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DEFINITION/EXAMPLES OF DEGENERACY

We say that a dictionary is degenerate if b̄i = 0 for some i ∈ B.

As an example

ζ = 5 + x3 − 1x1

x2 = 5 + 2x3 − 3x1

x4 = 7 − 4x1

x5 = 0 + x1

It is clear that the problem is unbounded and therefore no more pivots were required.

 A degenerate dictionary could cause difficulties for the simplex method. Problems arise, when
a degenerate dictionary produces degenerate pivots.
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DEFINITION/EXAMPLES OF DEGENERACY

We say that a pivot is a degenerate pivot if one of the ratios in the calculation of the leaving
variable is 0; i.e., if the numerator is zero and the denominator is positive,

like

ζ = 3− 0.5x1 + 2 x2 − 1.5w1

x3 = 1− 0.5x1 − 0.5w1

w2 = 0 + x1 − 1.0x2 + w1

For this dictionary, the entering variable is x2 and the ratio computed to determine the leaving
variable is

{ i ∈ B :
b̄i

āi2
with āi2 > 0 } = {

0

1.0
}

Hence, the leaving variable is w2.

 The fact that the ratio is zero means that as soon as x2 is increased from zero to a positive value, w2

will go negative.
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DEFINITION/EXAMPLES OF DEGENERACY

Nonetheless, it can be reclassified from nonbasic to basic (with w2 going the other way). Look at the
result of this degenerate pivot:

ζ = 3 + 1.5 x1 − 2w2 + 0.5 w1

x3 = 1− 0.5x1 − 0.5w1

x2 = x1 − w2 + w1

Note that

→ ζ̄ remains unchanged at 3. Hence, this degenerate pivot has not produced any increase in the
objective function value.

→ Furthermore, the values of the variables have not even changed: both before and after this
degenerate pivot, they are

(x1, x2, x3, w1, w2) = (0, 0, 1, 0, 0)

But we are just representing the solution in a new way.
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DEFINITION/EXAMPLES OF DEGENERACY

The entering variable for the next iteration is x1 and the leaving variable is x3, producing a
nondegenerate pivot that leads to

ζ = 6− 3x3 − 2w2 − w1

x1 = 2− 2x3 − w1

x2 = 2− 2x3 − w2

While it is typical for some pivot to “break away” from the degeneracy, the real danger is that

the simplex method will make a sequence of degenerate pivots and eventually return to a dictionary
that has appeared before, in which case the simplex method enters an infinite loop and never finds an
optimal solution.

This behavior is called cycling.

 Cycling is rare! A program that generates random 2×4 fully degenerate problems was run
more than one billion times and did not find one example!

Unfortunately, under certain pivoting rules, cycling is possible.
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DEFINITION/EXAMPLES OF DEGENERACY

In fact, cycling is possible even when using one of the most popular pivoting rules:

– Entering variable: Choose the entering variable as the one with the largest coefficient in the
ζ-row of the dictionary.

– Leaving variable: When two or more variables compete for leaving the basis, reading left to
right, pick the first leaving-variable candidate from the list:

x1, x2, · · · , xn, w1, w2, · · · , wm

Here is an example that cycles:

ζ = + x1 − 2x2 − 2x4

w1 = − 0.5x1 + 3.5x2 + 2x3 − 4x4

w2 = − 0.5x1 + x2 + 0.5x3 − 0.5x4

w3 = 1− x1
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DEFINITION/EXAMPLES OF DEGENERACY

ζ = + 1 x1 − 2x2 − 2x4

w1 = − 0.5x1 + 3.5x2 + 2x3 − 4x4

w2 = − 0.5x1 + x2 + 0.5x3 − 0.5x4

w3 = 1− x1

For the first pivot, x1 enters and w1 leaves bringing us to:

ζ = − 2w1 + 5 x2 + 4 x3 − 10x4

x1 = − 2w1 + 7x2 + 4x3 − 8x4

w2 = + w1 − 2.5x2 − 1.5x3 + 3.5x4

w3 = 1 + 2w1 − 7x2 − 4x3 + 8x4

For the second iteration, x2 enters and w2 leaves bringing us to:

ζ = − 2w2 + 1 x3 − 3x4

x1 = + 0.8w1 − 2.8w2 − 0.2x3 + 1.8x4

x2 = + 0.4w1 − 0.4w2 − 0.6x3 + 1.4x4

w3 = 1− 0.8w1 + 2.8w2 + 0.2x3 − 1.8x4
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DEFINITION/EXAMPLES OF DEGENERACY

For the third iteration, x3 enters and x1 leaves:

ζ = + 4 w1 − 16w2 − 5x1 + 6 x4

x3 = + 4w1 − 14w2 − 5x1 + 9x4

x2 = − 2w1 + 8w2 + 3x1 − 4x4

w3 = 1 − x1

For the fourth iteration, x4 enters and x2 leaves:

