Computational Geometry
Chapter 3: Closest Pair

Prof. Dr. Sandor Fekete

Algorithms Division
Department of Computer Science
TU Braunschweig

WILgy

Universitat
o o
Braunschweig

o™ R, .
::;_i ‘3% Technische
g

Nsc$

Overview

1. Introduction
Prelude: Solving recursions
Lower bounds

Divide-and-conquer

o & O Db

Randomized incremental construction

WIL
o .f’&(

2 |32 Technisch
:?’é‘%; echnische
X

*}i > Universitit
- (<) o
22445 Braunschweig

OIVs(;Y‘

Superhero!

CLOSEST PEAR

myshapers.com

> Universitat

o'wu"&
,g”j;& ‘3% Technische
< AR %2

O . v
:ﬁ &
‘70 v VQ{"
Nsc$

Braunschweig

Overview

1. Introduction
Prelude: Solving recursions
Lower bounds

Divide-and-conquer

o & 0 Db

Randomized incremental construction

WIL
o .f’&(

0”:;_& a2 Technische
o%%ﬁ Universitat
%4|* 25 Braunschweig

v, W
ONsc‘t‘é

Theorem 3.3 (Master Theorem)r Let T :IN— R with

T(aj-n)+ @(nk),

=
S
!
s

N\

AWANANVARE

c — P Cn

(3
IS
IS

Cc C C C C C C

The Master Theorem

WIL
o™ e,

> Universitat

o o
**¢ Braunschweig
c‘t‘ﬁx

”ié s 'gz Technische
%

w7

7
ONs

Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 448-461 (1973)

< n/2 points

P 0 Time Bounds for Selection*
ManveL Brum, RoBert W. FLoyDp, VAUGHAN PRraTT,
‘ RonaLp L. Rivest, AND RoBerT E. TARjAN

Department of Computer Science, Stanford University, Stanford, California 94305

‘ Received November 14, 1972

‘ The number of comparisons required to select the i-th smallest of # numbers is shown

to be at most a linear function of n by analysis of a new selection algorithm—PICK.
‘ ‘ Specifically, no more than 5.4305 n comparisons are ever required. This bound is
improved for extreme values of 7, and a new lower bound on the requisite number
of comparisons is also proved.

‘ 1. INTRODUCTION

() o In this paper we present a new selection algorithm, PICK, and derive by an analysis
of its efficiency the (surprising) result that the cost of selection is at most a linear
function of the number of input items. In addition, we prove a new lower bound
for the cost of selection.

The selection problem is perhaps best exemplified by the computation of medians.
In general, we may wish to select the i-th smallest of a set of n distinct numbers,
or the element ranking closest to a given percentile level.

Interest in this problem may be traced to the realm of sports and the design of
(traditionally, tennis) tournaments to select the first- and second-best players. In
1883, Lewis Carroll published an article [1] denouncing the unfair method by which
Th eo rem 3 4 the second-best player is usually determined in a “knockout tournament” —the loser

" of the final match is often not the second-best! (Any of the players who lost only

. . to the best player may be second-best.) Around 1930, Hugo Steinhaus brought the

A m ed 1an fo F 2 Nuum berS can be com p uted N O (n) 1 problem into the realm of algorithmic complexity by asking for the minimum number
of matches required to (correctly) select both the first- and second-best players

from a field of # contestants. In 1932, J. Schreier [8] showed that no more than

n + [logy(n)] — 2 matches are required, and in 1964, S. S. Kislitsin [6] proved

this number to be necessary as well. Schreier’s method uses a knockout tournament

to determine the winner, followed by a second knockout tournament among the

* This work was supported by the National Science Foundation under grant GJ-992.

448

Technische

Universitat Copyright © 1973 by Academic Press, Inc.
. All rights of reproduction in any form reserved.
Braunschweig

6 W

Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem 3.4
A median for n numbers can be computed in O(n).

