LINEAR PROGRAMMING

[V. CH2]: THE SIMPLEX METHOD

Phillip Keldenich Ahmad Moradi

Department of Computer Science Algorithms Department TU Braunschweig

October 28, 2022

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING

October 28, 2022 2 / 53

Some examples first

THE SIMPLEX ALGORITHM

INITIALIZATION/INFEASIBILITY

UNBOUNDEDNESS

GEOMETRY

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

SIMPLEX ALGORITHM

In this chapter, we are going to learn a *method to solve* general linear programs. The method, called *Simplex algorithm*, will be developed for a general linear program (LP) in *standard form*.

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

SIMPLEX ALGORITHM

In this chapter, we are going to learn a *method to solve* general linear programs. The method, called *Simplex algorithm*, will be developed for a general linear program (LP) in *standard form*.

Consider a simple example:

EXAMPLE

\max_x	$5x_1 + $	$4x_2 +$	$3x_3$
s.t.	$2x_1 + $	$3x_2 +$	$x_3 \leq 5$
	$4x_1 + $	$x_2 +$	$2x_3 \le 11$
	$3x_1 + $	$4x_2 +$	$2x_3 \le 8$
	$x_1,$	$x_2,$	$x_3 \ge 0$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

EQUALITIES AND SLACKS

Start by adding the so-called slack variables and convert *inequality* constraints to *equality* ones.

For each of the less-than inequalities: Introduce a slack variable that represents the difference between the right-hand side and the left-hand side.

 \rightsquigarrow Introducing slack variable w_1

$$2x_1 + 3x_2 + x_3 \le 5 \iff w_1 = 5 - 2x_1 - 3x_2 - x_3, \quad w_1 \ge 0$$

 \rightsquigarrow Introducing w_2

 $4x_1 + x_2 + 2x_3 \le 11 \quad \iff \quad w_2 = 11 - 4x_1 - x_2 - 2x_3, \quad w_2 \ge 0$

 \rightsquigarrow Introducing w_3

 $3x_1 + 4x_2 + 2x_3 \le 8 \quad \iff \quad w_3 = 8 - 3x_1 - 4x_2 - 2x_3, \quad w_3 \ge 0$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

EQUALITIES AND SLACKS We get the following *equivalent* LP

\max_x	$\zeta =$		$5x_1 + $	$4x_2 +$	$3x_3$	
s.t.	$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3	
	$w_2 =$	11 -	$4x_1 - $	$x_2 -$	$2x_3$	
	$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$	
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

The simplex method is an iterative process in which:

 \rightsquigarrow we start with a less-than-optimal solution $(\dot{x}_1, \dot{x}_2, \cdots, \dot{w}_3)$ that satisfies the equations and non-negativities and then

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

EQUALITIES AND SLACKS We get the following *equivalent* LP

\max_x	$\zeta =$		$5x_1 + $	$4x_2 +$	$3x_3$	
s.t.	$w_1 =$	5 -	$2x_1 - $	$3x_2 -$	x_3	
	$w_2 =$	11 -	$4x_1 - $	$x_2 -$	$2x_3$	
	$w_{3} =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$	
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

The simplex method is an iterative process in which:

- \rightsquigarrow we start with a less-than-optimal solution $(\dot{x}_1, \dot{x}_2, \cdots, \dot{w}_3)$ that satisfies the equations and non-negativities and then
- \rightsquigarrow we look for a new solution $(\bar{x}_1, \bar{x}_2, \cdots, \bar{w}_3)$, which is better in the sense that it has a larger objective function value:

$$5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5\dot{x}_1 + 4\dot{x}_2 + 3\dot{x}_3$$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

EQUALITIES AND SLACKS We get the following *equivalent* LP

\max_x	$\zeta =$		$5x_1 + $	$4x_2 +$	$3x_3$	
s.t.	$w_1 =$	5 -	$2x_1 - $	$3x_2 -$	x_3	
	$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$	
	$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$	
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

The simplex method is an iterative process in which:

- \rightsquigarrow we start with a less-than-optimal solution $(\dot{x}_1, \dot{x}_2, \cdots, \dot{w}_3)$ that satisfies the equations and non-negativities and then
- \rightsquigarrow we look for a new solution $(\bar{x}_1, \bar{x}_2, \cdots, \bar{w}_3)$, which is better in the sense that it has a larger objective function value:

 $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5\dot{x}_1 + 4\dot{x}_2 + 3\dot{x}_3$

→ We continue this process until we arrive at a solution that cannot be improved.

