the hardest.

average case
looks at the average amount of effort needed to solve all.

 Worst-case analyses are generally easier.
It needs to provide an upper bound on how much effort required + a specific example attaing this
bound.

 On an average case analysis, one needs a stochastic model of random problems and evaluate
the amount of effort required to solve every problem in the sample space.

worst-case is more tractable, but less relevant while dealing with real problems
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PERFORMANCE MEASURES

Before looking at the worst case, we must discuss:

First: how do we specify the size of a problem?
recall that we have m (constraints), n (variables)

m× n

number of non-zero elements

the number of bits needed to store all data

Even with the last one, ”size” of data might still be ambiguous. (why?)

we shall simply focus on m and n to characterize the size of a problem.
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PERFORMANCE MEASURES

Second: how one should measure the amount of work required to solve a problem?

the number of seconds of computer time?

Fortunately, a reasonable substitute:

Algorithms are generally iterative processes. So

time to solve a problem = number of iterations × time required to do each iteration

First factor is platform-independent and so a resasonable suragate for the acctual time
(not when different algorthm are compared!)

We simply count the number of iterations (pivots).
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

Since the simplex method operates by moving from one dictionary to another (without cycling),
an upper bound on the number of iterations is simply the number of possible dictionaries:(n+m

m

)
For a fixed value of the sum n+m, this expression is maximized when m = n.

How big is it? Not hard to show:

1

2n
22n ≤

(2n
n

)
≤ 22n

For n = 25:
250 = 1.1259× 1015

Our best chance for finding a bad example is to look at the case where m = n.
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

In 1972, V. Klee and G. J. Minty were the first to discover an example in which the simplex method
using the largest coefficient rule requires 2n − 1 iterations to solve.

lets look at the generic example:

Given constants 1 = β1 � β2 � · · · � βn

max
x

n∑
j=1

2n−jxj −
1

2

n∑
j=1

2n−jβj

s.t. 2

i−1∑
j=1

2i−jxj + xi ≤
i−1∑
j=1

2i−jβj + βi i = 1, 2, . . . , n

xj ≥ 0 i = 1, 2, . . . , n
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

For n = 3

max
x

4x1 + 2x2 + 1x3 − 2β1 − β2 −
1

2
β3

s.t. 1x1 + + ≤ β1

4x1 + 1x2 + ≤ 2β1 + β2

8x1 + 4x2 + 1x3 ≤ 4β1 + 2β2 + β3

x1, x2, x3 ≥ 0

Assuming β2 = 98, β3 = 9800, the feasible region looks like :

1x1 ≤ 1

4x1 + 1x2 ≤ 100

8x1 + 4x2 + 1x3 ≤ 10000

x1, x2, x3 ≥ 0
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

Constraints represent a “minor” distortion to an 3-dimensional hypercube:

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 100

0 ≤ x3 ≤ 10000

This region has 2n=3 vertices and the idea is to trick the pivot rule so as to visit all of them.
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

Back to the generic Klee-Minty example (n = 3), the first dictionary is

ζ = − 2β1 − 1β2 − 0.5β3 + 4 x1 + 2 x2 + 1 x3

w1 = + 1β1 − 1x1

w2 = + 2β1 + 1β2 − 4x1 − 1x2

w3 = + 4β1 + 2β2 + 1β3 − 8x1 − 4x2 − 1x3

which is feasible.

Using the largest-coefficient rule: (x1, w1) are the entering, leaving pair.

Corresponding vertex on the Klee-Minty cube is: (0, 0, 0)
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

After the first pivot

ζ = + 2β1 − 1β2 − 0.5β3 − 4w1 + 2 x2 + 1 x3

x1 = + 1β1 − 1w1

w2 = − 2β1 + 1β2 + 4w1 − 1x2

w3 = − 4β1 + 2β2 + 1β3 + 8w1 − 4x2 − 1x3

for the next pivot: (x2, w2)

Corresponding vertex on the Klee-Minty cube is: (β1, 0, 0)
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

After the second pivot

ζ = − 2β1 + 1β2 − 0.5β3 + 4 w1 − 2w2 + 1 x3

x1 = + 1β1 − 1w1

x2 = − 2β1 + 1β2 + 4w1 − 1w2

w3 = + 4β1 − 2β2 + 1β3 − 8w1 + 4w2 − 1x3

for the next pivot: (w1, x1)

Corresponding vertex on the Klee-Minty cube is: (β1,−2β1 + 1β2, 0)
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

After the third pivot

ζ = + 2β1 + 1β2 − 0.5β3 − 4x1 − 2w2 + 1 x3

w1 = + 1β1 − 1x1

x2 = + 2β1 + 1β2 − 4x1 − 1w2

w3 = − 4β1 − 2β2 + 1β3 + 8x1 + 4w2 − 1x3

for the next pivot: (x3, w3)

Corresponding vertex on the Klee-Minty cube is: (0, 2β1 + 1β2, 0)
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

