
LINEAR PROGRAMMING

[V. CH10]: THE TRAVELING SALESMAN PROBLEM

Phillip Keldenich Ahmad Moradi

Department of Computer Science
Algorithms Department

TU Braunschweig

January 31, 2023



WHAT? WHY? HOW?

WHAT? WHY? HOW?

CUTTING PLANES

EXCLUDING EDGES

NUMERICAL ISSUES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 2 / 25



WHAT? WHY? HOW?

WHAT (PRECISELY) IS THE TSP?

In the TSP, we are given a set of n cities V with distances d(i, j) between each other.
Our goal is to find a shortest tour that visits each city and returns to the starting point.
In our (actually, the most common) version:

the underlying graph G = (V,E) is complete, i.e., we can directly go from any v to any w,

the distances are symmetric, i.e., d(i, j) = d(j, i), i.e., the graph is undirected,

we often assume the triangle inequality, i.e., d(i, k) ≤ d(i, j) + d(j, k).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 3 / 25



WHAT? WHY? HOW?

WHAT (PRECISELY) IS THE TSP?

In the TSP, we are given a set of n cities V with distances d(i, j) between each other.
Our goal is to find a shortest tour that visits each city and returns to the starting point.
In our (actually, the most common) version:

the underlying graph G = (V,E) is complete, i.e., we can directly go from any v to any w,

the distances are symmetric, i.e., d(i, j) = d(j, i), i.e., the graph is undirected,

we often assume the triangle inequality, i.e., d(i, k) ≤ d(i, j) + d(j, k).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 3 / 25



WHAT? WHY? HOW?

WHAT (PRECISELY) IS THE TSP?

In the TSP, we are given a set of n cities V with distances d(i, j) between each other.
Our goal is to find a shortest tour that visits each city and returns to the starting point.
In our (actually, the most common) version:

the underlying graph G = (V,E) is complete, i.e., we can directly go from any v to any w,

the distances are symmetric, i.e., d(i, j) = d(j, i), i.e., the graph is undirected,

we often assume the triangle inequality, i.e., d(i, k) ≤ d(i, j) + d(j, k).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 3 / 25



WHAT? WHY? HOW?

WHAT (PRECISELY) IS THE TSP?

In the TSP, we are given a set of n cities V with distances d(i, j) between each other.
Our goal is to find a shortest tour that visits each city and returns to the starting point.
In our (actually, the most common) version:

the underlying graph G = (V,E) is complete, i.e., we can directly go from any v to any w,

the distances are symmetric, i.e., d(i, j) = d(j, i), i.e., the graph is undirected,

we often assume the triangle inequality, i.e., d(i, k) ≤ d(i, j) + d(j, k).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 3 / 25



WHAT? WHY? HOW?

WHY THE TSP?

The TSP is a very natural, fundamental NP-complete problem.
Direct practical applications are rather rare, but they do occur.
Closely related to very relevant problems, e.g., vehicle routing with various extensions.

Most important reason for studying it here:
It is one of the main drivers behind the development and improvement of IP solving, and IP
solving is exceptionally successful for the TSP. Many ideas that improved (M)IP solvers over the
years have been first developed and applied in the context of the TSP.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 4 / 25



WHAT? WHY? HOW?

WHY THE TSP?

The TSP is a very natural, fundamental NP-complete problem.
Direct practical applications are rather rare, but they do occur.
Closely related to very relevant problems, e.g., vehicle routing with various extensions.

Most important reason for studying it here:
It is one of the main drivers behind the development and improvement of IP solving, and IP
solving is exceptionally successful for the TSP. Many ideas that improved (M)IP solvers over the
years have been first developed and applied in the context of the TSP.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 4 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

TSP MODEL

There are multiple TSP models. The practical one is:

min
∑

vw∈E

d(v, w)xvw, s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ̸= ∅, S ⊊ V :
∑

e∈δ(S)

xe ≥ 2,

∀e : xe ∈ {0, 1}.

δ(A) contains exactly all edges between a vertex v ∈ A and w /∈ A.

Notes:

The model has Ω(2n) constraints (because of the last type of constraint).

These constraints are called Subtour Elimination Constraints.

They are not normally added in the beginning; instead, one handles them lazily.

That means we add violated subtour elimination constraints as needed while solving.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 5 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities.

The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.

This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well.

However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.

This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.

This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.

This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.

This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.

This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.
This means we need too much memory!

Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.
This means we need too much memory!
Solving the LPs becomes time-consuming!

Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.
This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!

We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.
This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.

Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.
This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



WHAT? WHY? HOW?

OBSTACLES

A rather simple solver based on this model (seen in the exercise) is enough to solve most instances
with around 500 cities. The best TSP solver Concorde is based on this model as well. However, it
could deal (with lots of CPU time) with at least 85900 cities. We have the following obstacles to
deal with when we increase the number of cities much further.

We have to deal with lazily finding violated subtour elimination constraints.

The LP relaxation of our formulation is usually quite strong. However, we must improve it
with cutting planes to tackle larger and more complicated instances.

The number of edges is Ω(n2); the number of non-zeros in our matrix can be even larger.
This means we need too much memory!
Solving the LPs becomes time-consuming!
Intuitively, most edges seem useless!
We need to be able to dynamically add and remove edges (i.e., variables!) from consideration.
Without losing provable optimality!

Numerical issues can cause solutions obtained from our LP solver to not be strictly
feasible/optimal. If we really want provable optimality, we have to deal with this (often
ignored) problem.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 6 / 25



CUTTING PLANES

WHAT? WHY? HOW?

CUTTING PLANES

EXCLUDING EDGES

NUMERICAL ISSUES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 7 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS

We can think about subtour elimination constraints just like cutting planes:

They are added in the same place in the search — after solving a linear relaxation.

They are both constraints satisfied by all (integer) tours.

After adding constraints in a node, the linear relaxation is re-solved.

After re-solving, if we are not integral, we either continue adding constraints, or we branch.

The separation problem for subtour elimination problems asks:
Given a solution to our model, is there a subtour constraint violated by the solution?

For integer solutions, this is easy: Just check if there is more than one component!

What about non-integer solutions?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 8 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS

We can think about subtour elimination constraints just like cutting planes:

They are added in the same place in the search — after solving a linear relaxation.

They are both constraints satisfied by all (integer) tours.

After adding constraints in a node, the linear relaxation is re-solved.

After re-solving, if we are not integral, we either continue adding constraints, or we branch.

The separation problem for subtour elimination problems asks:
Given a solution to our model, is there a subtour constraint violated by the solution?

For integer solutions, this is easy: Just check if there is more than one component!

What about non-integer solutions?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 8 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS

We can think about subtour elimination constraints just like cutting planes:

They are added in the same place in the search — after solving a linear relaxation.