Proof idea:
X ={1,22,10,13,24,6,18,21,4,25,11, 16, 2,20,8,17,5,12,19, 14, 3,9, 15,7, 23}

706 Wii
220 180 160 5 -
71 71 1 BE g
130 4 W20l 19 4
202500 s B 14
® Sort all quintuples. ¢ ¢ ¢ ¢ ‘
IR+ H205

3
100610 812K 7
1SPW18W 11 1148 9
2202116)| 17} 15
24 W 25120)| 19 | 23

® Group the numbers into sets of 5.

NILg

*}i > Universitit
- (<) o
22445 Braunschweig

OIVch‘

(TN .
zo”:;_i ‘3% Technische
g

Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Proof idea (cont):

® Compute the median of medians. 114125

10 6] 8112
131811 | 14| 9
222116 | 17| 15
2/ 2520 19 23

® Use the median of medians as pivot to reduce the set of numbers.

5 | 4
12 | 6
11 J13[] 14

NILzy

> Universitat

o™ R, .
g”:;_& ‘3% Technische
< AR Z
o . v

Pe . {%&

Onscn®

Braunschweig

Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

WILgy
o v € .
g”:;_& ‘3% Technische
v A . g oo
5% %» Universitit
L .
#»#|%2%7 Braunschweig

OIVch‘

Overview

1. Introduction
Prelude: Solving recursions
Lower bounds

Divide-and-conquer

o & 0O Db

Randomized incremental construction

WIL
o .f’&(

0”:;_& a2 Technische
o%%ﬁ Universitat
%4|* 25 Braunschweig

v, W
ONscﬁé

10

Lower Bounds For Algebraic Computation Trees

Theorem 3.6 (Preliminary Report)
Computing a closest pair for » numbers t: Michael B0

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract — A topological method is given for obtaining
lower bounds for the height of algebraic computation trees,
and algebraic decision trees. Using this method we are
able to generalize, and present in a uniform and easy way,
almost all the known nonlinear lower bounds for algebraic

PP DY § Do A N S i A N

Theorem 1. Any algebraic computation tree that solves
the n-element distinctness problem must have complezity of

at least SI(n log n).

theory in recent years, no general lower bound me!!o!

1L
o’« &,

v & .
g”:;_& ‘3% Technische
%

S 258 % Universitit
ﬁ)ﬁf (<]

el Braunschweig
sc¥

has been provided for algorithms that involve arithmetical
operations and comparisons. Much less is known if we fur-
ther allow the operation of root extraction or the algebraic
operation of finding the root of a polynomial. Consider the
following decision problem:

Example 1, Element Distinctness. Given z1,...,2, € R,
1s there a pair ¢, j withi 5 j and z; = z; ?

One can solve the element distinctness problem with the
help of any efficient sorting algorithm using O(n log n) com-
parisons, or by computing the product H.-,‘,-(I« — z;) and
comparing the computed result to zero (using O(nlogn)
mult/div). Allowing linear operations for free, we know

! Research supported by a Weizmann Postdoctoral fellowship and by
NSF grant MCS-8006938.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-099-0/83/004/0080 $00.75

80

of no previous result that indicates why more than O(1)
operations are required to solve this problem in the model
considered here.

In this paper we provide a new topological method for
obtaining lower bounds for this general type of algorithms,
formally described as algebraic computation trees. Before
giving the detailed computational model it is worthwhile
to mention a concrete application of the method presented
here.

Theorem 1. Any algebraic computation tree that solves
the n-element distinctness problem must have complezity of
at least Q(nlogn).

This result extends the lower bounds of Dobkin and
Lipton (5] for the linear decision tree model, and the lower
bounds of Baur and Strassen [1) for the straight line com-
plexity of the above product.

Our new lower bound method rests heavily on a result
from real algebraic geometry due to Milnor [11] and Thom
[23] that bounds the “topological complexity” of real al-

gebraic varieties. 1xcept for this result the proofs of
our main theorems are elementary and require only basic

knowledge of algebra and topology. The new method also
provides a unified and easy way to prove nonlinear lower
bounds for straight line computations, algebraic decision
trees, and other previously untouchable problems such as
lower bounds for the complexity of constructions with a
ruler and compass in plane Euclidean geometry.