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

EQUALITIES AND SLACKS We get the following *equivalent* LP

\max_x	$\zeta =$		$5x_1 + $	$4x_2 +$	$3x_3$	
s.t.	$w_1 =$	5 -	$2x_1 - $	$3x_2 -$	x_3	
	$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$	
	$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$	
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

The simplex method is an iterative process in which:

- \rightarrow we start with a less-than-optimal solution $(\dot{x}_1, \dot{x}_2, \dots, \dot{w}_3)$ that satisfies the equations and non-negativities and then
- \rightsquigarrow we look for a new solution $(\bar{x}_1, \bar{x}_2, \cdots, \bar{w}_3)$, which is better in the sense that it has a larger objective function value:

 $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5\dot{x}_1 + 4\dot{x}_2 + 3\dot{x}_3$

→ We continue this process until we arrive at a solution that cannot be improved.

This final solution is then an *optimal* solution.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022 6

INITIAL SOLUTION

Consider our example problem.

$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 —	$3x_1 - $	$4x_2 -$	$2x_3$

To start the iterative process, we need an *initial feasible solution*.

LINEAR PROGRAMMING

October 28, 2022

INITIAL SOLUTION

Consider our example problem.

$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$

To start the iterative process, we need an *initial feasible solution*.

Simply set all the *original* variables to zero:

 $x_1 = 0, \quad x_2 = 0, \quad x_3 = 0.$

Now, use the equations to determine the slack variables:

 $w_1 = 5, \quad w_2 = 11, \quad w_3 = 8.$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

INITIAL SOLUTION

Consider our example problem.

$w_1 =$	5 -	$2x_1 - $	$3x_2 -$	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$

To start the iterative process, we need an *initial feasible solution*.

Simply set all the *original* variables to zero:

 $x_1 = 0, \quad x_2 = 0, \quad x_3 = 0.$

Now, use the equations to determine the slack variables:

 $w_1 = 5, \quad w_2 = 11, \quad w_3 = 8.$

Luckily, we found a *feasible* solution:

 $(\dot{x}_1, \dot{x}_2, \dot{x}_3, \dot{w}_1, \dot{w}_2, \dot{w}_3) = (0, 0, 0, 5, 11, 8)$

with objective function value $\zeta = 0$.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

SOME EXAMPLES FIRST

SOLUTION IMPROVEMENT

We now ask whether this solution can be improved.

\max_x	ζ	=	0 +	$5 x_1 +$	$4x_2 +$	$3x_3$
s.t.	w_1	=	5 -	$2x_1 - $	$3x_2 -$	x_3
	w_2	=	11 —	$4x_1 - $	$x_2 -$	$2x_3$
	w_3	=	8 –	$3x_1 - $	$4x_2 -$	$2x_3$
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING

October 28, 2022

SOLUTION IMPROVEMENT

We now ask whether this solution can be improved.

\max_x	$\zeta =$	0 +	$5 x_1 +$	$4x_2 +$	$3x_3$	
s.t.	$w_1 =$	5 -	$2x_1 - $	$3x_2 -$	x_3	
	$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$	
	$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$	
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

Observation.

Since the coefficient of x_1 in the objective function is *positive*, if we increase the value of x_1 from zero to some positive value, we will increase ζ .

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING

October 28, 2022

SOLUTION IMPROVEMENT

We now ask whether this solution can be improved.

\max_x	$\zeta =$	0 +	$5 x_1 +$	$4x_2 +$	$3x_3$	
s.t.	$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3	
	$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$	
	$w_{3} =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$	
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

Observation.