They are both constraints satisfied by all (integer) tours.

After adding constraints in a node, the linear relaxation is re-solved.

After re-solving, if we are not integral, we either continue adding constraints, or we branch.

The separation problem for subtour elimination problems asks:
Given a solution to our model, is there a subtour constraint violated by the solution?

For integer solutions, this is easy: Just check if there is more than one component!

What about non-integer solutions?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 8 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS

We can think about subtour elimination constraints just like cutting planes:

They are added in the same place in the search — after solving a linear relaxation.

They are both constraints satisfied by all (integer) tours.

After adding constraints in a node, the linear relaxation is re-solved.

After re-solving, if we are not integral, we either continue adding constraints, or we branch.

The separation problem for subtour elimination problems asks:
Given a solution to our model, is there a subtour constraint violated by the solution?

For integer solutions, this is easy: Just check if there is more than one component!

What about non-integer solutions?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 8 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS

We can think about subtour elimination constraints just like cutting planes:

They are added in the same place in the search — after solving a linear relaxation.

They are both constraints satisfied by all (integer) tours.

After adding constraints in a node, the linear relaxation is re-solved.

After re-solving, if we are not integral, we either continue adding constraints, or we branch.

The separation problem for subtour elimination problems asks:
Given a solution to our model, is there a subtour constraint violated by the solution?

For integer solutions, this is easy: Just check if there is more than one component!

What about non-integer solutions?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 8 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS

We can think about subtour elimination constraints just like cutting planes:

They are added in the same place in the search — after solving a linear relaxation.

They are both constraints satisfied by all (integer) tours.

After adding constraints in a node, the linear relaxation is re-solved.

After re-solving, if we are not integral, we either continue adding constraints, or we branch.

The separation problem for subtour elimination problems asks:
Given a solution to our model, is there a subtour constraint violated by the solution?

For integer solutions, this is easy: Just check if there is more than one component!

What about non-integer solutions?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 8 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS

We can think about subtour elimination constraints just like cutting planes:

They are added in the same place in the search — after solving a linear relaxation.

They are both constraints satisfied by all (integer) tours.

After adding constraints in a node, the linear relaxation is re-solved.

After re-solving, if we are not integral, we either continue adding constraints, or we branch.

The separation problem for subtour elimination problems asks:
Given a solution to our model, is there a subtour constraint violated by the solution?

For integer solutions, this is easy: Just check if there is more than one component!

What about non-integer solutions?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 8 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS

We can think about subtour elimination constraints just like cutting planes:

They are added in the same place in the search — after solving a linear relaxation.

They are both constraints satisfied by all (integer) tours.

After adding constraints in a node, the linear relaxation is re-solved.

After re-solving, if we are not integral, we either continue adding constraints, or we branch.

The separation problem for subtour elimination problems asks:
Given a solution to our model, is there a subtour constraint violated by the solution?

For integer solutions, this is easy: Just check if there is more than one component!

What about non-integer solutions?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 8 / 25



CUTTING PLANES

SEPARATION PROBLEMS

In general, a separation problem consists of the following task.

We are given a solution to some relaxation:
a solution to a problem with missing constraints.

We want to find out if there is a missing constraint violated by the solution.

If there is, we also want to find a suitable violated constraint that we can add to our
relaxation.

One important separation problem is the general separation problem for (M)IPs.
In it, the missing constraints are the integrality constraints, the given solution is the solution to the
linear relaxation, and the violated constraint must be a linear inequality.

Separation Oracle Method:
If we can solve this problem in polynomial time for any given solution, we can solve the
corresponding (M)IP in polynomial time.

There are also separation problems for specific types of cutting planes, e.g., for Gomory Cuts,
Subtour Elimination Constraints, . . . ; those can sometimes be solved efficiently (and are often only
solved heuristically).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 9 / 25



CUTTING PLANES

SEPARATION PROBLEMS

In general, a separation problem consists of the following task.

We are given a solution to some relaxation:
a solution to a problem with missing constraints.

We want to find out if there is a missing constraint violated by the solution.

If there is, we also want to find a suitable violated constraint that we can add to our
relaxation.

One important separation problem is the general separation problem for (M)IPs.
In it, the missing constraints are the integrality constraints, the given solution is the solution to the
linear relaxation, and the violated constraint must be a linear inequality.

Separation Oracle Method:
If we can solve this problem in polynomial time for any given solution, we can solve the
corresponding (M)IP in polynomial time.

There are also separation problems for specific types of cutting planes, e.g., for Gomory Cuts,
Subtour Elimination Constraints, . . . ; those can sometimes be solved efficiently (and are often only
solved heuristically).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 9 / 25



CUTTING PLANES

SEPARATION PROBLEMS

In general, a separation problem consists of the following task.

We are given a solution to some relaxation:
a solution to a problem with missing constraints.

We want to find out if there is a missing constraint violated by the solution.

If there is, we also want to find a suitable violated constraint that we can add to our
relaxation.

One important separation problem is the general separation problem for (M)IPs.
In it, the missing constraints are the integrality constraints, the given solution is the solution to the
linear relaxation, and the violated constraint must be a linear inequality.

Separation Oracle Method:
If we can solve this problem in polynomial time for any given solution, we can solve the
corresponding (M)IP in polynomial time.

There are also separation problems for specific types of cutting planes, e.g., for Gomory Cuts,
Subtour Elimination Constraints, . . . ; those can sometimes be solved efficiently (and are often only
solved heuristically).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 9 / 25



CUTTING PLANES

SEPARATION PROBLEMS

In general, a separation problem consists of the following task.

We are given a solution to some relaxation:
a solution to a problem with missing constraints.

We want to find out if there is a missing constraint violated by the solution.

If there is, we also want to find a suitable violated constraint that we can add to our
relaxation.

One important separation problem is the general separation problem for (M)IPs.
In it, the missing constraints are the integrality constraints, the given solution is the solution to the
linear relaxation, and the violated constraint must be a linear inequality.

Separation Oracle Method:
If we can solve this problem in polynomial time for any given solution, we can solve the
corresponding (M)IP in polynomial time.

There are also separation problems for specific types of cutting planes, e.g., for Gomory Cuts,
Subtour Elimination Constraints, . . . ; those can sometimes be solved efficiently (and are often only
solved heuristically).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 9 / 25



CUTTING PLANES

SEPARATION PROBLEMS

In general, a separation problem consists of the following task.

We are given a solution to some relaxation:
a solution to a problem with missing constraints.

We want to find out if there is a missing constraint violated by the solution.

If there is, we also want to find a suitable violated constraint that we can add to our
relaxation.

One important separation problem is the general separation problem for (M)IPs.