In the next section we rigorously specify our basic com-
putational model. The third section is devoted to a techni-
cal result needed for our main theorems that are presented
in section four. In section four we also show how to extend
our computational model to allow more algebraic opera-
tions such as taking k-th roots or computing the roots of a
polynomial.

In section five we show how to apply our method to the
bounded degree algebraic decision tree model, thus solving
the open problems in [20]. Section six is devoted to ap-
plications and in particular to the proof of the result on
the element distinctness problem (Theorem 1) mentioned
above.

m

Lower Bounds - |l [Ben-Or 1983]

Theorem 3.6
Computing a closest pair for n numbers takes at least €2(nlogn).

Ideas:

® Consider algebraic decision trees.

A Gabrielov, N Vorobjov

NILg
O o -@(

2 |.32 Technische
$ 22182 Universitat
%

(& o
,,O*’ *¢ Braunschweig
Nsce

11

Lower Bounds - |l [Ben-Or 1983]

Theorem 3.6
Computing a closest pair for n numbers takes at least €2(nlogn).

Ideas:

® Consider algebraic decision trees.

® Each set of numbers corresponds to a point in R".

® Consider subsets of R"that share the same membership properties.
® Consider the number N of connected components of R”

® Show that the height of an algebraic decision tree is at least Q(log N — n)

® Show that ELEMENT UNIQUENESS has many connected components.

® Note that determining a small minimum distance solves ELEMENT UNIQUENESS.

NILzy

e

3 > Universitat
- o
»7#|* %5 Braunschweig
)
Nsc¥

&
gé;& ‘3% Technische
g

11

Overview

1. Introduction
Prelude: Solving recursions
Lower bounds

Divide-and-conquer

o » O Db

Randomized incremental construction

WIL
o .f’&(

0”:;_& a2 Technische
o%%ﬁ Universitat
%4|* 25 Braunschweig

v, W
ONscﬁé

12

Divide-and-Conquer [Bentley and Shamos 1976]

DIVIDE-AND~-CONQUER IN MULTIDIMENSIONAL SPACE

Jon Louis Bentley
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27514

and

Michael Ian Shamos
Departments of Computer Science and Mathematics
Carnegie-Mellon University

Pittsburgh, PA

Abstract

15213

We investigate a divide-and-conquer technique in multidimensional space which decomposes a geometric

problem on N points in k dimensions into two problems on N/2 points in k dimensions plus a single problem

on N points in k-1 dimension.

for finding the two closest of N points in O(N log N) time in any dimension,

Special structure of the subproblems is exploited to obtain an algorithm

Related results are discussed,

along with some conjectures and unsolved geometric problems.

Introduction

A principal failing of computational geometry
[Shamos, Shamos and Hoey] is that it has not suc-
cessfully addressed problems in greater than two
dimensions. Such a study would have important
practical and theoretical benefits -- it would shed
light on linear programming, multidimensional data
analysis, geometric optimization, and retrieval on
multiple keys, as well as provide a link between
complexity and dimensionality. Some preliminary
results are known, [Preparata and Hong] show that
the convex hull of N points can be found in
O(N log N) time in three dimensions but that
O(N2) is a lower bound in any higher dimension.
The maxima of a set of vectors can be found in

O(N 1ogk'2

N) time in dimension k [Kung et al.]
and we conjecture that this time suffices to iden-

tify the extreme points of a k-dimensional set.

220

The most basic questions, however, have not
been studied. These include finding nearest and
farthest points, determining separability of point
sets and other elementary properties, We intend in
this paper to begin & systematic investigation of
higher-dimensional geometry and its relation to

complexity.