Since the coefficient of x_1 in the objective function is *positive*, if we increase the value of x_1 from zero to some positive value, we will increase ζ .

Observation.

As we change x_1 's value, the values of the slack variables will also change. We must make sure that *we do not let any of them go negative*.

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

SOME EXAMPLES FIRST

ENSURING NON-NEGATIVITY

\max_x	$\zeta =$	0 +	$5 x_1 +$	$4x_2 +$	$3x_3$	
s.t.	$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3	
	$w_2 =$	11 —	$4x_1 - $	$x_2 - $	$2x_3$	
	$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$	
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

October 28, 2022

ENSURING NON-NEGATIVITY

$$\max_{x} \zeta = 0 + 5 x_{1} + 4x_{2} + 3x_{3}$$

s.t.
$$w_{1} = 5 - 2x_{1} - 3x_{2} - x_{3}$$
$$w_{2} = 11 - 4x_{1} - x_{2} - 2x_{3}$$
$$w_{3} = 8 - 3x_{1} - 4x_{2} - 2x_{3}$$
$$x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \ge 0$$

 x_2 and x_3 are currently set to 0, we see that

$$w_1 = 5 - 2x_1,$$

and so keeping w_1 non-negative imposes

$$w_1 \ge 0 \iff 5 - 2x_1 \ge 0 \iff x_1 \le \frac{5}{2}.$$

_

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

ENSURING NON-NEGATIVITY

\max_x	$\zeta =$	0 +	$5 x_1 +$	$4x_2 +$	$3x_3$	
s.t.	$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3	
	$w_2 =$	11 -	$4x_1 - $	$x_2 -$	$2x_3$	
	$w_3 =$	8 -	$3x_1 - $	$4x_2 - $	$2x_3$	
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

 x_2 and x_3 are currently set to 0, we see that

$$w_1 = 5 - 2x_1,$$

and so keeping w_1 non-negative imposes

$$w_1 \ge 0 \iff 5 - 2x_1 \ge 0 \iff x_1 \le \frac{5}{2}.$$

- \rightsquigarrow
- Non-negativity of w_2 imposes the bound that $x_1 \leq \frac{11}{4}$. Non-negativity of w_3 imposes the bound that $x_1 \leq \frac{8}{3}$. $\sim \rightarrow$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

ENSURING NON-NEGATIVITY

\max_x	ζ :	=	0 +	$5 x_1 +$	$4x_2 +$	$3x_3$
s.t.	w_1 :	=	5 -	$2x_1 - $	$3x_2 -$	x_3
	w_2 :	=	11 —	$4x_1 - $	$x_2 - $	$2x_3$
	w_3 :	=	8 -	$3x_1 - $	$4x_2 -$	$2x_3$
$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$						

 x_2 and x_3 are currently set to 0, we see that

$$w_1 = 5 - 2x_1,$$

and so keeping w_1 non-negative imposes

$$w_1 \ge 0 \iff 5 - 2x_1 \ge 0 \iff x_1 \le \frac{5}{2}.$$

- Non-negativity of w_2 imposes the bound that $x_1 \leq \frac{11}{4}$. Non-negativity of w_3 imposes the bound that $x_1 \leq \frac{8}{3}$. \rightsquigarrow
- \rightsquigarrow

Since all of these non-negativity conditions must be met, we see that x_1 cannot be made larger than the smallest of these bounds: $x_1 \leq \frac{5}{2}$.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

Now we can be sure raising x_1 up to $\frac{5}{2}$ will not destroy non-negativity of variables.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING

October 28, 2022 10 / 53

Now we can be sure raising x_1 up to $\frac{5}{2}$ will not destroy non-negativity of variables. Set $x_1 = \frac{5}{2}$ and re-compute slack values according to the defining equations

$$w_1 = 5 - 2x_1$$

 $w_2 = 11 - 4x_1$
 $w_3 = 8 - 3x_1$

we get

$$w_1 = 0$$
, $w_2 = 1$, $w_3 = \frac{1}{2}$.

