Linear Programming

[V. Ch2]: The Simplex Method

Phillip Keldenich Ahmad Moradi

October 28, 2022

SOME EXAMPLES FIRST

SOME EXAMPLES FIRST

The Simplex Algorithm

INITIALIZATION / INFEASIBILITY

UNBOUNDEDNESS

GEOMETRY

Simplex Algorithm

In this chapter, we are going to learn a method to solve general linear programs. The method, called Simplex algorithm, will be developed for a general linear program (LP) in standard form.

Simplex Algorithm

In this chapter, we are going to learn a method to solve general linear programs. The method, called Simplex algorithm, will be developed for a general linear program (LP) in standard form.

Consider a simple example:
EXAMPLE

$$
\begin{array}{rcrl}
\max _{x} & 5 x_{1}+4 x_{2}+3 x_{3} & \\
\text { s.t. } & 2 x_{1}+3 x_{2}+ & x_{3} & \leq 5 \\
& 4 x_{1}+ & x_{2}+2 x_{3} & \leq 11 \\
& 3 x_{1}+4 x_{2}+ & 2 x_{3} & \leq 8 \\
& x_{1}, & x_{2}, & x_{3}
\end{array} \frac{\geq 0}{}
$$

EQUALITIES AND SLACKS

Start by adding the so-called slack variables and convert inequality constraints to equality ones.

For each of the less-than inequalities: Introduce a slack variable that represents the difference between the right-hand side and the left-hand side.
$\rightsquigarrow \quad$ Introducing slack variable w_{1}

$$
2 x_{1}+3 x_{2}+x_{3} \leq 5 \quad \Longleftrightarrow \quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}, \quad w_{1} \geq 0
$$

$\rightsquigarrow \quad$ Introducing w_{2}

$$
4 x_{1}+x_{2}+2 x_{3} \leq 11 \quad \Longleftrightarrow \quad w_{2}=11-4 x_{1}-x_{2}-2 x_{3}, \quad w_{2} \geq 0
$$

\rightsquigarrow Introducing w_{3}

$$
3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \quad \Longleftrightarrow \quad w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}, \quad w_{3} \geq 0
$$

EQUALITIES AND SLACKS

We get the following equivalent LP

$$
\begin{array}{ccccr}
\max _{x} & \zeta= & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\text { s.t. } & w_{1} & = & 5- & 2 x_{1}- \\
& w_{2} & = & 3 x_{2}- & x_{3} \\
& w_{3} & =8- & 4 x_{1}- & x_{2}- \\
& & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0 & 4 x_{2}- & 2 x_{3} \\
\end{array}
$$

The simplex method is an iterative process in which:
\rightsquigarrow we start with a less-than-optimal solution $\left(\dot{x}_{1}, \dot{x}_{2}, \cdots, \dot{w}_{3}\right)$ that satisfies the equations and non-negativities and then

EQUALITIES AND SLACKS

We get the following equivalent LP

$$
\begin{array}{ccccr}
\max _{x} & \zeta= & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\text { s.t. } & w_{1} & =5-3 x_{1}- & 3 x_{2}- & x_{3} \\
& w_{2} & =11-4 x_{1}- & x_{2}- & 2 x_{3} \\
& w_{3} & =8-3 x_{1}-4 x_{2}- & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

The simplex method is an iterative process in which:
\rightsquigarrow we start with a less-than-optimal solution $\left(\dot{x}_{1}, \dot{x}_{2}, \cdots, \dot{w}_{3}\right)$ that satisfies the equations and non-negativities and then
\rightsquigarrow we look for a new solution $\left(\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{w}_{3}\right)$, which is better in the sense that it has a larger objective function value:

$$
5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}>5 \dot{x}_{1}+4 \dot{x}_{2}+3 \dot{x}_{3}
$$

EQUALITIES AND SLACKS

We get the following equivalent LP

$$
\begin{array}{ccccr}
\max _{x} & \zeta= & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\text { s.t. } & w_{1} & =5-3 x_{1}- & 3 x_{2}- & x_{3} \\
& w_{2} & =11-4 x_{1}- & x_{2}- & 2 x_{3} \\
& w_{3} & =8-3 x_{1}-4 x_{2}- & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

The simplex method is an iterative process in which:
\rightsquigarrow we start with a less-than-optimal solution $\left(\dot{x}_{1}, \dot{x}_{2}, \cdots, \dot{w}_{3}\right)$ that satisfies the equations and non-negativities and then
\rightsquigarrow we look for a new solution $\left(\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{w}_{3}\right)$, which is better in the sense that it has a larger objective function value:

$$
5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}>5 \dot{x}_{1}+4 \dot{x}_{2}+3 \dot{x}_{3}
$$

\rightsquigarrow We continue this process until we arrive at a solution that cannot be improved.