Closest=Point Problems

In this section we will investigate a number
of problems dealing with the proximity of N points
in Euclidean k=-space, The most primitive closest-
point problem is that of finding the two nearest
of the N points; we will let P(N,k) denote the
worst-case time of the best possible algorithm (the
minimax complexity) for solving the closest-pair
problem., The fixed radius-near-neighbor problem
asks for all pairs of points within some fixed dis-

tance & of one another, A special case of this

Divide-and-Conquer [Bentley and Shamos 1976]

L
A B
< n/2 points < n/2 points
°
° °
OB
° °
° °
°
° ° ° °

® Subdivide the set by a median line.

T
e Solve the two subproblems recursively in 2T(§).

® Merge the two subproblems in O(n).

NILg

v, % .
3% Technische

v 2 . g oo
»> Universitat
¥ Braunschweig

Yy, e
ONsc?‘é

13

Divide-and-Conquer 3 [Bentley and Shamos 1976]

® Observe: Points on one side cannot be closer than 0.
® As conseqguence, no point can have many close neighbors on the other side.

® Based on a packing arguments for 5/2 -balls; works in any fixed dimension.

NILg

e

3517 > Universitat
@ 4 o
#4145 Braunschweig
T LS
Nsc¥

oV e .
,gﬁg_& ‘3% Technische
g

14

Divide-and-Conqguer 4 [Bentley and Shamos 1976]

¢ :
e
® :
® = :
: @ o
®:
® .
o
o
o
o
o

® Thus: Scan linear sequence on one side.
® Keep track of potential neighbors on other side.

e Sorting takes O(nlogn); total time O(nlog®n).
e After global presorting: O(n) ; total time O(nlogn).

WILgy

e

3517 > Universitat
- o
»7#|* %5 Braunschweig

OIVsc'ﬁé

oV e .
,g”:;_i ‘3% Technische
g

15

Divide-and-Conquer 4 [Bentley and Shamos 1976]

® :
o :
® "
o
: @ o
°:
® -
o=)
¢
o
)
¢«

® Thus: Scan linear sequence on one side.
® Keep track of potential neighbors on other side.

e Sorting takes O(nlogn); total time O(nlog®n).
e After global presorting: O(n) ; total time O(nlogn).

WILgy

e

3517 > Universitat
- o
»7#|* %5 Braunschweig
)
Nsce

oV e .
,g”:;_i ‘3% Technische
g

15

Divide-and-Conquer 4 [Bentley and Shamos 1976]

® Thus: Scan linear sequence on one side.
® Keep track of potential neighbors on other side.

e Sorting takes O(nlogn); total time O(nlog®n).
e After global presorting: O(n) ; total time O(nlogn).

WILgy

e

o < .
g”:;_i ‘3% Technische
g

*}i > Universitit
L) (& .
22445 Braunschweig

OIVs(;Y‘

15

Higher dimensions

Dividing
Plane H

® Same idea: Divide-and-conquer.

Subhash Suiri

WIL
o .f’&(

2 |32 Technisch
:?5&%3 echnische
X

*}i > Universitit
- (<) o
22445 Braunschweig

OIVch‘

16

Higher dimensions

Dividing
Plane H
® Same idea: Divide-and-conquer. N

® Merge step: one dimension lower:

Set P2 Subhash Suri

NILg

e

Universitat
o o
Braunschweig

::;_& ‘3% Technische
O ~=g " z
3

Nsce

17

Higher dimensions 2

e If we could show that the problem size in
the conquer step is m < n/(logn)?~2, then
U(m,d —1) = O(m(logm)?=2) = O(n).

T ———— e ee—

¢ Theorem: Given a set S with J-sparsity,
there exists a hyperplane H normal to
some axis such that

1. |Sl‘, ‘Sz‘ Z n/4d

2. Number of points within 0 of H is
O((log;r;)d—2)‘
3. H can be found in O(n) time.

NILzy

S 22/¥8 > Universitat
P AR ~
‘70 v'$®

Nsc$

o™ e .
,g”% ‘3% Technische
< AR %2

Braunschweig

18

Higher dimensions 2

e If we could show that the ; waeno s L 20 - Wt
the conquer stepism < n, c .| &
U(m,d — 1) = O(m(logm)*~?) SR

o ! lo: ° .

T ——— e . Eo'. : .