In it, the missing constraints are the integrality constraints, the given solution is the solution to the
linear relaxation, and the violated constraint must be a linear inequality.

Separation Oracle Method:
If we can solve this problem in polynomial time for any given solution, we can solve the
corresponding (M)IP in polynomial time.

There are also separation problems for specific types of cutting planes, e.g., for Gomory Cuts,
Subtour Elimination Constraints, . . . ; those can sometimes be solved efficiently (and are often only
solved heuristically).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 9 / 25



CUTTING PLANES

SEPARATION PROBLEMS

In general, a separation problem consists of the following task.

We are given a solution to some relaxation:
a solution to a problem with missing constraints.

We want to find out if there is a missing constraint violated by the solution.

If there is, we also want to find a suitable violated constraint that we can add to our
relaxation.

One important separation problem is the general separation problem for (M)IPs.
In it, the missing constraints are the integrality constraints, the given solution is the solution to the
linear relaxation, and the violated constraint must be a linear inequality.

Separation Oracle Method:
If we can solve this problem in polynomial time for any given solution, we can solve the
corresponding (M)IP in polynomial time.

There are also separation problems for specific types of cutting planes, e.g., for Gomory Cuts,
Subtour Elimination Constraints, . . . ; those can sometimes be solved efficiently (and are often only
solved heuristically).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 9 / 25



CUTTING PLANES

SEPARATION PROBLEMS

In general, a separation problem consists of the following task.

We are given a solution to some relaxation:
a solution to a problem with missing constraints.

We want to find out if there is a missing constraint violated by the solution.

If there is, we also want to find a suitable violated constraint that we can add to our
relaxation.

One important separation problem is the general separation problem for (M)IPs.
In it, the missing constraints are the integrality constraints, the given solution is the solution to the
linear relaxation, and the violated constraint must be a linear inequality.

Separation Oracle Method:
If we can solve this problem in polynomial time for any given solution, we can solve the
corresponding (M)IP in polynomial time.

There are also separation problems for specific types of cutting planes, e.g., for Gomory Cuts,
Subtour Elimination Constraints, . . . ; those can sometimes be solved efficiently (and are often only
solved heuristically).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 9 / 25



CUTTING PLANES

SEPARATION PROBLEMS

In general, a separation problem consists of the following task.

We are given a solution to some relaxation:
a solution to a problem with missing constraints.

We want to find out if there is a missing constraint violated by the solution.

If there is, we also want to find a suitable violated constraint that we can add to our
relaxation.

One important separation problem is the general separation problem for (M)IPs.
In it, the missing constraints are the integrality constraints, the given solution is the solution to the
linear relaxation, and the violated constraint must be a linear inequality.

Separation Oracle Method:
If we can solve this problem in polynomial time for any given solution, we can solve the
corresponding (M)IP in polynomial time.

There are also separation problems for specific types of cutting planes, e.g., for Gomory Cuts,
Subtour Elimination Constraints, . . . ; those can sometimes be solved efficiently (and are often only
solved heuristically).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 9 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — SEPARATION PROBLEM

The separation problem can be interpreted as follows:
Given a weighted graph H = (V,E′, w) with w(e) = x∗

e and E′ = {e ∈ E : w(e) > 0},
find some ∅ ̸= S ⊊ V such that

∑
e∈δ(S)

w(e) < 2, or find out no such set exists.

Example in an interactive tool: https://www.math.uwaterloo.ca/tsp/app/diy.html

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 10 / 25

https://www.math.uwaterloo.ca/tsp/app/diy.html


CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — SEPARATION PROBLEM

The separation problem can be interpreted as follows:
Given a weighted graph H = (V,E′, w) with w(e) = x∗

e and E′ = {e ∈ E : w(e) > 0},
find some ∅ ̸= S ⊊ V such that

∑
e∈δ(S)

w(e) < 2, or find out no such set exists.

Example in an interactive tool: https://www.math.uwaterloo.ca/tsp/app/diy.html

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 10 / 25

https://www.math.uwaterloo.ca/tsp/app/diy.html


CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — OPTIONS FOR SEPARATION

To detect violated subtour constraints, we have the following options:

Look for connected components (linear time).

Look for biconnected components (linear time).

Using some source s and some sink t, find a minimum s-t-cut (almost linear time).

Find a global minimum graph cut using, e.g., the Stoer-Wagner algorithm
(O(mn+ n2 logn)).

A global minimum graph cut below 2 corresponds to a violated subtour constraint and vice versa;
we can solve the separation problem exactly in polynomial time!

Usually, we cannot afford to do minimum graph cut computations all the time; we go through the
list from the top and use the more expensive methods sparingly.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 11 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — OPTIONS FOR SEPARATION

To detect violated subtour constraints, we have the following options:

Look for connected components (linear time).

Look for biconnected components (linear time).

Using some source s and some sink t, find a minimum s-t-cut (almost linear time).

Find a global minimum graph cut using, e.g., the Stoer-Wagner algorithm
(O(mn+ n2 logn)).

A global minimum graph cut below 2 corresponds to a violated subtour constraint and vice versa;
we can solve the separation problem exactly in polynomial time!

Usually, we cannot afford to do minimum graph cut computations all the time; we go through the
list from the top and use the more expensive methods sparingly.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 11 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — OPTIONS FOR SEPARATION

To detect violated subtour constraints, we have the following options:

Look for connected components (linear time).

Look for biconnected components (linear time).

Using some source s and some sink t, find a minimum s-t-cut (almost linear time).

Find a global minimum graph cut using, e.g., the Stoer-Wagner algorithm
(O(mn+ n2 logn)).

A global minimum graph cut below 2 corresponds to a violated subtour constraint and vice versa;
we can solve the separation problem exactly in polynomial time!

Usually, we cannot afford to do minimum graph cut computations all the time; we go through the
list from the top and use the more expensive methods sparingly.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 11 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — OPTIONS FOR SEPARATION

To detect violated subtour constraints, we have the following options:

Look for connected components (linear time).

Look for biconnected components (linear time).

Using some source s and some sink t, find a minimum s-t-cut (almost linear time).

Find a global minimum graph cut using, e.g., the Stoer-Wagner algorithm
(O(mn+ n2 logn)).

A global minimum graph cut below 2 corresponds to a violated subtour constraint and vice versa;
we can solve the separation problem exactly in polynomial time!

Usually, we cannot afford to do minimum graph cut computations all the time; we go through the
list from the top and use the more expensive methods sparingly.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 11 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — OPTIONS FOR SEPARATION

To detect violated subtour constraints, we have the following options:

Look for connected components (linear time).

Look for biconnected components (linear time).

Using some source s and some sink t, find a minimum s-t-cut (almost linear time).