EQUALITIES AND SLACKS

We get the following equivalent LP

$$
\begin{array}{ccccr}
\max _{x} & \zeta= & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\text { s.t. } & w_{1} & =5-3 x_{1}- & 3 x_{2}- & x_{3} \\
& w_{2} & =11-4 x_{1}- & x_{2}- & 2 x_{3} \\
& w_{3} & =8-3 x_{1}-4 x_{2}- & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

The simplex method is an iterative process in which:
\rightsquigarrow we start with a less-than-optimal solution $\left(\dot{x}_{1}, \dot{x}_{2}, \cdots, \dot{w}_{3}\right)$ that satisfies the equations and non-negativities and then
\rightsquigarrow we look for a new solution $\left(\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{w}_{3}\right)$, which is better in the sense that it has a larger objective function value:

$$
5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}>5 \dot{x}_{1}+4 \dot{x}_{2}+3 \dot{x}_{3}
$$

\rightsquigarrow We continue this process until we arrive at a solution that cannot be improved.
This final solution is then an optimal solution.

SOME EXAMPLES FIRST

INITIAL SOLUTION

Consider our example problem.

$$
\begin{array}{lrrrr}
w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

To start the iterative process, we need an initial feasible solution.

Initial Solution

Consider our example problem.

$$
\begin{array}{rrrrr}
w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

To start the iterative process, we need an initial feasible solution.

Simply set all the original variables to zero:

$$
x_{1}=0, \quad x_{2}=0, \quad x_{3}=0
$$

Now, use the equations to determine the slack variables:

$$
w_{1}=5, \quad w_{2}=11, \quad w_{3}=8
$$

InITIAL SOLUTION

Consider our example problem.

$$
\begin{array}{lrlrr}
w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

To start the iterative process, we need an initial feasible solution.

Simply set all the original variables to zero:

$$
x_{1}=0, \quad x_{2}=0, \quad x_{3}=0
$$

Now, use the equations to determine the slack variables:

$$
w_{1}=5, \quad w_{2}=11, \quad w_{3}=8
$$

Luckily, we found a feasible solution:

$$
\left(\dot{x}_{1}, \dot{x}_{2}, \dot{x}_{3}, \dot{w}_{1}, \dot{w}_{2}, \dot{w}_{3}\right)=(0,0,0,5,11,8)
$$

with objective function value $\zeta=0$.

SOME EXAMPLES FIRST

Solution Improvement

We now ask whether this solution can be improved.

$$
\begin{array}{ccccc}
\underset{x}{\max } & \zeta= & 0+5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\text { s.t. } & w_{1} & =5-2 x_{1}-3 x_{2}- & x_{3} \\
& w_{2}= & 11-44 x_{1}-3 x_{2}- & 2 x_{3} \\
& w_{3}= & 8-3 x_{1}-4 x_{2}- & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

SOME EXAMPLES FIRST

SOLUTION IMPROVEMENT

We now ask whether this solution can be improved.

$$
\begin{array}{ccccr}
\underset{x}{\max } & \zeta= & 0+5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\text { s.t. } & w_{1}= & 5-2 x_{1}-3 x_{2}- & x_{3} \\
& w_{2}= & 11- & 4 x_{1}- & x_{2}- \\
& w_{3}= & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

Observation.
Since the coefficient of x_{1} in the objective function is positive, if we increase the value of x_{1} from zero to some positive value, we will increase ζ.

SOLUTION IMPROVEMENT

We now ask whether this solution can be improved.

$$
\begin{array}{ccccr}
\underset{x}{\max } & \zeta= & 0+ & 5 x_{1}+ & 4 x_{2}+ \\
\text { s.t. } & w_{1}= & 3 x_{3} \\
& w_{2}= & 21- & 2 x_{1}- & 3 x_{2}- \\
& w_{3}= & x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0 & 2 x_{3} \\
& 3 x_{1}-4 x_{2}- & 2 x_{3} \\
&
\end{array}
$$

Observation.
Since the coefficient of x_{1} in the objective function is positive, if we increase the value of x_{1} from zero to some positive value, we will increase ζ.

