

Computational Geometry - Exercise Meeting \#4
December $15^{\text {th }}, 2022$

Refresh - Higher order Voronoi diagrams

Refresh - Farthest Point Voronoi diagrams

$$
(n-1) \text { th order }
$$

Can be computed incrementally, or directly

$$
\text { in } O(n \log n)
$$

Farthest point Voronoi diagrams - Properties

$$
(n-1) \text { th order }
$$

The ($n-1$)th order Voronoi region of a point is non-empty exactly if the point is part of the set's convex hull.

All cells are unbounded, the planar graph is a tree.

Farthest point Voronoi diagrams - Properties

$$
(n-1) t h \text { order }
$$

Farthest point Voronoi diagrams - Properties

Edges are equidistant to two sites, closer to all others.

Vertices are equidistant to at least three sites, closer to all others.

Smallest enclosing disk (1-center problem)

Provided a set of points P in the plane, find a disk $\boldsymbol{m d}(\boldsymbol{D})$ with minimal radius \boldsymbol{r} that contains all members of P. Assume that no three points in P are collinear.

What can we say about an optimal disk D ?

Smallest enclosing disk - Uniqueness

For any point set P, the smallest enclosing disk $m d(P)$ is unique.

Smallest enclosing disk - Relation to diameter

Smallest enclosing disk - Relation to diameter

Finding the smallest enclosing disk

Provided a set of points \boldsymbol{P} in the plane, find a disk $\boldsymbol{m d}(\boldsymbol{D})$ with minimal radius \boldsymbol{r} that contains all members of P. Assume that no three points in P are collinear.

How long would a naive approach take, at most?

Any ideas how we can find an approximate min disk?

Smallest enclosing disk - 2-Approximation

1. Pick any point $p \in P$
2. Find the farthest point p^{\prime}
3. Draw a circle.

Smallest enclosing disk $-\sqrt{2}$-Approximation by bounding box

1. Compute an axisaligned bounding box

Smallest enclosing disk $-\sqrt{2}$-Approximation by bounding box

1. Compute an axisaligned bounding box
2. Place a circle on the corners.

Smallest enclosing disk - Optimal solution in $O(n \log n)$

CLOSEST-POINT PROBLEMS
Michael Ian Shamos ${ }^{\dagger}$ and Dan Hoey
Department of Computer Science, Yale University
New Haven, Connecticut 06520

Abstract

A number of seemingly unrelated problems involving the proximity of N points in the plane are studied, s
as finding a Euclidean minimum spanning tree, the smallest circle enclosing the set, k nearest and farthest neighbors, the two closest points, and a proper straight-line triangulation. For most of the problems consi a lower bound of $O(N \log N)$ is shown. For all of them the best currently-known upper bound is $O\left(N^{2}\right)$ or wors The purpose of this paper is to introduce a single geometric structure, called the Voronoi diagram, which ca constructed rapidly and contains all of the relevant proximity information in only linear space. The Vorono diagram is used to obtain $O(N \log N)$ algorithms for all of the problems.

Farthest Point Voronoi Diagrams - Properties
 sites, closer to all others.

Farthest point Voronoi diagrams - Properties

Farthest Point Voronoi Diagrams - Properties

$m d(P)$ is defined by the farthest pair or by three sites, so:

1. Check if the smallest disk on the farthest pair fits.
2. Otherwise, check all circles
 induced by highest-order Voronoi vertices.

\boldsymbol{k}-center problem (NP-hard)

Provided a set of points \boldsymbol{P} in the plane, find \boldsymbol{k} disks $\boldsymbol{D}_{\boldsymbol{i}}$ with minimal radii $\boldsymbol{r}_{\boldsymbol{i}}$ that, when combined, contain all members of \boldsymbol{P}.

Roundness

Roundness - Metric: Smallest annulus

Roundness - Three kinds of annuli

Roundness - Three kinds of annuli

Outer circle via three points:

- Center lies on a vertex of the farthest point Voronoi diagram
- Inner circle is defined by closest point to this vertex

Roundness - Three kinds of annuli

Inner circle via three points:

- Center lies on a vertex of the first-order Voronoi diagram
- Outer circle is defined by farthest point from this vertex

Roundness - Three kinds of annuli

Each circle via two points:

- Center lies on the intersection of an edge of the first-order Voronoi diagram and the farthest point diagram

What about outliers?

What about outliers?

"[...] n points in the plane and an integer k with $1 \leq k \leq n$, the problem asks to find a minimum-width annulus that contains at least $n-k$ input points."