Find a global minimum graph cut using, e.g., the Stoer-Wagner algorithm
(O(mn+ n2 logn)).

A global minimum graph cut below 2 corresponds to a violated subtour constraint and vice versa;
we can solve the separation problem exactly in polynomial time!

Usually, we cannot afford to do minimum graph cut computations all the time; we go through the
list from the top and use the more expensive methods sparingly.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 11 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — OPTIONS FOR SEPARATION

To detect violated subtour constraints, we have the following options:

Look for connected components (linear time).

Look for biconnected components (linear time).

Using some source s and some sink t, find a minimum s-t-cut (almost linear time).

Find a global minimum graph cut using, e.g., the Stoer-Wagner algorithm
(O(mn+ n2 logn)).

A global minimum graph cut below 2 corresponds to a violated subtour constraint and vice versa;
we can solve the separation problem exactly in polynomial time!

Usually, we cannot afford to do minimum graph cut computations all the time; we go through the
list from the top and use the more expensive methods sparingly.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 11 / 25



CUTTING PLANES

SUBTOUR ELIMINATION CONSTRAINTS — OPTIONS FOR SEPARATION

To detect violated subtour constraints, we have the following options:

Look for connected components (linear time).

Look for biconnected components (linear time).

Using some source s and some sink t, find a minimum s-t-cut (almost linear time).

Find a global minimum graph cut using, e.g., the Stoer-Wagner algorithm
(O(mn+ n2 logn)).

A global minimum graph cut below 2 corresponds to a violated subtour constraint and vice versa;
we can solve the separation problem exactly in polynomial time!

Usually, we cannot afford to do minimum graph cut computations all the time; we go through the
list from the top and use the more expensive methods sparingly.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 11 / 25



CUTTING PLANES

FURTHER CUTTING PLANES

This is not all — there are more cutting plane families for tours!

Consider this example:

0.5 0.5

Are there any violated subtour constraints? No!
How can we cut off solutions such as this by cutting planes?
There is an important cutting plane family called combs.

For generalized versions of the above example, the length of the optimal tour is about 4/3 of the
optimal value of the LP relaxation including all subtours. The 4/3 conjecture states that this is the
worst case, i.e., for all sets of cities, the factor between the optimal integer solution and the optimal
fractional solution is at most 4/3. In general, this factor is called integrality gap.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 12 / 25



CUTTING PLANES

FURTHER CUTTING PLANES

This is not all — there are more cutting plane families for tours!
Consider this example:

0.5 0.5

Are there any violated subtour constraints?

No!
How can we cut off solutions such as this by cutting planes?
There is an important cutting plane family called combs.

For generalized versions of the above example, the length of the optimal tour is about 4/3 of the
optimal value of the LP relaxation including all subtours. The 4/3 conjecture states that this is the
worst case, i.e., for all sets of cities, the factor between the optimal integer solution and the optimal
fractional solution is at most 4/3. In general, this factor is called integrality gap.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 12 / 25



CUTTING PLANES

FURTHER CUTTING PLANES

This is not all — there are more cutting plane families for tours!
Consider this example:

0.5 0.5

Are there any violated subtour constraints? No!

How can we cut off solutions such as this by cutting planes?
There is an important cutting plane family called combs.

For generalized versions of the above example, the length of the optimal tour is about 4/3 of the
optimal value of the LP relaxation including all subtours. The 4/3 conjecture states that this is the
worst case, i.e., for all sets of cities, the factor between the optimal integer solution and the optimal
fractional solution is at most 4/3. In general, this factor is called integrality gap.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 12 / 25



CUTTING PLANES

FURTHER CUTTING PLANES

This is not all — there are more cutting plane families for tours!
Consider this example:

0.5 0.5

Are there any violated subtour constraints? No!
How can we cut off solutions such as this by cutting planes?

There is an important cutting plane family called combs.

For generalized versions of the above example, the length of the optimal tour is about 4/3 of the
optimal value of the LP relaxation including all subtours. The 4/3 conjecture states that this is the
worst case, i.e., for all sets of cities, the factor between the optimal integer solution and the optimal
fractional solution is at most 4/3. In general, this factor is called integrality gap.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 12 / 25



CUTTING PLANES

FURTHER CUTTING PLANES

This is not all — there are more cutting plane families for tours!
Consider this example:

0.5 0.5

Are there any violated subtour constraints? No!
How can we cut off solutions such as this by cutting planes?
There is an important cutting plane family called combs.

For generalized versions of the above example, the length of the optimal tour is about 4/3 of the
optimal value of the LP relaxation including all subtours. The 4/3 conjecture states that this is the
worst case, i.e., for all sets of cities, the factor between the optimal integer solution and the optimal
fractional solution is at most 4/3. In general, this factor is called integrality gap.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 12 / 25



CUTTING PLANES

FURTHER CUTTING PLANES

This is not all — there are more cutting plane families for tours!
Consider this example:

0.5 0.5

Are there any violated subtour constraints? No!
How can we cut off solutions such as this by cutting planes?
There is an important cutting plane family called combs.

For generalized versions of the above example, the length of the optimal tour is about 4/3 of the
optimal value of the LP relaxation including all subtours. The 4/3 conjecture states that this is the
worst case, i.e., for all sets of cities, the factor between the optimal integer solution and the optimal
fractional solution is at most 4/3. In general, this factor is called integrality gap.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 12 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.

For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.

In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.

In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.

We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?

For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.

We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES

H

T1

T2

T3

Consider a vertex set H (handle) and k sets T1, . . . , Tk (teeth) with:

H ∩ Ti ̸= ∅ for all i, i.e., every tooth has a vertex in the handle,

Ti \H ̸= ∅ for all i, i.e., every tooth has a vertex outset the handle,

Ti ∩ Tj = ∅ for all i ̸= j, i.e., the teeth are disjoint,

k ≥ 3, and k is odd.

We analyze
∑

e∈δ(H)

xe

︸ ︷︷ ︸
P1

+
k∑

i=1

∑
e∈δ(Ti)

xe

︸ ︷︷ ︸
P2

.

Let τ be any tour.
For each tooth Ti, we have two cases: (1) τ has an edge going from Ti ∩ H to
Ti \ H , or (2) it has no such edge.
In case (1), Ti contributes one edge to P1 and two edges to P2, i.e., at least
three edges in total.
In case (2), Ti has to be entered and left at least twice, once for Ti ∩ H and
once for Ti \ H . Each visit contributes two edges to P2, i.e., at least four edges
in total.
We have P1 + P2 ≥ 3k. What parities do the sides of this inequality have?
For any S ⊆ V and any tour, the number of edges δ(S) crossing the boundary
of S is even. The right-hand side is odd because k is odd.
We thus obtain the comb inequality P1 + P2 ≥ 3k + 1.

