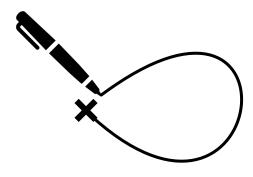
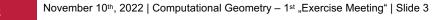


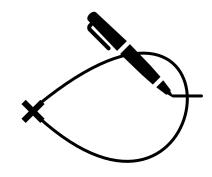
Computational Geometry – Exercise Meeting #1

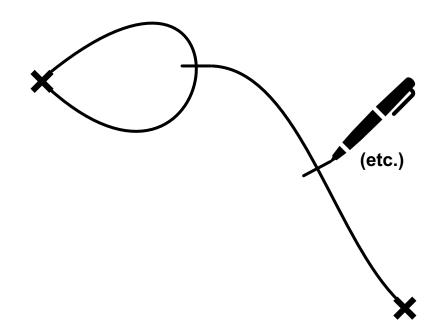
November 18th, 2021

×

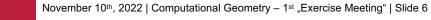


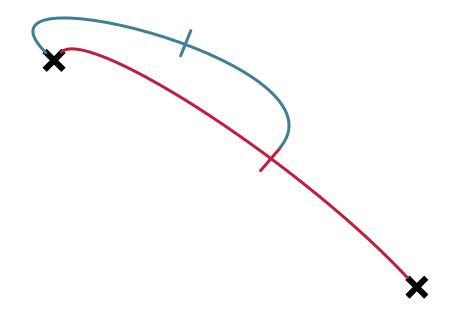


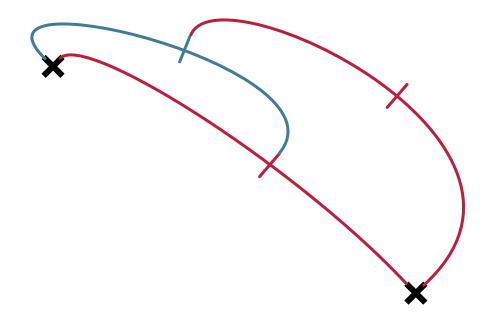


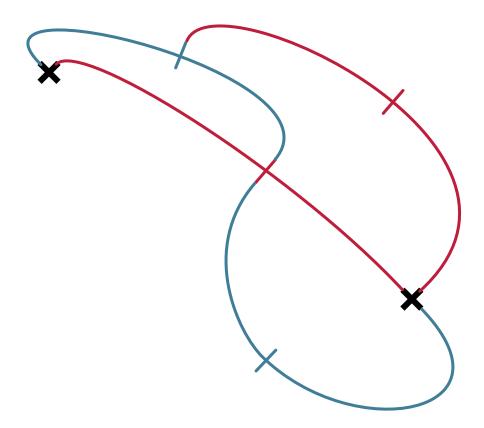


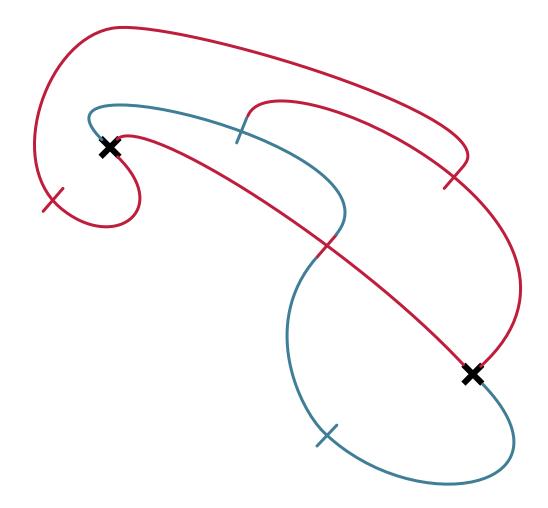
×

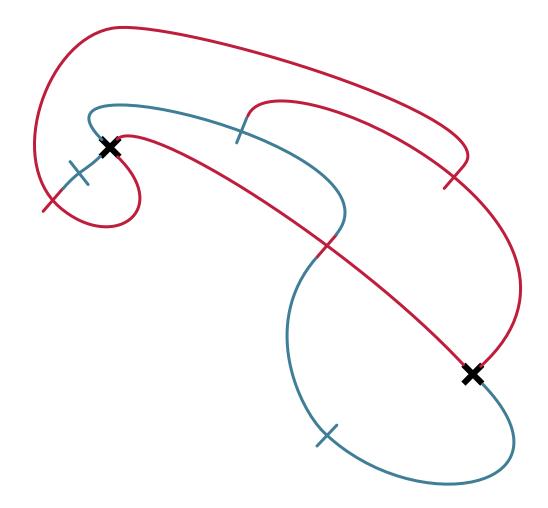


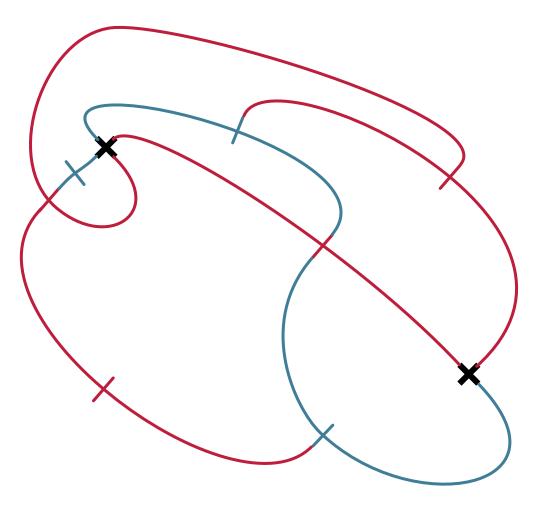


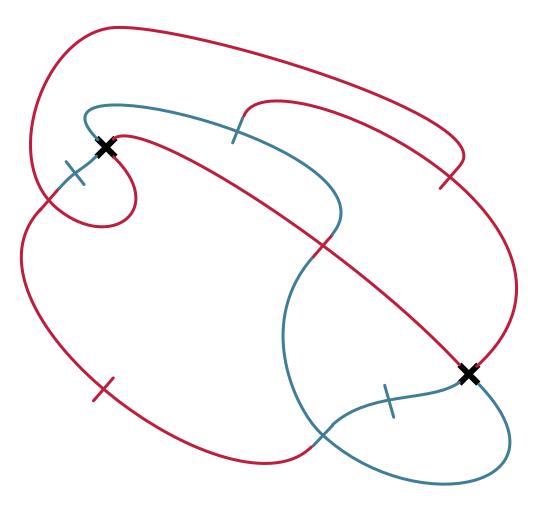


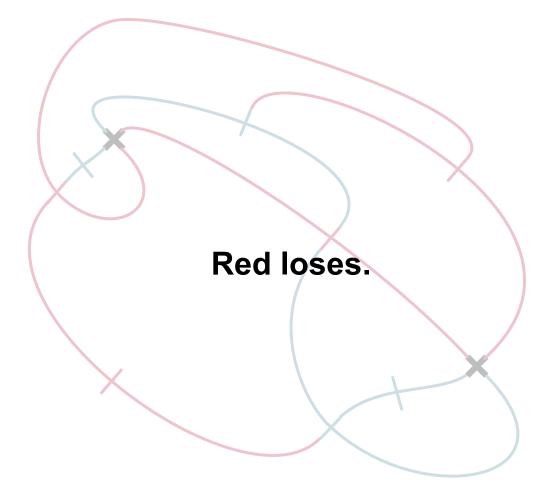








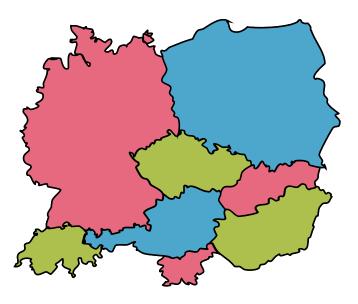




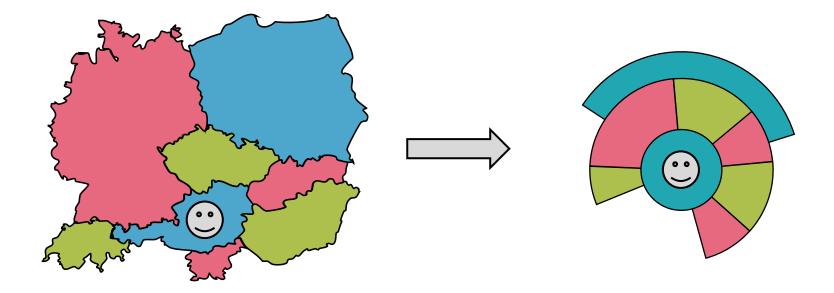
Could Red have won?

If so, why and how? Otherwise, why not?