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

Now we can be sure raising x_1 up to $\frac{5}{2}$ will not destroy non-negativity of variables. Set $x_1 = \frac{5}{2}$ and re-compute slack values according to the defining equations

$$w_1 = 5 - 2x_1$$

$$w_2 = 11 - 4x_1$$

$$w_3 = 8 - 3x_1$$

we get

•

$$w_1 = 0$$
, $w_2 = 1$, $w_3 = \frac{1}{2}$.

Our new solution then is

$$(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3) = (\frac{5}{2}, 0, 0, 0, 1, \frac{1}{2})$$

with objective function value

$$\zeta = 5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 = \frac{25}{2} > 0$$

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022 10 / 53

Now we can be sure raising x_1 up to $\frac{5}{2}$ will not destroy non-negativity of variables. Set $x_1 = \frac{5}{2}$ and re-compute slack values according to the defining equations

$$w_1 = 5 - 2x_1$$

$$w_2 = 11 - 4x_1$$

$$w_3 = 8 - 3x_1$$

we get

.

$$w_1 = 0$$
, $w_2 = 1$, $w_3 = \frac{1}{2}$.

Our new solution then is

$$(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3) = (\frac{5}{2}, 0, 0, 0, 1, \frac{1}{2})$$

with objective function value

$$\zeta = 5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 = \frac{25}{2} > 0$$

We found an improved solution!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$\zeta =$	0 +	$5x_1 + $	$4x_2 +$	$3x_3$
$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$

LINEAR PROGRAMMING

October 28, 2022

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$\zeta =$	0 +	$5x_1 + $	$4x_2 +$	$3x_3$
$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 -	$3x_1 - $	$4x_2 -$	$2x_3$

- Then, we found an initial feasible solution by setting variables on the right (x_i) to zero and reading off variables on the left (w_i) .

LINEAR PROGRAMMING

October 28, 2022 11 / 53

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$\zeta =$	0 +	$5x_1 + $	$4x_2 +$	$3x_3$
$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 -	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 —	$3x_1 - $	$4x_2 -$	$2x_3$

- Then, we found an initial feasible solution by setting variables on the right (x_i) to zero and reading off variables on the left (w_i) .
- Then, we looked at the objective function and found a variable (x_1) with positive coefficient. Increasing x_1 will improve objective function value.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022 11

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$\zeta =$	0 +	$5x_1 + $	$4x_2 +$	$3x_3$
$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 —	$3x_1 - $	$4x_2 -$	$2x_3$

- Then, we found an initial feasible solution by setting variables on the right (x_i) to zero and reading off variables on the left (w_i) .
- Then, we looked at the objective function and found a variable (x_1) with positive coefficient. Increasing x_1 will improve objective function value.
- Then, we used the layout to compute maximum possible increase in x_1 and thus improved the objective function while keeping variables on the left non-negative. This way, we constructed a new improved feasible solution.

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

RECAPITULATION

Lets capture what we have done up to now.

- We considered the following special layout

$\zeta =$	0 +	$5x_1 + $	$4x_2 +$	$3x_3$
$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 —	$3x_1 - $	$4x_2 -$	$2x_3$

- Then, we found an initial feasible solution by setting variables on the right (x_i) to zero and reading off variables on the left (w_i) .
- Then, we looked at the objective function and found a variable (x_1) with positive coefficient. Increasing x_1 will improve objective function value.
- Then, we used the layout to compute maximum possible increase in x_1 and thus improved the objective function while keeping variables on the left non-negative. This way, we constructed a new improved feasible solution.

Only this easy because of the special layout!

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

CONTINUING

But how to proceed?

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022 12 / 53

Continuing

But how to proceed?

Observation.

What made the first step easy was the fact that we had one group of variables that were initially zero and we had the rest explicitly expressed in terms of these.

$\zeta =$	0 +	$5x_1 + $	$4x_2 +$	$3x_3$
$\overline{w_1} =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 -	$3x_1 - $	$4x_2 - $	$2x_3$

LINEAR PROGRAMMING

October 28, 2022

Continuing

But how to proceed?

Observation.

What made the first step easy was the fact that we had one group of variables that were initially zero and we had the rest explicitly expressed in terms of these.