How can we separate cutting planes of this type?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 13 / 25



CUTTING PLANES

COMB INEQUALITIES — SEPARATION

For a given (fractional) solution to the linear relaxation of our IP, the separation problem for combs
asks for finding a violated comb inequality, i.e., some H and Ti for which P1 + P2 < 3k + 1, or to
find that no such sets exist.

It is not known whether this problem is in P or NP-complete. There are, however, a number of
good heuristics that often successfully identify violated combs.

In the following, we will present the so-called odd-component heuristic. It is based on the idea of
identifying potential handles H by looking at connected components of the solution graph
without edges with (too close to) integral weight.

Example in interactive tool: https://www.math.uwaterloo.ca/tsp/app/diy.html

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 14 / 25

https://www.math.uwaterloo.ca/tsp/app/diy.html


CUTTING PLANES

COMB INEQUALITIES — SEPARATION

For a given (fractional) solution to the linear relaxation of our IP, the separation problem for combs
asks for finding a violated comb inequality, i.e., some H and Ti for which P1 + P2 < 3k + 1, or to
find that no such sets exist.

It is not known whether this problem is in P or NP-complete. There are, however, a number of
good heuristics that often successfully identify violated combs.

In the following, we will present the so-called odd-component heuristic. It is based on the idea of
identifying potential handles H by looking at connected components of the solution graph
without edges with (too close to) integral weight.

Example in interactive tool: https://www.math.uwaterloo.ca/tsp/app/diy.html

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 14 / 25

https://www.math.uwaterloo.ca/tsp/app/diy.html


CUTTING PLANES

COMB INEQUALITIES — SEPARATION

For a given (fractional) solution to the linear relaxation of our IP, the separation problem for combs
asks for finding a violated comb inequality, i.e., some H and Ti for which P1 + P2 < 3k + 1, or to
find that no such sets exist.

It is not known whether this problem is in P or NP-complete. There are, however, a number of
good heuristics that often successfully identify violated combs.

In the following, we will present the so-called odd-component heuristic. It is based on the idea of
identifying potential handles H by looking at connected components of the solution graph
without edges with (too close to) integral weight.

Example in interactive tool: https://www.math.uwaterloo.ca/tsp/app/diy.html

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 14 / 25

https://www.math.uwaterloo.ca/tsp/app/diy.html


CUTTING PLANES

COMB INEQUALITIES — SEPARATION

For a given (fractional) solution to the linear relaxation of our IP, the separation problem for combs
asks for finding a violated comb inequality, i.e., some H and Ti for which P1 + P2 < 3k + 1, or to
find that no such sets exist.

It is not known whether this problem is in P or NP-complete. There are, however, a number of
good heuristics that often successfully identify violated combs.

In the following, we will present the so-called odd-component heuristic. It is based on the idea of
identifying potential handles H by looking at connected components of the solution graph
without edges with (too close to) integral weight.

Example in interactive tool: https://www.math.uwaterloo.ca/tsp/app/diy.html

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 14 / 25

https://www.math.uwaterloo.ca/tsp/app/diy.html


CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.

For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.

There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .

There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .

In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.

If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.

If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

COMB INEQUALITIES — ODD COMPONENT HEURISTIC

H

vs

vd

The odd component heuristic:

Computes connected components of the fractional graph,
i.e., the weighted solution graph with only edges that are
more than some small ε > 0 away from integrality.

For each component, it counts how many edges with
weight close to 1 cross the boundary of the component.
For any component where this count is odd, it constructs
a comb as follows.

The handle H is initialized to the vertices in the fractional
component.
There may be vertices vs outside the component that are
connected to two vertices on the inside. Such vertices are
added to H .
There may be vertices vd inside the component that are
connected to two vertices on the outside. Such vertices are
removed from H .
In any case, an odd number of close-to-1 edges crossing H
remains.
If that number is 1, we likely found a violated subtour
constraint.
If that number is 3 or higher, we make the crossing edges
into teeth Ti, and have likely found a violated comb
inequality.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 15 / 25



CUTTING PLANES

MORE CUTTING PLANES

There are more cutting planes that are used by powerful tools like Concorde, for which we do not
have the time. A common theme among them is that they always can be translated into the
following form: ∑

S∈F

∑
e∈δ(S)

xe ≥ µ,

for some family of vertex sets F and some suitable integral constant µ. This allows efficient
storage (only store vertex sets and µ) and also changes to the set of edges.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 16 / 25



EXCLUDING EDGES

WHAT? WHY? HOW?

CUTTING PLANES

EXCLUDING EDGES

NUMERICAL ISSUES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 17 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound.

Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.

To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).

Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DYNAMIC EDGE SET

Perhaps the biggest obstacle to increasing the number of cities is the large set of potential edges.

To deal with this, Concorde handles a dynamic set of possible edges (and a dynamic set of cutting
planes). Only edges from this core set are added as variables to the LP relaxations solved during
Branch & Bound. Typically, the core LP has only about 1.5n–3n variables.

We can use our formulation to solve the TSP on a smaller edge set. As we discard some
potential edges, the solution might be suboptimal if any edges from the optimal solution are
removed.

We have already seen how to store our cutting planes and subtour constraints without
explicitly listing edges.
To make sure that we do not discard the optimal solution in our overall search, we consider
the nodes of our Branch & Bound search tree where we do not continue branching:

LP infeasibility: We must make sure that there are no variables we could add to restore feasibility
(normally, this does not happen).
Integrality or Pruning: we need to make sure that there is no better LP solution when we add
variables.

How can we make sure (in a single LP) that we did not miss an important edge variable?

We need to find edges that are not dually feasible!

Is there a way to exclude lots of edges at once and only consider fewer remaining ones?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 18 / 25



EXCLUDING EDGES

DUAL

With cutting planes and subtour constraints H, we have the following primal:

min
∑
e

cexe s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀e ∈ E : xe ≤ 1,

∀(F , µF ) ∈ H :
∑
S∈F

∑
e∈δ(S)

xe ≥ µ.

The dual of our problem is thus

max 2
∑
v∈V

yv −
∑
e∈E

ye +
∑

(F,µF )∈H

µF · yF s.t.

∀e = vw ∈ E : yv + yw − ye +
∑

(F,µF )∈H
π(e,F)yF ≤ ce

yv free, ye, yF ≥ 0,

where π(e,F) denotes for how many sets in F edge e crosses the boundary.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 19 / 25



EXCLUDING EDGES

DUAL

With cutting planes and subtour constraints H, we have the following primal:

min
∑
e

cexe s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀e ∈ E : xe ≤ 1,

∀(F , µF ) ∈ H :
∑
S∈F

∑
e∈δ(S)

xe ≥ µ.