(Are things different if there are more ×'s at the start?)



Three colors are sufficient for this map!

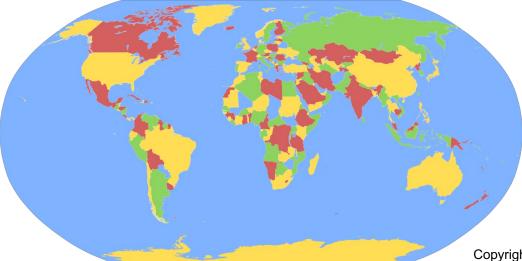


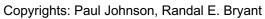
Can you find a map that needs more than three colors?

Can we find a number k such that every map can be colored with k colors?

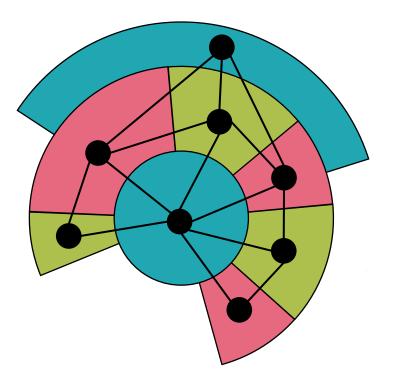
Francis Guthrie

Augustus De Morgan

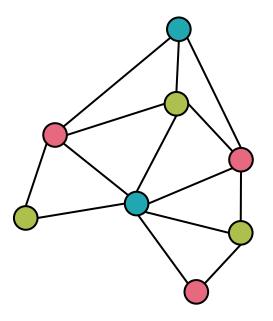




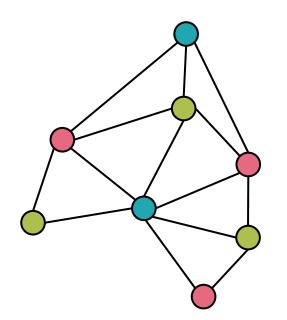
Dual Graph



Dual Graph



Dual Graph



Graph properties:

- Connected
- Planar
- Loopless

The question of coloring map becomes the identification of the *chromatic number* $\chi(G)$ of this graph.

Color the vertices of G such that two adjacent vertices do not share the same color.

Minimum degree of planar graphs

Theorem 1.1

Every connected planar graph with $n \ge 3$ has at least one vertex with degree at most 5.

Proof

First note that by Euler's formula: $|E| \le 3|V| - 6$

Suppose there exists a planar graph G with with $d(v) \ge 6 \quad \forall v \in V$

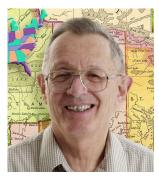
$$\sum_{v \in V} d(v) = ? = 2 |E| \le 6 |V| - 12$$
$$\sum_{v \in V} d(v) \ge 6|V|$$

How many colors are always sufficient?

Can we find a number k such that **every** planar graph can be colored with k colors? We can prove that $k \le 6$: **see board** O

Theorem 1.2

For a loopless planar graph *G*, its chromatic number is $\chi(G) \leq 4$



Kenneth Ira Appel University of New Hampshire

Wolfgang Haken © Tori Egherman

So actually four colors are sufficient for every map you can think of!