$\zeta =$	0 +	$5x_1 + $	$4x_2 +$	$3x_3$
$w_1 =$	5 -	$2x_1 - $	$3x_2 - $	x_3
$w_2 =$	11 —	$4x_1 - $	$x_2 -$	$2x_3$
$w_3 =$	8 —	$3x_1 - $	$4x_2 - $	$2x_3$

– This special layout is called a dictionary.

In a dictionary, objective and variables on the left are *defined* by variables on the right.

- Dependent variables (on the left) are called basic variables.

– Independent variables (on the right) are called nonbasic variables.

– Setting variables on the right to zero and reading off the values of the variables on the left gives us a dictionary solution.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

But how to proceed? We need to *retain* this layout/structure after moving to the new solution.

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022 13 / 53

But how to proceed? We need to *retain* this layout/structure after moving to the new solution.

Observation.

Raising x_1 up to $\frac{5}{2}$, decreases w_1 to zero. It seems now that (in the new solution): x_1 is a basic variable and w_1 is a non-basic variable.

LINEAR PROGRAMMING

October 28, 2022

But how to proceed? We need to *retain* this layout/structure after moving to the new solution.

Observation.

Raising x_1 up to $\frac{5}{2}$, decreases w_1 to zero. It seems now that (in the new solution): x_1 is a basic variable and w_1 is a non-basic variable.

Lets rewrite w_1 's defining equation as

$$w_1 = 5 - 2x_1 - 3x_2 - x_3 \iff x_1 = \frac{5}{2} - \frac{1}{2}w_1 - \frac{3}{2}x_2 - \frac{1}{2}x_3$$
.

LINEAR PROGRAMMING

October 28, 2022

But how to proceed? We need to *retain* this layout/structure after moving to the new solution.

Observation.

Raising x_1 up to $\frac{5}{2}$, decreases w_1 to zero. It seems now that (in the new solution): x_1 is a basic variable and w_1 is a non-basic variable.

Lets rewrite w_1 's defining equation as

$$w_1 = 5 - 2x_1 - 3x_2 - x_3 \iff x_1 = \frac{5}{2} - \frac{1}{2}w_1 - \frac{3}{2}x_2 - \frac{1}{2}x_3$$
.

Now, use the r.h.s. to describe w_2, w_3 and ζ only with the new set of independent variables: w_1, x_2 and x_3 as

$\zeta =$	12.5 -	$2.5w_1 - $	$3.5x_2 +$	$0.5x_{3}$
$x_1 =$	2.5 -	$0.5w_1 - $	$1.5x_2 - $	$0.5x_{3}$
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$w_3 =$	0.5 +	$1.5w_1 + $	$0.5x_2 - $	$0.5x_{3}$

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

But how to proceed? We need to *retain* this layout/structure after moving to the new solution.

Observation.

Raising x_1 up to $\frac{5}{2}$, decreases w_1 to zero. It seems now that (in the new solution): x_1 is a basic variable and w_1 is a non-basic variable.

Lets rewrite w_1 's defining equation as

$$w_1 = 5 - 2x_1 - 3x_2 - x_3 \iff x_1 = \frac{5}{2} - \frac{1}{2}w_1 - \frac{3}{2}x_2 - \frac{1}{2}x_3$$
.

Now, use the r.h.s. to describe w_2 , w_3 and ζ only with the new set of independent variables: w_1, x_2 and x_3 as

$\zeta =$	12.5 -	$2.5w_1 - $	$3.5x_2 +$	$0.5x_{3}$
$x_1 =$	2.5 -	$0.5w_1 - $	$1.5x_2 - $	$0.5x_{3}$
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$w_3 =$	0.5 +	$1.5w_1 + $	$0.5x_2 - $	$0.5x_{3}$

Note.