The dual of our problem is thus

max 2
∑
v∈V

yv −
∑
e∈E

ye +
∑

(F,µF )∈H

µF · yF s.t.

∀e = vw ∈ E : yv + yw − ye +
∑

(F,µF )∈H
π(e,F)yF ≤ ce

yv free, ye, yF ≥ 0,

where π(e,F) denotes for how many sets in F edge e crosses the boundary.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 19 / 25



EXCLUDING EDGES

DUAL

With cutting planes and subtour constraints H, we have the following primal:

min
∑
e

cexe s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀e ∈ E : xe ≤ 1,

∀(F , µF ) ∈ H :
∑
S∈F

∑
e∈δ(S)

xe ≥ µ.

The dual of our problem is thus

max 2
∑
v∈V

yv −
∑
e∈E

ye +
∑

(F,µF )∈H

µF · yF s.t.

∀e = vw ∈ E : yv + yw − ye +
∑

(F,µF )∈H
π(e,F)yF ≤ ce

yv free, ye, yF ≥ 0,

where π(e,F) denotes for how many sets in F edge e crosses the boundary.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 19 / 25



EXCLUDING EDGES

DUAL

With cutting planes and subtour constraints H, we have the following primal:

min
∑
e

cexe s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀e ∈ E : xe ≤ 1,

∀(F , µF ) ∈ H :
∑
S∈F

∑
e∈δ(S)

xe ≥ µ.

The dual of our problem is thus

max 2
∑
v∈V

yv −
∑
e∈E

ye +
∑

(F,µF )∈H

µF · yF s.t.

∀e = vw ∈ E : yv + yw − ye +
∑

(F,µF )∈H
π(e,F)yF ≤ ce

yv free, ye, yF ≥ 0,

where π(e,F) denotes for how many sets in F edge e crosses the boundary.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 19 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.

ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.

We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.

For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).

The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.

However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.

So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.

We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.

We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .

With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.

We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



EXCLUDING EDGES

PRICING

We are looking for edges e for which αe = ce − yv − yw + ye −
∑

(F,µF )∈H
π(e,F)yF < 0.

We want to replace this term for αe by a good estimate ᾱe ≤ αe.
ᾱe should be simpler and faster to compute.
We then only have to compute αe explicitly for edges with ᾱe < 0.
For ᾱe, we simply ignore ye (complementarity dictates ye = 0 anyways).
The most complex term is related to the cutting planes.
Essentially, we have to figure out for what sets S from our cuts e crosses the boundary.
However, we note that in order for e = vw to cross the boundary of S, v or w must be in S.
So let us overestimate the cut term by including all sets containing v or w.
We can then move these terms into yv and yw :

ȳv = yv +
∑

(µF ,F)

π(v,F)yF ,

where π(v,F) describes how many sets in F contain v.
We then set ᾱe = ce − ȳv − ȳw .
With careful management of variables, for instances up to tens of thousands of cities, this suffices to
bring down the time needed for scanning for dual infeasible edges into the practical range.
We can do even better, e.g., for geometric instances.

The process of looking for dual infeasible variables is also called pricing; this is because c−AT y is
also called the vector of reduced cost.

If we can price many variables without explicitly considering each individually, like in the case of
geometric instances, the term batch pricing is sometimes used.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 20 / 25



NUMERICAL ISSUES

WHAT? WHY? HOW?

CUTTING PLANES

EXCLUDING EDGES

NUMERICAL ISSUES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 21 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES

There are multiple numerical issues.

The solution by the LP solver may not be primally feasible in the strict sense.

The solution by the LP solver may not be dually feasible in the strict sense.

Solutions produced by the LP solver are only rarely integral, even though they should be,
e.g., because in exact arithmetic, the basis chosen by the solver produces an integral solution.

Cutting planes that should be violated are considered non-violated by the LP solver.

How can we overcome these issues? Simple ideas:

Run LP with exact rational arithmetic — way too expensive!

Run regular LP solver, then take the optimal basis and use it as starting point for an exact
rational Simplex — still quite expensive!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 22 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES

There are multiple numerical issues.

The solution by the LP solver may not be primally feasible in the strict sense.

The solution by the LP solver may not be dually feasible in the strict sense.

Solutions produced by the LP solver are only rarely integral, even though they should be,
e.g., because in exact arithmetic, the basis chosen by the solver produces an integral solution.

Cutting planes that should be violated are considered non-violated by the LP solver.

How can we overcome these issues? Simple ideas:

Run LP with exact rational arithmetic — way too expensive!

Run regular LP solver, then take the optimal basis and use it as starting point for an exact
rational Simplex — still quite expensive!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 22 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES

There are multiple numerical issues.

The solution by the LP solver may not be primally feasible in the strict sense.

The solution by the LP solver may not be dually feasible in the strict sense.

Solutions produced by the LP solver are only rarely integral, even though they should be,
e.g., because in exact arithmetic, the basis chosen by the solver produces an integral solution.

Cutting planes that should be violated are considered non-violated by the LP solver.

How can we overcome these issues? Simple ideas:

Run LP with exact rational arithmetic — way too expensive!

Run regular LP solver, then take the optimal basis and use it as starting point for an exact
rational Simplex — still quite expensive!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 22 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES

There are multiple numerical issues.

The solution by the LP solver may not be primally feasible in the strict sense.

The solution by the LP solver may not be dually feasible in the strict sense.

Solutions produced by the LP solver are only rarely integral, even though they should be,
e.g., because in exact arithmetic, the basis chosen by the solver produces an integral solution.

Cutting planes that should be violated are considered non-violated by the LP solver.

How can we overcome these issues? Simple ideas:

Run LP with exact rational arithmetic — way too expensive!

Run regular LP solver, then take the optimal basis and use it as starting point for an exact
rational Simplex — still quite expensive!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 22 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES

There are multiple numerical issues.

The solution by the LP solver may not be primally feasible in the strict sense.

The solution by the LP solver may not be dually feasible in the strict sense.

Solutions produced by the LP solver are only rarely integral, even though they should be,
e.g., because in exact arithmetic, the basis chosen by the solver produces an integral solution.

Cutting planes that should be violated are considered non-violated by the LP solver.

How can we overcome these issues? Simple ideas:

Run LP with exact rational arithmetic — way too expensive!

Run regular LP solver, then take the optimal basis and use it as starting point for an exact
rational Simplex — still quite expensive!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 22 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES

There are multiple numerical issues.

The solution by the LP solver may not be primally feasible in the strict sense.

The solution by the LP solver may not be dually feasible in the strict sense.

Solutions produced by the LP solver are only rarely integral, even though they should be,
e.g., because in exact arithmetic, the basis chosen by the solver produces an integral solution.