Observation.

As we change x_{1} 's value, the values of the slack variables will also change. We must make sure that we do not let any of them go negative.

Ensuring Non-NEGAtivity

$\max _{x}$	$\zeta=$	$0+$	$5 x_{1}+$	$4 x_{2}+$
s.t.	$w_{1}=$	$3 x_{3}$		
	$w_{2}=$	$11-2 x_{1}-$	$3 x_{2}-$	x_{3}
	$w_{3}=$	$8-3 x_{1}-3 x_{2}-$	$2 x_{3}$	
	$x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0$			

Ensuring Non-NEGATIVIty

$$
\begin{array}{cccc}
\underset{x}{\max } & \zeta= & 0+5 x_{1}+ & 4 x_{2}+ \\
\text { s.t. } & w_{1} & =5 x_{3} \\
& w_{2}= & 11-2 x_{1}-3 x_{2}- & 4 x_{1}- \\
& w_{3} & =8-3 x_{2}- & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

x_{2} and x_{3} are currently set to 0 , we see that

$$
w_{1}=5-2 x_{1}
$$

and so keeping w_{1} non-negative imposes

$$
w_{1} \geq 0 \Longleftrightarrow 5-2 x_{1} \geq 0 \Longleftrightarrow x_{1} \leq \frac{5}{2}
$$

Ensuring Non-Negativity

$$
\begin{array}{ccccr}
\underset{x}{\max } & \zeta= & 0+5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\text { s.t. } & w_{1}= & 5-2 x_{1}-3 x_{2}- & x_{3} \\
& w_{2}= & 11-4 x_{1}- & x_{2}- & 2 x_{3} \\
& w_{3}= & 8-3 x_{1}-4 x_{2}- & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

x_{2} and x_{3} are currently set to 0 , we see that

$$
w_{1}=5-2 x_{1}
$$

and so keeping w_{1} non-negative imposes

$$
w_{1} \geq 0 \Longleftrightarrow 5-2 x_{1} \geq 0 \Longleftrightarrow x_{1} \leq \frac{5}{2}
$$

$\rightsquigarrow \quad$ Non-negativity of w_{2} imposes the bound that $x_{1} \leq \frac{11}{4}$.
$\rightsquigarrow \quad$ Non-negativity of w_{3} imposes the bound that $x_{1} \leq \frac{8}{3}$.

Ensuring Non-Negativity

$$
\begin{array}{ccccc}
\underset{x}{\max } & \zeta= & 0+5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\text { s.t. } & w_{1} & =5-2 x_{1}-3 x_{2}- & x_{3} \\
& w_{2} & =11-44 x_{1}-3 x_{2}- & 2 x_{3} \\
& w_{3} & =8-3 x_{1}-4 x_{2}- & 2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

x_{2} and x_{3} are currently set to 0 , we see that

$$
w_{1}=5-2 x_{1}
$$

and so keeping w_{1} non-negative imposes

$$
w_{1} \geq 0 \Longleftrightarrow 5-2 x_{1} \geq 0 \Longleftrightarrow x_{1} \leq \frac{5}{2}
$$

$\rightsquigarrow \quad$ Non-negativity of w_{2} imposes the bound that $x_{1} \leq \frac{11}{4}$.
$\rightsquigarrow \quad$ Non-negativity of w_{3} imposes the bound that $x_{1} \leq \frac{8}{3}$.
Since all of these non-negativity conditions must be met, we see that x_{1} cannot be made larger than the smallest of these bounds: $x_{1} \leq \frac{5}{2}$.

Now we can be sure raising x_{1} up to $\frac{5}{2}$ will not destroy non-negativity of variables.