ζ = + 1 w1 − 4w2 − 0.5x1 − 1.5x2

x3 = − 0.5w1 + 4w2 + 1.75x1 − 2.25x2

x4 = − 0.5w1 + 2w2 + 0.75x1 − 0.25x2

w3 = 1 − x1

In the fifth iteration, w1 enters and x3 leaves:

ζ = − 2x3 + 4 w2 + 3 x1 − 6x2

w1 = − 2x3 + 8w2 + 3.5x1 − 4.5x2

x4 = x3 − 2w2 − x1 + 2x2

w3 = 1 − x1
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DEFINITION/EXAMPLES OF DEGENERACY

Lastly, for the sixth iteration, w2 enters and x4 leaves:

ζ = − 2x4 + 1x1 − 2x2

w1 = + 2x3 − 4x4 − 0.5x1 + 3.5x2

w2 = + 0.5x3 − 0.5x4 − 0.5x1 + x2

w3 = 1 − x1

Note that we have come back to the original dictionary:

ζ = + x1 − 2x2 − 2x4

w1 = − 0.5x1 + 3.5x2 + 2x3 − 4x4

w2 = − 0.5x1 + x2 + 0.5x3 − 0.5x4

w3 = 1− x1

 from here on the simplex method simply cycles through these six dictionaries and never makes
any further progress toward an optimal solution.
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DEFINITION/EXAMPLES OF DEGENERACY

As bad as cycling is, the following theorem tells us that nothing worse can happen:

THEOREM

If the simplex method fails to terminate, then it must cycle.

PROOF.
A dictionary is completely determined by specifying which variables are basic and which are
nonbasic. There are only (

n+m
m

)
=

(n+m)!

n!m!

different possibilities. This number is big, but it is finite. If the simplex method fails to terminate,
it must visit some of these dictionaries more than once. Hence, the algorithm cycles.
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PERTURBATION METHOD

Whenever a vanishing ”rhs”, (zero b̄i), appears perturb it.

- set : b̄i = b̄i + εi

If there are lots of them, say k, perturb them all. Make the perturbations at different scales:

0 < εk � · · · � ε2 � ε1 � other nonzero data

Try to keep in mind that:

– no linear combination of the εi ’s using coefficients that might arise in the course of the
simplex method can ever produce a number whose size is of the same order as the data in the
problem.

– each of the “lower down” εi ’s can never “escalate” to a higher level.

Hence, cancellations can only occur on a given scale.
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PERTURBATION METHOD

First example:

EXAMPLE

ζ = 0 + 6x1 + 4x2

w1 = 0 + 9x1 + 4x2

w2 = 0 − 4x1 − 2x2

w3 = 1 − x2
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PERTURBATION METHOD

The first step is to introduce symbolic parameters

0 < ε3 � ε2 � ε1

to get a perturbed problem:

ζ = 0 + 6 x1 + 4 x2

w1 = 0 + ε1 + 9x1 + 4x2

w2 = 0 + ε2 − 4x1 − 2x2

w3 = 1 + ε3 − x2

This dictionary is not degenerate. The entering variable is x1 and the leaving variable is
unambiguously w2.
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PERTURBATION METHOD

The next dictionary is

ζ = 0 + 1.5ε2 − 1.5w2 + 1 x2

w1 = 0 + ε1 + 2.25ε2 − 2.25w2 − 0.5x2

x1 = 0 + 0.25ε2 − 0.25w2 − 0.5x2

w3 = 1 + ε3 − x2

For the next pivot, the entering variable is x2 and, using the fact that ε2 � ε1 , we see that the
leaving variable is x1. The new dictionary is

ζ = 0 + 2ε2 − 2w2 − 2x1

w1 = 0 + ε1 + 2ε2 − 2w2 + x1

x2 = 0 + 0.5ε2 − 0.5w2 − 2x1

w3 = 1 − 0.5ε2 + ε3 + 0.5w2 + 2x1
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PERTURBATION METHOD

This last dictionary is optimal. At this point, we simply drop the symbolic εi parameters and get an
optimal dictionary for the unperturbed problem.

ζ = 0− 2w2 − 2x1

w1 = 0− 2w2 + x1

x2 = 0− 0.5w2 − 2x1

w3 = 1 + 0.5w2 + 2x1

When treating the εi ’s as symbols, the method is called the lexicographic method.

 The lexicographic method does not affect the choice of entering variable but does amount to a
precise prescription for the choice of leaving variable.

 The lexicographic method produces a variant of the simplex method that never cycles:

THEOREM

The simplex method always terminates provided that the leaving variable is selected by the lexicographic
rule.
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PERTURBATION METHOD

PROOF.
It suffices to show that no degenerate dictionary is ever produced.

