LINEAR PROGRAMMING

[V. CH11]: MATRIX GAMES

Phillip Keldenich Ahmad Moradi

Department of Computer Science Algorithms Department TU Braunschweig

February 7, 2023

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

MATRIX GAMES

A two person game like the famous kid's Rock-Paper-Scissors game.

Rules.

At the count of three declare one of: Rock / Paper / Scissors

Winner Selection.

Identical selection is a draw. Otherwise:

- Rock dulls Scissors
- Paper covers Rock
- Scissors cuts Paper

Payoffs are from row player to column player:

$$\begin{array}{cccc} R & P & S \\ R & \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ S & 1 & -1 & 0 \end{pmatrix}$$

which one has the edge in (a round) of this game? total payoff sent/received = 3/3

Note:

Any deterministic strategy employed by either player can be defeated systematically by the other player.

How about this one?

$$\begin{array}{cccc} R & P & S \\ R & \begin{pmatrix} 0 & 1 & -2 \\ -3 & 0 & 4 \\ 5 & -6 & 0 \end{pmatrix}$$

total payoff sent/received = 10/11

Note:

Any deterministic strategy employed by either player can be defeated systematically by the other player.

Considering total payoff, one might suspect that row player might have the edge.

But

Is this correct?

if so, how much can the row player expect to win on average in each round?

Note:

How the row player might make use of this expected value if he knows it but the column player does not?

Lets first define such a game in general:

Given: an $m \times n$ matrix $A = [a_{ij}]$ known to both players in advance.

- Row player selects a *strategy* $i \in \{1, ..., m\}$
- Column player selects a strategy $j \in \{1, \dots, n\}$
- Row player pays column player a_{ij} dollars.

Note: The rows of *A* represent deterministic strategies for row player, while columns of *A* represent deterministic strategies for column player.

Deterministic strategies can be (and usually are) bad.

Lets consider that they play with *randomised strategies*.

- Suppose column player picks j with probability x_j .
- Suppose row player picks i with probability y_i .

vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_m)$ are stochastic vectors i.e. they have non-negative components that sums up to 1.

$$\forall j: x_j \ge 0 \quad \text{and} \quad \sum_j x_j = 1$$

Similarly

$$\forall i: y_i \ge 0 \quad \text{and} \quad \sum_i y_i = 1$$

If row player uses random strategy y and column player uses x, then expected payoff from row player to column player is

$$\sum_{i} \sum_{j} y_{i} a_{ij} x_{j} = y^{T} A x$$

Recall: For outcome (i, j) the payoff is a_{ij} , and, assuming that the row and column players behave *independently*, the probability of this outcome is simply $y_i x_j$.

Suppose column player were to adopt strategy *x*.

Then, row player's best defense is to use strategy y that *minimises* $y^T Ax$:

$\min_{y} y^T A x$

And so column player should choose that x which *maximises* these possibilities:

$\max_x \min_y y^T A x$

For a moment let
$$x = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})^T$$
.

Write down the inner minimisation problem. Why this is only needed to look at deterministic strategies?

The observation gives a general way to solve the inner problem.

Given a vector x, the inner minimisation problem is easy as

$$\min_{y} y^T A x = \min_{i} e_i^T A x$$

 e_i is the vector of all zeros except for a 1 in the *i*-th position: the deterministic strategy *i*.

Note: this observation reduced a minimisation over a continuum to one over a finite set.

We have:

$$\max(\min_{i} e_{i}^{T} A x)$$
$$\sum_{j} x_{j} = 1$$
$$x_{j} \ge 0, \quad j = 1, \dots, n$$

Introduce a scalar variable v = the value of the inner minimisation, we get

 $\begin{aligned} \max v \\ v &\geq e_i^T A x, \quad i = 1, \dots, m \\ \sum_j x_j &= 1, \\ x_j &\geq 0, \qquad j = 1, \dots, n \end{aligned}$

Writing in matrix-vector notation:

 $\max v$

$$ve - Ax \le 0$$
$$e^T x = 1$$
$$x \ge 0$$

(e without a subscript denotes the vector of all ones).

Similarly, row player seeks y^* attaining:

$$\min_{y} \max_{x} y^T A x$$

which is equivalent to:

 $\min u$ $ue - A^T y \ge 0$ $e^T y = 1$ $y \ge 0$

Note: Row player's problem is dual to column player's

column player's problemrow player's problemmax
$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}$$
min $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix}$ s.t. $\begin{bmatrix} -A & e \\ e^T & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} \leq \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ s.t. $\begin{bmatrix} -A^T & e \\ e^T & 0 \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} \geq \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $x \ge 0$ $y \ge 0$ v free u free

P. KELDENICH, A. MORADI (IBR ALGORITHMIK)

 $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix}$

 $y \ge 0$ u free

Theorem

There exist stochastic vectors x^* *and* y^* *for which*

$$\max_{x} y^{*T} A x = \min_{y} y^{T} A x^{*}$$

The common optimal value $v^* = u^*$ of the primal and dual linear programs is called the value of the game.

What is the value of the game for the following matrix game

$$\begin{pmatrix} 0 & 1 & -2 \\ -3 & 0 & 4 \\ 5 & -6 & 0 \end{pmatrix}$$

In the tutorial session this week, we will discuss how linear programming could act as a classifier, i.e. the *support vector machine*.