* .) ‘ : .
e¢ Theorem: Given a set S with . i :E
there exists a hyperplane H n - | R
some axis such that —
<23
1. |Sl‘, ‘SQ‘ 2 n/4d M

2. Number of points within 0 of H is
O(—25=).

(log n)d—2
3. H can be found in O(n) time.

NILzy
v

() &
,g”j;& ‘3% Technische
< A2 %z

S 22/¥8 > Universitat
-] (<]
:’i &

& &
&sc

18

Higher dimensions 2

e If we could show that the ; waeno s L 20 - Wt
the conquer stepism < n, -

d—2 . e * | R

U(m,d — 1) = O(m(logm)**) g
o ! !o: ol

e ——————— e, ¢ EOL : o
¢ Theorem: Given a set S with . . i :E
there exists a hyperplane H n N B

some axis such that

r
l

Theorem 8. P(N,k) < O(N log N).

W‘—_'M
3. H can be found in O(n) time.

1L
0»1 .I’

&
g”j;& ‘3% Technische
< 7{ v A . g oo
U*ﬁ§> Universitat
-] .
»78|%%5 Braunschweig
ONSC'¢$

18

Overview

1. Introduction
Prelude: Solving recursions
Lower bounds

Divide-and-conquer

o & O Db

Randomized incremental construction

WIL
o .f’&(

0”:;_& a2 Technische
o%%i Universitat
%4|* 25 Braunschweig

v, W
ONsc‘t‘é

19

7
ONs

Chapter 33
Randomized Data Structures for the Dynamic Closest-Pair Problem

Mordecai Golin* Rajeev Raman'

Abstract

We describe a new randomized data structure, the sparse
partition, for solving the dynamic closest-pair problem.
Using this data structure the closest pair of a set of n points
in k-dimensional space, for any fixed k, can be found in
constant time. If the points are chosen from a finite universe,
and if the floor function is available at unit-cost, then the
data structure supports insertions into and deletions from
the set in expected O(log n) time and requires expected O(n)
space. Here, it is assumed that the updates are chosen by an
adversary who does not know the random choices made by
the data structure. The data structure can be modified to
run in O(log? n) expected time per update in the algebraic
decision tree model of computation.
more efficient than the currently best known deterministic
algorithms for solving the problem for k& > 1.

Even this version is

1 Introduction

We consider the dynamic closest-pair problem: We are
given a set S of points in k-dimensional space (we
assume k is an arbitrary constant) and want to keep
track of the closest pair of points in S as S is being
modified by insertions and deletions. Distances are
measured in the L¢-metric, where ¢ is fixed, 1 <t < oo.

The precursor to this problem is the classical
closest-pair problem which is to compute the closest pair
of points in a static set S, |S| = n. Shamos and Hoey
[12] and Bentley and Shamos [2] gave O(nlogn) time
algorithms for solving the closest-pair problem in the
plane and in arbitrary but fixed dimension, respectively.
This running time is optimal in the algebraic decision
tree model [1]. If we allow randomization as well as
the use of the (non-algebraic) floor function, we find al-

*INRIA-Rocquencourt, 78153 Le Chesnay Cedex, France, and
Hongkong UST. This author was supported by the ESPRIT Basic
Research Actions Program, under contract No. 7141 (project
ALCOM: II) and by NSF grant CCR-8918152. This work was
done while this author was visiting the Max-Planck-Institut fiir
Informatik.

tMax-Planck-Institut fiir Informatik, W-6600 Saarbriicken,
Germany. These authors were supported by the ESPRIT Basic
Research Actions Program, under contract No. 7141 (project
ALCOM II).

Christian Schwarz! Michiel Smid!

gorithms with better (expected) running times for the
closest-pair problem. Rabin, in his seminal paper [9] on
randomized algorithms, gave an O(n) expected time al-
gorithm for this problem. A different approach, leading
to a simpler algorithm also with O(n) expected running
time, was recently described by Khuller and Matias [7].
A randomized “sieving” procedure described in this pa-
per is at the heart of our dynamic algorithm.