Now we can be sure raising x_{1} up to $\frac{5}{2}$ will not destroy non-negativity of variables. Set $x_{1}=\frac{5}{2}$ and re-compute slack values according to the defining equations

$$
\begin{array}{lrl}
w_{1}= & 5- & 2 x_{1} \\
w_{2}= & 11- & 4 x_{1} \\
w_{3} & =8- & 3 x_{1}
\end{array}
$$

we get

$$
w_{1}=0, w_{2}=1, w_{3}=\frac{1}{2}
$$

Now we can be sure raising x_{1} up to $\frac{5}{2}$ will not destroy non-negativity of variables. Set $x_{1}=\frac{5}{2}$ and re-compute slack values according to the defining equations

$$
\begin{array}{lrl}
w_{1}= & 5- & 2 x_{1} \\
w_{2}= & 11- & 4 x_{1} \\
w_{3} & =8- & 3 x_{1}
\end{array}
$$

we get

$$
w_{1}=0, w_{2}=1, w_{3}=\frac{1}{2}
$$

Our new solution then is

$$
\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{w}_{1}, \bar{w}_{2}, \bar{w}_{3}\right)=\left(\frac{5}{2}, 0,0,0,1, \frac{1}{2}\right)
$$

with objective function value

$$
\zeta=5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}=\frac{25}{2}>0
$$

Now we can be sure raising x_{1} up to $\frac{5}{2}$ will not destroy non-negativity of variables. Set $x_{1}=\frac{5}{2}$ and re-compute slack values according to the defining equations

$$
\begin{array}{lrl}
w_{1}= & 5- & 2 x_{1} \\
w_{2}= & 11- & 4 x_{1} \\
w_{3}= & 8- & 3 x_{1}
\end{array}
$$

we get

$$
w_{1}=0, w_{2}=1, w_{3}=\frac{1}{2}
$$

Our new solution then is

$$
\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{w}_{1}, \bar{w}_{2}, \bar{w}_{3}\right)=\left(\frac{5}{2}, 0,0,0,1, \frac{1}{2}\right)
$$

with objective function value

$$
\zeta=5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}=\frac{25}{2}>0
$$

We found an improved solution!

SOME EXAMPLES FIRST

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$$
\begin{array}{rrrrr}
\zeta= & 0+ & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\hline w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$$
\begin{array}{rrrrr}
\zeta= & 0+ & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\hline w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

- Then, we found an initial feasible solution by setting variables on the right $\left(x_{i}\right)$ to zero and reading off variables on the left $\left(w_{i}\right)$.

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$$
\begin{array}{rrrrr}
\zeta= & 0+ & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\hline w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

- Then, we found an initial feasible solution by setting variables on the right $\left(x_{i}\right)$ to zero and reading off variables on the left $\left(w_{i}\right)$.
- Then, we looked at the objective function and found a variable $\left(x_{1}\right)$ with positive coefficient. Increasing x_{1} will improve objective function value.

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$$
\begin{array}{rrrrr}
\zeta= & 0+ & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\hline w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

- Then, we found an initial feasible solution by setting variables on the right $\left(x_{i}\right)$ to zero and reading off variables on the left $\left(w_{i}\right)$.
- Then, we looked at the objective function and found a variable $\left(x_{1}\right)$ with positive coefficient. Increasing x_{1} will improve objective function value.
- Then, we used the layout to compute maximum possible increase in x_{1} and thus improved the objective function while keeping variables on the left non-negative. This way, we constructed a new improved feasible solution.

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$$
\begin{array}{rrrrr}
\zeta= & 0+ & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\hline w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

- Then, we found an initial feasible solution by setting variables on the right $\left(x_{i}\right)$ to zero and reading off variables on the left $\left(w_{i}\right)$.
- Then, we looked at the objective function and found a variable $\left(x_{1}\right)$ with positive coefficient. Increasing x_{1} will improve objective function value.
- Then, we used the layout to compute maximum possible increase in x_{1} and thus improved the objective function while keeping variables on the left non-negative. This way, we constructed a new improved feasible solution.

Only this easy because of the special layout!

SOME EXAMPLES FIRST

Continuing

But how to proceed?

CONTINUING

But how to proceed?

Observation.

What made the first step easy was the fact that we had one group of variables that were initially zero and we had the rest explicitly expressed in terms of these.

$$
\begin{array}{rrrrr}
\zeta= & 0+ & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\hline w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

CONTINUING

But how to proceed?

Observation.

What made the first step easy was the fact that we had one group of variables that were initially zero and we had the rest explicitly expressed in terms of these.

$$
\begin{array}{rrrrr}
\zeta= & 0+ & 5 x_{1}+ & 4 x_{2}+ & 3 x_{3} \\
\hline w_{1}= & 5- & 2 x_{1}- & 3 x_{2}- & x_{3} \\
w_{2}= & 11- & 4 x_{1}- & x_{2}- & 2 x_{3} \\
w_{3}= & 8- & 3 x_{1}- & 4 x_{2}- & 2 x_{3}
\end{array}
$$

- This special layout is called a dictionary.