We can recover our current solution by setting the *independent* (non-basic) variables to zero and using the equations to read off the values for the dependent (basic) variables.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

SOME EXAMPLES FIRST

NEXT IMPROVEMENT

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$\zeta =$	12.5 -	$2.5w_1 - $	$3.5x_2 +$	$0.5x_{3}$
$x_1 =$	2.5 -	$0.5w_1 - $	$1.5x_2 - $	$0.5x_{3}$
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$w_3 =$	0.5 +	$1.5w_1 + $	$0.5x_2 - $	$0.5x_{3}$

October 28, 2022 14 / 53

NEXT IMPROVEMENT

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$\zeta =$	12.5 -	$2.5w_1 - $	$3.5x_2 +$	$0.5x_{3}$
$x_1 =$	2.5 -	$0.5w_1 - $	$1.5x_2 - $	$0.5x_3$
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$w_3 =$	0.5 +	$1.5w_1 + $	$0.5x_2 - $	$0.5x_{3}$

Now x_3 is the only variable with a positive coefficient.

LINEAR PROGRAMMING

October 28, 2022 14 / 53

NEXT IMPROVEMENT

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$\zeta =$	12.5 -	$2.5w_1 - $	$3.5x_2 +$	$0.5x_{3}$
$x_1 =$	2.5 -	$0.5w_1 - $	$1.5x_2 - $	$0.5x_{3}$
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$w_3 =$	0.5 +	$1.5w_1 + $	$0.5x_2 - $	$0.5x_{3}$

Now x_3 is the only variable with a positive coefficient.

Again, we need to determine how much x_3 can be increased without violating the requirement that all the dependent variables remain nonnegative.

LINEAR PROGRAMMING

October 28, 2022

NEXT IMPROVEMENT

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$\zeta =$	12.5 -	$2.5w_1 - $	$3.5x_2 +$	$0.5x_{3}$
$x_1 =$	2.5 -	$0.5w_1 - $	$1.5x_2 - $	$0.5x_{3}$
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$w_3 =$	0.5 +	$1.5w_1 + $	$0.5x_2 - $	$0.5x_{3}$

Now x_3 is the only variable with a positive coefficient.

Again, we need to determine how much x_3 can be increased without violating the requirement that all the dependent variables remain nonnegative.

This time, we see that the equation for w_2 is not affected by changes in x_3 , but the equations for x_1 and w_3 do impose bounds, namely $x_3 \le 5$ and $x_3 \le 1$, respectively.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

NEXT IMPROVEMENT

Having the current (dictionary) solution and its corresponding dictionary, we can look for any further improvement.

$\zeta =$	12.5 -	$2.5w_1 - $	$3.5x_2 +$	$0.5x_{3}$
$x_1 =$	2.5 -	$0.5w_1 - $	$1.5x_2 - $	$0.5x_{3}$
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$w_3 =$	0.5 +	$1.5w_1 + $	$0.5x_2 - $	$0.5x_{3}$

Now x_3 is the only variable with a positive coefficient.

Again, we need to determine how much x_3 can be increased without violating the requirement that all the dependent variables remain nonnegative.

This time, we see that the equation for w_2 is not affected by changes in x_3 , but the equations for x_1 and w_3 do impose bounds, namely $x_3 \le 5$ and $x_3 \le 1$, respectively.

 $\rightarrow x_3$ could be increased up to 1.

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

NEXT IMPROVEMENT

Set $x_3 = 1$ and re-compute dependent (basic) variable values according to the defining equations:

$x_1 =$	2.5 -	$0.5x_{3}$
$w_2 =$	1	
$w_3 =$	0.5 -	$0.5x_{3}$
$x_1 = 2,$	$w_2 = 1,$	$w_3 = 0.$

we get

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022 15 / 53

NEXT IMPROVEMENT

Set $x_3 = 1$ and re-compute dependent (basic) variable values according to the defining equations:

	$x_1 =$	2.5 -	$0.5x_{3}$
	$w_2 =$	1	
	$w_3 =$	0.5 -	$0.5x_{3}$
we get	$x_1 = 2,$	$w_2 = 1,$	$w_3 = 0.$
Our new solution then is			
	$(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1,$	$\bar{w}_2, \bar{w}_3) =$	=(2,0,1,0,1,0)

with objective function value

 $\zeta = 5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 = 13.$

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

NEXT IMPROVEMENT

Set $x_3 = 1$ and re-compute dependent (basic) variable values according to the defining equations:

	$x_1 =$	2.5 -	$0.5x_{3}$
	$w_2 =$	1	
	$w_3 =$	0.5 -	$0.5x_{3}$
we get	$x_1 = 2,$	$w_2 = 1,$	$w_3 = 0.$
Our new solution then is			
	$(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1,$	$\bar{w}_2, \bar{w}_3) =$	=(2,0,1,0,1,0)

with objective function value

 $\zeta = 5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 = 13.$

We found an improved solution!