There has been a lot of work on maintaining the
closest pair of a dynamically changing set of points.
When restricted to the case where only insertions of
points are allowed (sometimes known as the on-line
closest-pair problem) a series of papers culminated in
an optimal data structure due to Schwarz, Smid and
Snoeyink [11]. Their data structure required O(n) space
and supported insertions in O(logn) time.

The existing results are not as satisfactory when
deletions must be performed. If only deletions are
to be performed, Supowit [15] gave a data struc-
ture with O(logf n) amortized update time that uses
O(nlog"~! n) space. When both insertions and
deletions are allowed, Smid [(14] described a data
structure that uses O(nlog®n) space and runs in
O(log* nloglogn) amortized time per update. Another
data structure due to Smid [13], with improvements
stemming from results of Salowe [10] and Dickerson and
Drysdale [5], uses O(n) space and requires O(y/n logn)
time for updates; this is the best linear-space data struc-
ture currently known for insertions and deletions.

In this paper we discuss a randomized data struc-
ture, the sparse partition, which solves the dynamic
closest pair problem in arbitrary fixed dimension using
O(logn) expected time per update. The data struc-
ture needs O(n) expected space. We assume that the
updates are generated by an adversary who can insert
or delete arbitrary points but has no knowledge of the
random choices that the algorithm makes. The above
bound is obtained assuming the use of the floor func-
tion and assuming that there is some prior bound on the
size of the points (in order to make possible the use of
hashing). If we want to dispense with hashing, then the
algorithm can be modified to run in O(lognloglogn)
expected time per update. If we remove both assump-
tions, we obtain an algorithm with O(log® n) expected

301

Universitat

o o
% Braunschweig
cv:‘fx

20

MAX-PLANCK-INSTITUT
FUR
INFORMATIK

e g
Simple Randomized Algorithms for
Closest Pair Problems
M. Golin R. Raman C. Schwarz M. Smid
MPI-I-92-155 December 1992

G

INFORMATIK E

Im Stadtwald
W 6600 Saarbriicken
Germany

m_

Incremental Computation of a Closest Pair

Approach:
® |ncremental computation
® Current minimal distance §
® Consider next p € P — update ¢ if necessary

® Sparsity = O(1) many candidates ¢ € P

Issue:

e Efficiently finding ¢ € P.
Problem:

e Processing unsorted sequence = Points cannot be deleted from sequence.

= Runtime could be bad...?!

NILg

e

3517 > Universitat
- o
»7#|* %5 Braunschweig
)
Nsce

& .
,gé;_& ‘3% Technische
g

2

Constructing a Grid

r—r - 0 1
Idea [Golin et al., 1993]: I e
[[[[[[[
e Cover R*with an infinite grid G’ B YA
of width 6. ST S
r—r - g 0 -
e Each (half-) open grid cell stores all previously s | ' e
. . . [[[[[[[
considered points in it. A
r—r - 0 0
_ 0| | | | | | |
e Denote cells with column/row (z,¥%) as Gslx, y]. TSI |
e W.lo.g.: Gs[0,0] anchored at origin
e For(z,y) € Z* let Ns(z,y) := U Gs|C,v].

C:$—1,$,$+1;V:y—1,y,y—|—1
Lemma
For p,q € Pwithp € Gslz,y]: [d(p,q) <J = q € Ns(z,y)]

point p;4; is located. Then every point in S; that is within distance §(S;) of p;4; must
o™i, be located in one of the 9 grid boxes that are adjacent to b. (We consider the box b as

2| xg2 Technisch : : : .
3 ié& %3 Uenﬁvz;z(i:tﬁi bemﬁ asiﬁﬁent todtself.) We call these 9 boxes the neighbors of b.

Braunschweig

Nsce

22

A Closer Look

Using the grid: 5
) R
e f[or (./L',y) e L IetN(S(fC,y) = U G(S[C,V] . I B T

(=zx—1l,z,x+1;v=y—1,y,y+1 O !
e Sparsity = Ns(x,y)contains O(1)many points with pairwise distance > 4.

