

Computational Geometry - Exercise Meeting \#1
November 18 ${ }^{\text {th }}, 2021$

A paper-and-pencil game - Rules

x

A paper-and-pencil game - Rules

x

A paper-and-pencil game - Rules

x

A paper-and-pencil game - Rules

A paper-and-pencil game - Example

x

A paper-and-pencil game - Example

Could Red have won?

If so, why and how? Otherwise, why not?

(Are things different if there are more \times 's at the start?)

Three colors are sufficient for this map!

Can you find a map that needs more than three colors?

Can we find a number k such that every map can be colored with k colors?

Francis Guthrie

Augustus De Morgan

Technische
Universität
Braunschweig

Dual Graph

Dual Graph

Dual Graph

Graph properties:

- Connected
- Planar
- Loopless

The question of coloring map becomes the identification of the chromatic number $\chi(G)$ of this graph.

Color the vertices of G such that two adjacent vertices do not share the same color.

Minimum degree of planar graphs

Theorem 1.1

Every connected planar graph with $n \geq 3$ has at least one vertex with degree at most 5 .

Proof

First note that by Euler's formula: $|\mathrm{E}| \leq 3|V|-6$

Suppose there exists a planar graph G with with $\mathrm{d}(\mathrm{v}) \geq 6 \quad \forall v \in V$

$$
\begin{aligned}
& \sum_{v \in V} d(v)=?=2|E| \leq 6|V|-12 \\
& \sum_{v \in V} d(v) \geq 6|V|
\end{aligned}
$$

How many colors are always sufficient?

Can we find a number k such that every planar graph can be colored with k colors?
We can prove that $k \leq 6$: see board ()

Theorem 1.2

For a loopless planar graph G, its chromatic number is $\chi(G) \leq 4$

Kenneth Ira Appel
University of New Hampshire

Wolfgang Haken
© Tori Egherman

So actually four colors are sufficient for every map you can think of!