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022 15 / 53

RETAINING THE DICTIONARY

In order to retain a dictionary layout for this solution, use w_2 's defining equation and re-write it as

 $w_3 = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3 \iff x_3 = 1 + 3w_1 + x_2 - 2w_3$.

Now, use the right-hand side to describe x_1, w_2 and ζ only with the new set of independent variables: w_1, x_2 and w_3 as

$\zeta =$	13 -	$w_1 - $	$3x_2 - $	w_3
$x_1 =$	2 -	$2w_1 - $	$2x_2 +$	w_3
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$x_{3} =$	1 +	$3w_1 + $	$x_2 -$	$2w_3$

LINEAR PROGRAMMING

October 28, 2022

RETAINING THE DICTIONARY

In order to retain a dictionary layout for this solution, use w_2 's defining equation and re-write it as

 $w_3 = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3 \iff x_3 = 1 + 3w_1 + x_2 - 2w_3$.

Now, use the right-hand side to describe x_1, w_2 and ζ only with the new set of independent variables: w_1, x_2 and w_3 as

$\zeta =$	13 -	$w_1 - $	$3x_2 - $	w_3
$x_1 =$	2 -	$2w_1 - $	$2x_2 +$	w_3
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$x_3 =$	1 +	$3w_1 + $	$x_2 - $	$2w_3$

Note.

There is *no independent variable* for which an increase in its value would produce a corresponding increase in ζ and the algorithm stops.

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022

RETAINING THE DICTIONARY

In order to retain a dictionary layout for this solution, use w_2 's defining equation and re-write it as

 $w_3 = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3 \iff x_3 = 1 + 3w_1 + x_2 - 2w_3$.

Now, use the right-hand side to describe x_1, w_2 and ζ only with the new set of independent variables: w_1, x_2 and w_3 as

$\zeta =$	13 -	$w_1 - $	$3x_2 - $	w_3
$x_1 =$	2 -	$2w_1 - $	$2x_2 +$	w_3
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$x_3 =$	1 +	$3w_1 + $	$x_2 -$	$2w_3$

Note.

There is *no independent variable* for which an increase in its value would produce a corresponding increase in ζ and the algorithm stops.

Claim: The current dictionary solution is *optimal*! The objective value ζ is at most 13. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

LINEAR PROGRAMMING

October 28, 2022

RETAINING THE DICTIONARY

In order to retain a dictionary layout for this solution, use w_2 's defining equation and re-write it as

 $w_3 = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3 \iff x_3 = 1 + 3w_1 + x_2 - 2w_3$.

Now, use the right-hand side to describe x_1, w_2 and ζ only with the new set of independent variables: w_1, x_2 and w_3 as

$\zeta =$	13 -	$w_1 - $	$3x_2 - $	w_3
$x_1 =$	2 -	$2w_1 - $	$2x_2 +$	w_3
$w_2 =$	1 +	$2w_1 + $	$5x_2$	
$x_3 =$	1 +	$3w_1 + $	$x_2 -$	$2w_3$

Note.

There is *no independent variable* for which an increase in its value would produce a corresponding increase in ζ and the algorithm stops.

Claim: The current dictionary solution is *optimal*! The objective value ζ is at most 13. Why? We got to the equation

$$\zeta = 13 - w_1 - 3x_2 - w_3$$

by equivalence-preserving steps using only the constraints of our linear program!

P. Keldenich, A. Moradi (IBR Algorithmik)

LINEAR PROGRAMMING

October 28, 2022 16