Cutting planes that should be violated are considered non-violated by the LP solver.

How can we overcome these issues? Simple ideas:

Run LP with exact rational arithmetic — way too expensive!

Run regular LP solver, then take the optimal basis and use it as starting point for an exact
rational Simplex — still quite expensive!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 22 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES

There are multiple numerical issues.

The solution by the LP solver may not be primally feasible in the strict sense.

The solution by the LP solver may not be dually feasible in the strict sense.

Solutions produced by the LP solver are only rarely integral, even though they should be,
e.g., because in exact arithmetic, the basis chosen by the solver produces an integral solution.

Cutting planes that should be violated are considered non-violated by the LP solver.

How can we overcome these issues? Simple ideas:

Run LP with exact rational arithmetic — way too expensive!

Run regular LP solver, then take the optimal basis and use it as starting point for an exact
rational Simplex — still quite expensive!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 22 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES — SEVERITY

Integer feasibility

can simply be checked with some ε > 0 tolerance value, considering values
below ε as 0 and values above 1− ε as 1.

Accidental primal infeasibility

is only really problematic for integer solutions. Fortunately, it
is easy to check if some integer solution induces a tour.

Cutting planes are used purely to speed up the search. Cutting planes that are only violated
by a tiny amount are unlikely to be good; if we avoid them, the solver should not consider
our cutting planes as non-violated.

The most problematic issue is accidental dual infeasibility (i.e., non-optimality): it means that
our bounds used for pruning are potentially invalid. What can we do?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 23 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES — SEVERITY

Integer feasibility can simply be checked with some ε > 0 tolerance value, considering values
below ε as 0 and values above 1− ε as 1.

Accidental primal infeasibility

is only really problematic for integer solutions. Fortunately, it
is easy to check if some integer solution induces a tour.

Cutting planes are used purely to speed up the search. Cutting planes that are only violated
by a tiny amount are unlikely to be good; if we avoid them, the solver should not consider
our cutting planes as non-violated.

The most problematic issue is accidental dual infeasibility (i.e., non-optimality): it means that
our bounds used for pruning are potentially invalid. What can we do?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 23 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES — SEVERITY

Integer feasibility can simply be checked with some ε > 0 tolerance value, considering values
below ε as 0 and values above 1− ε as 1.

Accidental primal infeasibility

is only really problematic for integer solutions. Fortunately, it
is easy to check if some integer solution induces a tour.

Cutting planes are used purely to speed up the search. Cutting planes that are only violated
by a tiny amount are unlikely to be good; if we avoid them, the solver should not consider
our cutting planes as non-violated.

The most problematic issue is accidental dual infeasibility (i.e., non-optimality): it means that
our bounds used for pruning are potentially invalid. What can we do?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 23 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES — SEVERITY

Integer feasibility can simply be checked with some ε > 0 tolerance value, considering values
below ε as 0 and values above 1− ε as 1.

Accidental primal infeasibility is only really problematic for integer solutions. Fortunately, it
is easy to check if some integer solution induces a tour.

Cutting planes are used purely to speed up the search. Cutting planes that are only violated
by a tiny amount are unlikely to be good; if we avoid them, the solver should not consider
our cutting planes as non-violated.

The most problematic issue is accidental dual infeasibility (i.e., non-optimality): it means that
our bounds used for pruning are potentially invalid. What can we do?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 23 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES — SEVERITY

Integer feasibility can simply be checked with some ε > 0 tolerance value, considering values
below ε as 0 and values above 1− ε as 1.

Accidental primal infeasibility is only really problematic for integer solutions. Fortunately, it
is easy to check if some integer solution induces a tour.

Cutting planes are used purely to speed up the search. Cutting planes that are only violated
by a tiny amount are unlikely to be good; if we avoid them, the solver should not consider
our cutting planes as non-violated.

The most problematic issue is accidental dual infeasibility (i.e., non-optimality): it means that
our bounds used for pruning are potentially invalid. What can we do?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 23 / 25



NUMERICAL ISSUES

NUMERICAL ISSUES — SEVERITY

Integer feasibility can simply be checked with some ε > 0 tolerance value, considering values
below ε as 0 and values above 1− ε as 1.

Accidental primal infeasibility is only really problematic for integer solutions. Fortunately, it
is easy to check if some integer solution induces a tour.

Cutting planes are used purely to speed up the search. Cutting planes that are only violated
by a tiny amount are unlikely to be good; if we avoid them, the solver should not consider
our cutting planes as non-violated.

The most problematic issue is accidental dual infeasibility (i.e., non-optimality): it means that
our bounds used for pruning are potentially invalid. What can we do?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 23 / 25



NUMERICAL ISSUES

EXACT BOUNDS FROM INEXACT SOLUTIONS

How can we turn inexact bounds from our solver into exact bounds useful for pruning?

Start with the dual solution y.

Turn it into rational (more expensive, better bounds) or fixed-point (less expensive) numbers.

For each dual constraint, check feasibility (in exact rational or fixed-point arithmetic).

For each dual infeasibility found, increase yvw , the dual slack variable for xvw ≤ 1, to make
the dual constraint

yv + yw − yvw +
∑

(F,µF )∈H
π(vw,F)yF ≤ cvw

feasible.

Subtract all the infeasibilities from the objective according to the term −yvw in the dual
objective.

The result is a valid (possibly slightly super-optimal) bound.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 24 / 25



NUMERICAL ISSUES

EXACT BOUNDS FROM INEXACT SOLUTIONS

How can we turn inexact bounds from our solver into exact bounds useful for pruning?

Start with the dual solution y.

Turn it into rational (more expensive, better bounds) or fixed-point (less expensive) numbers.

For each dual constraint, check feasibility (in exact rational or fixed-point arithmetic).

For each dual infeasibility found, increase yvw , the dual slack variable for xvw ≤ 1, to make
the dual constraint

yv + yw − yvw +
∑

(F,µF )∈H
π(vw,F)yF ≤ cvw

feasible.

Subtract all the infeasibilities from the objective according to the term −yvw in the dual
objective.

The result is a valid (possibly slightly super-optimal) bound.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 24 / 25



NUMERICAL ISSUES

EXACT BOUNDS FROM INEXACT SOLUTIONS

How can we turn inexact bounds from our solver into exact bounds useful for pruning?

Start with the dual solution y.

Turn it into rational (more expensive, better bounds) or fixed-point (less expensive) numbers.

For each dual constraint, check feasibility (in exact rational or fixed-point arithmetic).

For each dual infeasibility found, increase yvw , the dual slack variable for xvw ≤ 1, to make
the dual constraint

yv + yw − yvw +
∑

(F,µF )∈H
π(vw,F)yF ≤ cvw

feasible.