After the fourth pivot

ζ = − 2β1 − 1β2 + 0.5β3 + 4 x1 + 2 w2 − 1w3

w1 = + 1β1 − 1x1

x2 = + 2β1 + 1β2 − 4x1 − 1w2

x3 = − 4β1 − 2β2 + 1β3 + 8x1 + 4w2 − 1w3

for the next pivot: (x1, w1)

Corresponding vertex on the Klee-Minty cube is: (0, 2β1 + 1β2,−4β1 − 2β2 + 1β3)
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

After the fifth pivot

ζ = + 2β1 − 1β2 + 0.5β3 − 4w1 + 2 w2 − 1w3

x1 = + 1β1 − 1w1

x2 = − 2β1 + 1β2 + 4w1 − 1w2

x3 = + 4β1 − 2β2 + 1β3 − 8w1 + 4w2 − 1w3

for the next pivot: (w2, x2)

Corresponding vertex on the Klee-Minty cube is: (1β1,−2β1 + 1β2,+4β1 − 2β2 + 1β3)
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

After the sixth pivot

ζ = − 2β1 + 1β2 + 0.5β3 + 4 w1 − 2x2 − 1w3

x1 = + 1β1 − 1w1

w2 = − 2β1 + 1β2 + 4w1 − 1x2

x3 = − 4β1 + 2β2 + 1β3 + 8w1 − 4x2 − 1w3

for the next pivot: (w1, x1)

Corresponding vertex on the Klee-Minty cube is: (1β1, 0,−4β1 + 2β2 + 1β3)
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

And finally after the seventh pivot

ζ = + 2β1 + 1β2 + 0.5β3 − 4x1 − 2x2 − 1w3

w1 = + 1β1 − 1x1

w2 = + 2β1 + 1β2 − 4x1 − 1x2

x3 = + 4β1 + 2β2 + 1β3 − 8x1 − 4x2 − 1w3

The optimal dictionary.

Corresponding vertex on the Klee-Minty cube is: (0, 0,+4β1 + 2β2 + 1β3)
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

Onservations:

It took 7 = 23 − 1 iterations.

Largest-coefficient rule can take 2n − 1 pivots to solve a problem in n variables and
constraints.

For n = 70, 2n = 1.2× 1021

On a machin with 1000 ips. It will take 40 billion years to solve!
(The age of the universe is estimated to be 13.7 billion years)

Yet, problems with 10,000 to 100,000 variables/constraints are solved routinely every day.
(Worst case analysis!)

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING NOVEMBER 22, 2022 21 / 27



WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

Onservations:

It took 7 = 23 − 1 iterations.

Largest-coefficient rule can take 2n − 1 pivots to solve a problem in n variables and
constraints.

For n = 70, 2n = 1.2× 1021

On a machin with 1000 ips. It will take 40 billion years to solve!
(The age of the universe is estimated to be 13.7 billion years)

Yet, problems with 10,000 to 100,000 variables/constraints are solved routinely every day.
(Worst case analysis!)

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING NOVEMBER 22, 2022 21 / 27



WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

Onservations:

It took 7 = 23 − 1 iterations.

Largest-coefficient rule can take 2n − 1 pivots to solve a problem in n variables and
constraints.

For n = 70, 2n = 1.2× 1021

On a machin with 1000 ips. It will take 40 billion years to solve!
(The age of the universe is estimated to be 13.7 billion years)

Yet, problems with 10,000 to 100,000 variables/constraints are solved routinely every day.
(Worst case analysis!)

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING NOVEMBER 22, 2022 21 / 27



WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

Onservations:

Note that the final dictionary could have been reached from the initial dictionary in just one
pivot if we had selected x3 to be the entering variable. But the largest-coefficient rule dictated
selecting x1 and the exponential worst case running time.

Indeed this is an open question :

Does there exist a varient of the Simplex method with polynomial worst case performance?

However, For linear programs, we have other algorithm (called interior point methods) with
polynomial worstcase performance. In contrast to the simplex algorithm, which finds an optimal
solution by traversing the edges between vertices on a polyhedral set, interior-point methods
move through the interior of the feasible region.
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WORST-CASE ANALYSIS OF THE SIMPLEX METHOD

Lets go back to the Klee-Minty example and make careful observations needed to generalize this
example:

Note that every pivot is the swap of an xj with the corresponding wj .

every dictionary looks just like the first one with the exception that the wi ’s and the xi ’s
have become intertwined and various signs have changed.

Objective function changes in a specific patern, can you guess how?

These are the necessary steps needed to take toward a proof of worst case exaponantial time of the
generic Klee-Minty example. (Left as part of to the second HW)
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EMPIRICAL AVERAGE PERFORMANCE

Lets again consider the simple simplex implementation discussed previous week.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING NOVEMBER 22, 2022 25 / 27



EMPIRICAL AVERAGE PERFORMANCE

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING NOVEMBER 22, 2022 26 / 27



EMPIRICAL AVERAGE PERFORMANCE

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING NOVEMBER 22, 2022 27 / 27


	Performance Measures
	Worst-Case Analysis of the Simplex Method
	Empirical Average Performance