® Forcurrent p<c P:0O(1) many distance computations suffice.

Updating the grid:

e P belongs to a pair with minimal distance = rebuild grid.

,Black Box*

e Representing the grid / assignment: ,Point — cell®

NILg

e

3517 > Universitat
- o
»7#|* %5 Braunschweig
)
Nsce

oV e .
gé;& ‘3% Technische
g

23

Algorithm

Algorithm CP(p,, p2, ..., Pn)

(1) & :=d(p1,p2); G := Build(S,,§);
(2) fori:=2to n—1do

(3) begin 8(Ss) = d(ps, p1) 8(Ss) = d(ps, p1)
(4) V := {Report(G,b) : bis a neighbor of the box contain
(5) d := min,cv d(p;s1.0):

(6) if d > 6 then Insert(G.p;
(7) = Bui
(8) end;
(9) return(é).
W

5(53) = d(Pl, Pz)

g

*P1

6(Ss) = d(ps, 1) 6(S7) = d(ps, p1)

6 K

PP2

1L
o’« ."0

v <

%

3% Technische
%5 Universitat
*#%s Braunschweig
c¢$

o5

v,
Of\/‘s

24

e Cell representation (z,y) € N?

® (as ORDEREDDICTIONARY

o Keyof peP : (px,puy).
Computing the key value:

e Assignment:

D.T P.
peGilryl e u=5y="

)
Note:
e Operation |-]

Implementing the grid:

e Data structure:
- Tyuira(n): Construction cost

- Tinsert(n): Insertion cost
- Tyuery(n): Query cost

NILg

e

Representing the grid - |

rTrT P CrTrT
o
, it el el el el el
LZ%I—I-(g o 10

T
I
o
I
T el
|
I
I
I
I
1 1 1 1T T
I
AR R A N R B
I

3517 > Universitat
@ 4 o
#4145 Braunschweig
T LS
Nsc¥

&) &
,gé;_& ‘3% Technische
g

25

Analysis - |

WIL
o™ e,

”iél s ?;z Technische
%

o% > Universitit
%4|* 25 Braunschweig
Ol\rscti$

20

Analysis - |

e Construction cost: € Q(n), O(n?).

WIL
o™ e,

O”iél s 'gz Technische
%

Uf?‘i > Universitit
%4|* 25 Braunschweig
Of\fscﬂé

20

Analysis - |

e Construction cost: € Q(n), O(n?).

Terminology:

NILzy

Universitat
¥ Braunschweig

o™ R, .
g”:;_& ‘3% Technische
g

Nsc$

20

Analysis - |

e Construction cost: € Q(n), O(n?).

Terminology:

® (po,...,Pn—1) := permuted sequence

NILzy

Universitat
¥ Braunschweig

o™ e .
Jj;_& ‘32 Technische
g

Nsc¥

26

Analysis - |

e Construction cost: € Q(n), O(n?).

Terminology:

® (po,...,Pn—1) := permuted sequence

o Pii={po,...,pi1}

NILzy

Universitat
¥ Braunschweig

[\ v & .
Jj;_& ‘32 Technische
g

Nsc¥

26

Analysis - |

e Construction cost: € Q(n), O(n?).

Terminology:

® (po,...,Pn—1) := permuted sequence

o Pi:={po, - pi-1}
® §;:=min{d(p;,pr) |0<j<k<i—1}

NILzy
Ky v -@(

2 |.32 Technische
$ 22182 Universitat
%

(& o
,,O*’ *¢ Braunschweig
Nsce

26

Analysis - |

e Construction cost: € Q(n), O(n?).

Terminology:

® (po,...,Pn—1) := permuted sequence

o Pi:={po, - pi-1}
® §;:=min{d(p;,pr) |0<j<k<i—1}

Randomization:

NILg

e

> Universitat

O . v
H| 74
OIVscﬁé

o & .
g”:;_& ‘3% Technische
< 23 %z

Braunschweig

26

Analysis - |

e Construction cost: € Q(n), O(n?).