Subtract all the infeasibilities from the objective according to the term −yvw in the dual
objective.

The result is a valid (possibly slightly super-optimal) bound.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 24 / 25



NUMERICAL ISSUES

EXACT BOUNDS FROM INEXACT SOLUTIONS

How can we turn inexact bounds from our solver into exact bounds useful for pruning?

Start with the dual solution y.

Turn it into rational (more expensive, better bounds) or fixed-point (less expensive) numbers.

For each dual constraint, check feasibility (in exact rational or fixed-point arithmetic).

For each dual infeasibility found, increase yvw , the dual slack variable for xvw ≤ 1, to make
the dual constraint

yv + yw − yvw +
∑

(F,µF )∈H
π(vw,F)yF ≤ cvw

feasible.

Subtract all the infeasibilities from the objective according to the term −yvw in the dual
objective.

The result is a valid (possibly slightly super-optimal) bound.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 24 / 25



NUMERICAL ISSUES

EXACT BOUNDS FROM INEXACT SOLUTIONS

How can we turn inexact bounds from our solver into exact bounds useful for pruning?

Start with the dual solution y.

Turn it into rational (more expensive, better bounds) or fixed-point (less expensive) numbers.

For each dual constraint, check feasibility (in exact rational or fixed-point arithmetic).

For each dual infeasibility found, increase yvw , the dual slack variable for xvw ≤ 1, to make
the dual constraint

yv + yw − yvw +
∑

(F,µF )∈H
π(vw,F)yF ≤ cvw

feasible.

Subtract all the infeasibilities from the objective according to the term −yvw in the dual
objective.

The result is a valid (possibly slightly super-optimal) bound.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 24 / 25



NUMERICAL ISSUES

EXACT BOUNDS FROM INEXACT SOLUTIONS

How can we turn inexact bounds from our solver into exact bounds useful for pruning?

Start with the dual solution y.

Turn it into rational (more expensive, better bounds) or fixed-point (less expensive) numbers.

For each dual constraint, check feasibility (in exact rational or fixed-point arithmetic).

For each dual infeasibility found, increase yvw , the dual slack variable for xvw ≤ 1, to make
the dual constraint

yv + yw − yvw +
∑

(F,µF )∈H
π(vw,F)yF ≤ cvw

feasible.

Subtract all the infeasibilities from the objective according to the term −yvw in the dual
objective.

The result is a valid (possibly slightly super-optimal) bound.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 24 / 25



NUMERICAL ISSUES

EXACT BOUNDS FROM INEXACT SOLUTIONS

How can we turn inexact bounds from our solver into exact bounds useful for pruning?

Start with the dual solution y.

Turn it into rational (more expensive, better bounds) or fixed-point (less expensive) numbers.

For each dual constraint, check feasibility (in exact rational or fixed-point arithmetic).

For each dual infeasibility found, increase yvw , the dual slack variable for xvw ≤ 1, to make
the dual constraint

yv + yw − yvw +
∑

(F,µF )∈H
π(vw,F)yF ≤ cvw

feasible.

Subtract all the infeasibilities from the objective according to the term −yvw in the dual
objective.

The result is a valid (possibly slightly super-optimal) bound.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 24 / 25



NUMERICAL ISSUES

CONCLUSION

The work on the TSP has contributed huge advances in MIP solving in general.
The approaches used by Concorde to tackle the TSP are not all simple to implement in a
commercial MIP solver.

Custom cutting planes and lazy constraints can be easily added using a callback.

Dynamic Removal of Cutting Planes is performed, but cannot really be controlled.

Auto-generated cutting planes are usually not accessible.

Dynamic handling of variables is usually impossible in a (M)IP.

There are frameworks such as SCIP that allow more flexibility, but usually worse
performance.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 25 / 25



NUMERICAL ISSUES

CONCLUSION

The work on the TSP has contributed huge advances in MIP solving in general.
The approaches used by Concorde to tackle the TSP are not all simple to implement in a
commercial MIP solver.

Custom cutting planes and lazy constraints can be easily added using a callback.

Dynamic Removal of Cutting Planes is performed, but cannot really be controlled.

Auto-generated cutting planes are usually not accessible.

Dynamic handling of variables is usually impossible in a (M)IP.

There are frameworks such as SCIP that allow more flexibility, but usually worse
performance.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 25 / 25



NUMERICAL ISSUES

CONCLUSION

The work on the TSP has contributed huge advances in MIP solving in general.
The approaches used by Concorde to tackle the TSP are not all simple to implement in a
commercial MIP solver.

Custom cutting planes and lazy constraints can be easily added using a callback.

Dynamic Removal of Cutting Planes is performed, but cannot really be controlled.

Auto-generated cutting planes are usually not accessible.

Dynamic handling of variables is usually impossible in a (M)IP.

There are frameworks such as SCIP that allow more flexibility, but usually worse
performance.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 25 / 25



NUMERICAL ISSUES

CONCLUSION

The work on the TSP has contributed huge advances in MIP solving in general.
The approaches used by Concorde to tackle the TSP are not all simple to implement in a
commercial MIP solver.

Custom cutting planes and lazy constraints can be easily added using a callback.

Dynamic Removal of Cutting Planes is performed, but cannot really be controlled.

Auto-generated cutting planes are usually not accessible.

Dynamic handling of variables is usually impossible in a (M)IP.

There are frameworks such as SCIP that allow more flexibility, but usually worse
performance.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 25 / 25



NUMERICAL ISSUES

CONCLUSION

The work on the TSP has contributed huge advances in MIP solving in general.
The approaches used by Concorde to tackle the TSP are not all simple to implement in a
commercial MIP solver.

Custom cutting planes and lazy constraints can be easily added using a callback.

Dynamic Removal of Cutting Planes is performed, but cannot really be controlled.

Auto-generated cutting planes are usually not accessible.

Dynamic handling of variables is usually impossible in a (M)IP.

There are frameworks such as SCIP that allow more flexibility, but usually worse
performance.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 25 / 25



NUMERICAL ISSUES

CONCLUSION

The work on the TSP has contributed huge advances in MIP solving in general.
The approaches used by Concorde to tackle the TSP are not all simple to implement in a
commercial MIP solver.

Custom cutting planes and lazy constraints can be easily added using a callback.

Dynamic Removal of Cutting Planes is performed, but cannot really be controlled.

Auto-generated cutting planes are usually not accessible.

Dynamic handling of variables is usually impossible in a (M)IP.

There are frameworks such as SCIP that allow more flexibility, but usually worse
performance.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 31, 2023 25 / 25


	What? Why? How?
	Cutting Planes
	Excluding Edges
	Numerical Issues