As we have discussed before, the εi ’s operate on different scales and hence cannot cancel with
each other. Therefore, can think of the εi ’s as a collection of independent variables.

Extracting the ε terms from the first dictionary, we see that we start with the following pattern:

ε1

ε2
. . .

εm
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PERTURBATION METHOD

PROOF CONT.
And, after several pivots, the ε terms will form a system of linear combinations, say,

r11ε1+ r12ε2+ · · · r1mεm

r21ε1+ r22ε2+ · · · r2mεm
...

...
. . .

...

rm1ε1+ rm2ε2+ · · · rmmεm

This system of linear combinations is obtained from the original system by pivot operations and,
since pivot operations are reversible, it follows that the rank of the two systems must be the same.

Since the original system had rank m, we see that every subsequent system must have rank m.

→ There must be at least one nonzero rij in every row i, which of course implies that

→ None of the rows can be degenerate.

Hence, no dictionary can be degenerate.
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PERTURBATION METHOD

Second example:

EXAMPLE

ζ = 0 + 2x1 + 4x2

w1 = 0 + x1 − x2

w2 = 0 + 3x1 − x2

w3 = 0 − 4x1 + x2
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PERTURBATION METHOD

Perturb vanishing rhs

ζ = 0.0 + 2x1 + 4x2

w1 = 0.0 + ε1 + x1 − x2

w2 = 0.0 + ε2 + 3x1 − x2

w3 = 0.0 + ε3 − 4x1 + x2

or equivalently

ζ = 0.0 + 0.0ε1 + 0.0ε2 + 0.0ε3 + 2 x1 + 4 x2

w1 = 0.0 + 1.0ε1 + 0.0ε2 + 0.0ε3 + x1 − x2

w2 = 0.0 + 0.0ε1 + 1.0ε2 + 0.0ε3 + 32x1 − x2

w3 = 0.0 + 0.0ε1 + 0.0ε2 + 1.0ε3 − 4x1 + x2

x2 enters and as ε2 � ε1, w2 leaves.
 Note that, as εi ’s have different scale, the will not cancel each other.
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PERTURBATION METHOD

We get

ζ = 0.0 + 0.0ε1 + 4.0ε2 + 0.0ε3 + 14 x1 − 4w2

w1 = 0.0 + 1.0ε1 − 1.0ε2 + 0.0ε3 − 2x1 + w2

x2 = 0.0 + 0.0ε1 + 1.0ε2 + 0.0ε3 + 3x1 − w2

w3 = 0.0 + 0.0ε1 + 1.0ε2 + 1.0ε3 − x1 − w2

x1 enters and as ε2 + ε3 � ε1 − ε2, w3 leaves. We get

ζ = 0.0 + 0.0ε1 + 18ε2 + 14ε3 − 14w3 − 18w2

w1 = 0.0 + 1.0ε1 − 3.0ε2 − 2.0ε3 + 2w3 + 3w2

x2 = 0.0 + 0.0ε1 + 4.0ε2 + 3.0ε3 − 3w3 − 4w2

x1 = 0.0 + 0.0ε1 + 1.0ε2 + 1.0ε3 − w3 − w2

Done!
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FUNDAMENTAL THEOREM

DEFINITION/EXAMPLES OF DEGENERACY

PERTURBATION METHOD

FUNDAMENTAL THEOREM

GEOMETRY

OTHER PIVOT RULES
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FUNDAMENTAL THEOREM

Now that we have a Phase I algorithm and a variant of the simplex method that is guaranteed to
terminate, we can summarize the main points of this chapter in the following theorem:

THEOREM

For an arbitrary linear program in standard form, the following statements are true:

If there is no optimal solution, then the problem is either infeasible or unbounded.

If a feasible solution exists, then a basic feasible solution exists.

If an optimal solution exists, then a basic optimal solution exists.
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GEOMETRY

DEFINITION/EXAMPLES OF DEGENERACY

PERTURBATION METHOD

FUNDAMENTAL THEOREM

GEOMETRY

OTHER PIVOT RULES
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GEOMETRY

max
x

x1 + 2x2 + 3x3

s.t. x1 + 2x3 ≤ 3

x2 + 2x3 ≤ 2

x1, x2, x3 ≥ 0
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OTHER PIVOT RULES
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OTHER PIVOT RULES

The second pivoting rule we consider is called Bland’s rule or smallest index rule.

It stipulates that:

Both the entering and the leaving variable be selected from their respective sets of choices by choosing
the variable xk with the smallest index k.

THEOREM

The simplex method always terminates provided that both the entering and the leaving variable are chosen
according to Bland’s rule.
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OTHER PIVOT RULES

Other rule called random selection rule.

Select at random from the set of possibilities.

Other rule called greatest increase rule.

Pick the entering/leaving pair so as to maximize the increase of the objective function over all other
possibilities.

Too much computations.
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OTHER PIVOT RULES
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