In a dictionary, objective and variables on the left are defined by variables on the right.

- Dependent variables (on the left) are called basic variables.
- Independent variables (on the right) are called nonbasic variables.
- Setting variables on the right to zero and reading off the values of the variables on the left gives us a dictionary solution.

But how to proceed?
We need to retain this layout/structure after moving to the new solution.

But how to proceed?
We need to retain this layout/structure after moving to the new solution.
Observation.
Raising x_{1} up to $\frac{5}{2}$, decreases w_{1} to zero. It seems now that (in the new solution): x_{1} is a basic variable and w_{1} is a non-basic variable.

But how to proceed?
We need to retain this layout/structure after moving to the new solution.
Observation.
Raising x_{1} up to $\frac{5}{2}$, decreases w_{1} to zero. It seems now that (in the new solution): x_{1} is a basic variable and w_{1} is a non-basic variable.

Lets rewrite w_{1} 's defining equation as

$$
w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \Longleftrightarrow x_{1}=\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}
$$

But how to proceed?
We need to retain this layout/structure after moving to the new solution.
Observation.
Raising x_{1} up to $\frac{5}{2}$, decreases w_{1} to zero. It seems now that (in the new solution): x_{1} is a basic variable and w_{1} is a non-basic variable.

Lets rewrite w_{1} 's defining equation as

$$
w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \Longleftrightarrow x_{1}=\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}
$$

Now, use the r.h.s. to describe w_{2}, w_{3} and ζ only with the new set of independent variables: w_{1}, x_{2} and x_{3} as

$$
\begin{array}{rrrrr}
\zeta= & 12.5- & 2.5 w_{1}- & 3.5 x_{2}+ & 0.5 x_{3} \\
\hline x_{1}= & 2.5- & 0.5 w_{1}- & 1.5 x_{2}- & 0.5 x_{3} \\
w_{2}= & 1+ & 2 w_{1}+ & 5 x_{2} & \\
w_{3}= & 0.5+ & 1.5 w_{1}+ & 0.5 x_{2}- & 0.5 x_{3}
\end{array}
$$

But how to proceed?

We need to retain this layout/structure after moving to the new solution.

Observation.

Raising x_{1} up to $\frac{5}{2}$, decreases w_{1} to zero. It seems now that (in the new solution): x_{1} is a basic variable and w_{1} is a non-basic variable.

Lets rewrite w_{1} 's defining equation as

$$
w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \Longleftrightarrow x_{1}=\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}
$$

Now, use the r.h.s. to describe w_{2}, w_{3} and ζ only with the new set of independent variables: w_{1}, x_{2} and x_{3} as

$$
\begin{array}{rrrrr}
\zeta= & 12.5- & 2.5 w_{1}- & 3.5 x_{2}+ & 0.5 x_{3} \\
\hline x_{1}= & 2.5- & 0.5 w_{1}- & 1.5 x_{2}- & 0.5 x_{3} \\
w_{2}= & 1+ & 2 w_{1}+ & 5 x_{2} & \\
w_{3}= & 0.5+ & 1.5 w_{1}+ & 0.5 x_{2}- & 0.5 x_{3}
\end{array}
$$

Note.

We can recover our current solution by setting the independent (non-basic) variables to zero and using the equations to read off the values for the dependent (basic) variables.

Next Improvement

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$$
\begin{array}{rrrrr}
\zeta= & 12.5- & 2.5 w_{1}- & 3.5 x_{2}+ & 0.5 x_{3} \\
\hline x_{1}= & 2.5- & 0.5 w_{1}- & 1.5 x_{2}- & 0.5 x_{3} \\
w_{2}= & 1+ & 2 w_{1}+ & 5 x_{2} & \\
w_{3}= & 0.5+ & 1.5 w_{1}+ & 0.5 x_{2}- & 0.5 x_{3}
\end{array}
$$

Next Improvement

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$\zeta=$	$12.5-$	$2.5 w_{1}-$	$3.5 x_{2}+$	$0.5 x_{3}$
$x_{1}=$	$2.5-$	$0.5 w_{1}-$	$1.5 x_{2}-$	$0.5 x_{3}$
$w_{2}=$	$1+$	$2 w_{1}+$	$5 x_{2}$	
$w_{3}=$	$0.5+$	$1.5 w_{1}+$	$0.5 x_{2}-$	$0.5 x_{3}$

Now x_{3} is the only variable with a positive coefficient.