Terminology:

® (po,...,Pn—1) := permuted sequence

o Pi:={po, - pi-1}
® §;:=min{d(p;,pr) |0<j<k<i—1}

Randomization:

® Expected runtime?

Technische
% Universitit

¥ Braunschweig

26

Analysis - |

e Construction cost: € Q(n), O(n?).

Terminology:

® (po,...,Pn—1) := permuted sequence

o Pi:={po, - pi-1}
® §;:=min{d(p;,pr) |0<j<k<i—1}

Randomization:

® Expected runtime?

® Random variable:

1, if 0; < 0;_1
X(pi—1,Pi—1) :=

0, else

Technische
% Universitit

¥ Braunschweig

26

Analysis - |l

Runtime:

e T'(i):costfor Pi-1—P;

T(Z) S O (Tinsert (Z — 1) + Tquery (7, — 1) + X(pz'—la Pi—l)) Tbuild(i))
® Random permutation:

= E[T(Z)] €0 (E[Tinsert(i - 1)] + E[Tque'r‘y(i - 1)] + P ({51 < 573—1})) E[Tbuild(i)])

Lemma 1 Let P1, P2, ---, Pn be a random permutation of the points of S. Let S; :=

{p1, P2, ---, Pi}.- Then Pr[6(S;+1) < 8(S;)] < 2/(Z +1).
L —_——.

NILzy

o™ R, .
g”:;_& ‘3% Technische
< AR %2

Uf?‘i > Universitit
L .
»7#|* %5 Braunschweig
Of\fsct‘é

27

Analysis - Il

| DO

Lemma: P({d; <di—1})

~

Proof:
e Backward analysis: Let p =P; \ Pi—1
o S;:={reP;|qeP;:r#£q,dq,r) =70}
® Gridrebuilt < 0; <0;_4
o I ISI=2 P({5 <0} =P(pes)) ="
o If |S;|>2:

- Case 1: All pairs ¢, € P; with d(q,r) = J; share a unique point:
1
P({&J < 57;_1}) — P(p: S) — ;

- Case 2: Such a unigue point does not exist:
P({(SZ < 52'_1}) =0

NI, .
3% Technische

v 2 . g oo
»> Universitat
¥ Braunschweig

Yy, e
ONsc?‘é

Summary - |

® EXxpected cost:
= BIT(0)] € O (ElTinaert(i = 1] + ElTpuer i = D]+ 2 - BT

e Implementing the grid:

Data structure Tquery (n) Tinsert (n) Tbuz’ld (n)
AVL tree O(logn) O(logn) O(nlogn)
Dynamic perfect hashing O(1)(exp.) O(1)(exp.) O(n)(exp.)

e Implementation as AVL tree:

n

ZE[T(@)] c O <Z (logi + log i + il(;gi>> = O(nlogn)

1=3

® |mplementation as dynamic perfect hashing:

éE[T(@-)] S <§n: (1 +1+ z>> = O(n)

1=3

WILgy

v, % .
3% Technische

v 2 . g oo
»> Universitat
¥ Braunschweig

Yy, e
ONsc?‘Q‘

29

Summary - Il

Theorem 1 Let S be a set of n points in D-space, and let 1 <t < oo.

1. The implementation of the algorithm that uses a binary tree finds a closest pair in
S, in O(nlogn) ezpected time. This implementation uses the floor function and
randomazation, and it works for any set S.

2. The implementation of the algorithm that uses dynamic perfect hashing finds a clos-
est pair in S, in O(n) ezpected time. This implementation uses the floor function
and randomization, and it works for any set S for which the values |p\9)/§(S)],
p=(p",p®,...,p™) € S and 1 < j < D, come from a finite universe.

e

NILzy

/VO

o
4

t?&"f% Technische
A I, ¥
3

Nsce

Universitat

* Braunschweig

30

Thank you!

WIL
o .f’&(

V;

a2 Technische
X% Universitit
%

4 o o
,%i *¢ Braunschweig
scy

31