Next Improvement

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$$
\begin{array}{rrrrr}
\zeta= & 12.5- & 2.5 w_{1}- & 3.5 x_{2}+ & 0.5 x_{3} \\
\hline x_{1}= & 2.5- & 0.5 w_{1}- & 1.5 x_{2}- & 0.5 x_{3} \\
w_{2}= & 1+ & 2 w_{1}+ & 5 x_{2} & \\
w_{3}= & 0.5+ & 1.5 w_{1}+ & 0.5 x_{2}- & 0.5 x_{3}
\end{array}
$$

Now x_{3} is the only variable with a positive coefficient.
Again, we need to determine how much x_{3} can be increased without violating the requirement that all the dependent variables remain nonnegative.

Next Improvement

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$$
\begin{array}{rrrrr}
\zeta= & 12.5- & 2.5 w_{1}- & 3.5 x_{2}+ & 0.5 x_{3} \\
\hline x_{1}= & 2.5- & 0.5 w_{1}- & 1.5 x_{2}- & 0.5 x_{3} \\
w_{2}= & 1+ & 2 w_{1}+ & 5 x_{2} & \\
w_{3}= & 0.5+ & 1.5 w_{1}+ & 0.5 x_{2}- & 0.5 x_{3}
\end{array}
$$

Now x_{3} is the only variable with a positive coefficient.
Again, we need to determine how much x_{3} can be increased without violating the requirement that all the dependent variables remain nonnegative.

This time, we see that the equation for w_{2} is not affected by changes in x_{3}, but the equations for x_{1} and w_{3} do impose bounds, namely $x_{3} \leq 5$ and $x_{3} \leq 1$, respectively.

Next Improvement

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$\zeta=$	$12.5-$	$2.5 w_{1}-$	$3.5 x_{2}+$	$0.5 x_{3}$
$x_{1}=$	$2.5-$	$0.5 w_{1}-$	$1.5 x_{2}-$	$0.5 x_{3}$
w_{2}	$=$	$1+$	$2 w_{1}+$	$5 x_{2}$
$w_{3}=$	$0.5+$	$1.5 w_{1}+$	$0.5 x_{2}-$	$0.5 x_{3}$

Now x_{3} is the only variable with a positive coefficient.
Again, we need to determine how much x_{3} can be increased without violating the requirement that all the dependent variables remain nonnegative.

This time, we see that the equation for w_{2} is not affected by changes in x_{3}, but the equations for x_{1} and w_{3} do impose bounds, namely $x_{3} \leq 5$ and $x_{3} \leq 1$, respectively.
$\rightarrow x_{3}$ could be increased up to 1 .

Next Improvement

Set $x_{3}=1$ and re-compute dependent (basic) variable values according to the defining equations:

$$
\begin{array}{rlr}
x_{1} & =2.5-0.5 x_{3} \\
w_{2} & =1 & \\
w_{3} & =0.5-0.5 x_{3}
\end{array}
$$

we get

$$
x_{1}=2, \quad w_{2}=1, \quad w_{3}=0 .
$$

Next Improvement

Set $x_{3}=1$ and re-compute dependent (basic) variable values according to the defining equations:

$$
\begin{array}{rlr}
x_{1} & =2.5-0.5 x_{3} \\
w_{2} & =1 & \\
w_{3} & =0.5-0.5 x_{3}
\end{array}
$$

we get

$$
x_{1}=2, \quad w_{2}=1, \quad w_{3}=0 .
$$

Our new solution then is

$$
\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{w}_{1}, \bar{w}_{2}, \bar{w}_{3}\right)=(2,0,1,0,1,0)
$$

with objective function value

$$
\zeta=5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}=13 .
$$

Next Improvement

Set $x_{3}=1$ and re-compute dependent (basic) variable values according to the defining equations:

$$
\begin{array}{rlr}
x_{1} & =2.5-0.5 x_{3} \\
w_{2} & =1 & \\
w_{3} & =0.5-0.5 x_{3}
\end{array}
$$

we get

$$
x_{1}=2, \quad w_{2}=1, \quad w_{3}=0
$$

Our new solution then is

$$
\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{w}_{1}, \bar{w}_{2}, \bar{w}_{3}\right)=(2,0,1,0,1,0)
$$

with objective function value

$$
\zeta=5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}=13
$$

We found an improved solution!

SOME EXAMPLES FIRST

Retaining the Dictionary

In order to retain a dictionary layout for this solution, use w_{2} 's defining equation and re-write it as

$$
w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} \Longleftrightarrow x_{3}=1+3 w_{1}+x_{2}-2 w_{3} .
$$

Now, use the right-hand side to describe x_{1}, w_{2} and ζ only with the new set of independent variables: w_{1}, x_{2} and w_{3} as

$$
\begin{array}{rlrlrl}
\zeta= & 13- & w_{1}- & 3 x_{2}- & w_{3} \\
\hline x_{1}= & 2- & 2 w_{1}- & 2 x_{2}+ & w_{3} \\
w_{2} & = & 1+ & 2 w_{1}+ & 5 x_{2} & \\
x_{3}= & 1+ & 3 w_{1}+ & x_{2}- & 2 w_{3}
\end{array}
$$

SOME EXAMPLES FIRST

Retaining the Dictionary

In order to retain a dictionary layout for this solution, use w_{2} 's defining equation and re-write it as

$$
w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} \Longleftrightarrow x_{3}=1+3 w_{1}+x_{2}-2 w_{3} .
$$

Now, use the right-hand side to describe x_{1}, w_{2} and ζ only with the new set of independent variables: w_{1}, x_{2} and w_{3} as

$$
\begin{array}{rlrll}
\zeta= & 13- & w_{1}- & 3 x_{2}- & w_{3} \\
\hline x_{1}= & 2- & 2 w_{1}- & 2 x_{2}+ & w_{3} \\
w_{2}= & 1+ & 2 w_{1}+ & 5 x_{2} & \\
x_{3}= & 1+ & 3 w_{1}+ & x_{2}- & 2 w_{3}
\end{array}
$$

Note.
There is no independent variable for which an increase in its value would produce a corresponding increase in ζ and the algorithm stops.

Retaining the Dictionary

In order to retain a dictionary layout for this solution, use w_{2} 's defining equation and re-write it as

$$
w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} \Longleftrightarrow x_{3}=1+3 w_{1}+x_{2}-2 w_{3}
$$

Now, use the right-hand side to describe x_{1}, w_{2} and ζ only with the new set of independent variables: w_{1}, x_{2} and w_{3} as

$$
\begin{array}{rlrlll}
\zeta= & 13- & w_{1}- & 3 x_{2}- & w_{3} \\
\hline x_{1}= & 2- & 2 w_{1}- & 2 x_{2}+ & w_{3} \\
w_{2}= & 1+ & 2 w_{1}+ & 5 x_{2} & \\
x_{3}= & 1+ & 3 w_{1}+ & x_{2}- & 2 w_{3}
\end{array}
$$

Note.
There is no independent variable for which an increase in its value would produce a corresponding increase in ζ and the algorithm stops.

Claim: The current dictionary solution is optimal! The objective value ζ is at most 13 . Why?

Retaining the Dictionary

In order to retain a dictionary layout for this solution, use w_{2} 's defining equation and re-write it as

$$
w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} \Longleftrightarrow x_{3}=1+3 w_{1}+x_{2}-2 w_{3}
$$

Now, use the right-hand side to describe x_{1}, w_{2} and ζ only with the new set of independent variables: w_{1}, x_{2} and w_{3} as

$$
\begin{array}{rrrrr}
\zeta= & 13- & w_{1}- & 3 x_{2}- & w_{3} \\
\hline x_{1}= & 2- & 2 w_{1}- & 2 x_{2}+ & w_{3} \\
w_{2}= & 1+ & 2 w_{1}+ & 5 x_{2} & \\
x_{3}= & 1+ & 3 w_{1}+ & x_{2}- & 2 w_{3}
\end{array}
$$

Note.
There is no independent variable for which an increase in its value would produce a corresponding increase in ζ and the algorithm stops.

Claim: The current dictionary solution is optimal! The objective value ζ is at most 13 . Why? We got to the equation

$$
\zeta=13-w_{1}-3 x_{2}-w_{3}
$$

by equivalence-preserving steps using only the constraints of our linear program!

