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Introduction

Task:
® Given: Set of n points in R

® \Wanted: Smallest enclosing convex object

Intuition in R?:
® Draw points on a wooden board.

e Put in nails at points.

® | et arubber band snap to the nails.

Theorem 2.18: Computing the convex hull takes (nlogn).

Theorem 2.35: Computing the / vertices of the convex hull can be done in O(n log k).
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Superhero!

CONVEX HULK
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Definition - |

q

Definition 2.1 /
Forp,q cR*:pg:={zeR?|Ja,B e R, > 0,0+ =1,z =ap+ Bq} p

p+Ag—p),0<A<1
=(1—-Np+ \q
Definition 2.2

For{po,...,pn_1} C R? pointz € R is a convex combination of {po, - - -, Pn—1}, if

dag, ..., a1 € |0, 1] with ‘I.Z%’pi =X
i=0

2. iai =1
i=0

® P = {r |x convex combination of {P,q}}

e A(p,q,7) ={z | x convex combination of {p,q,7}}
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Definition - |l

Definition 2.3
Convex hull  conv(P) of P:={po,...,Pn_1}:

conv(P) :={x € R | x convex combination of P}

Theorem 2.4 (Carathéodory)
conv(P) = Union of all convex combinations with at most (d + 1) pointsin P

Corollary 2.5
P c R? = conv(P) union of all A(p,q,r) with p,q,7 € P.
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Alternative Definitions

Lemma 2.6
The following definitions are equivalent to Definition 2.3.

1. conv(P) := ﬂ P

PDOP,P convex

2. Ford=2:3 convexpolygon P:P C P C conv(P)

3. For d = 2: conv(P) := conv. polygon P with minimal circu e (area) with P C P
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Computing the Convex Hull - |

® Fromnowon P CR?
e First Approach: Find vertices of conv(P) by elimination

e Negation of Corollary 2.5:

x not vertex of conv(P)

0

dpi,pj, P € P+ x = non-trivial convex combination of Pi;Pj; Pk, -

Algorithm 2.7

1: for ( all triples (pi,p]', Pk) of points in P) do
2: for ( all points in € P) do
3: 1f (p lies in the inside of A(pi, p,',pk)
or on a boundary edge of A(pi, Pis pk)) then

4 mark P as an interior point.

5: P':= {P cP ’ is unmarked };
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Computing the Convex Hull - |l

Analysis of Algorithm 2.7:

° (g) € O(n’) triangles

’b 4
2 ‘A'AVA§ \

N ”~
“V

® Per triangle: O(n) further points

e Sort O(n)vertices

e Total runtime: O(n*+nlogn) = O(n?)

Sorting criterion:
e CCWon conu(P).

® Polar angle wrt ¥-minimal point in P,

® |ssue: Do we need trigonometry?
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Lexicographic Order

Lexicographic order

® Choose the ,,y-minimal“ point by lexicographic order:

(p-z,p.y) <y (gx,0y) & ((py < qy) V(py=qy) A(px<qx)))

e Analogously: by x-coordinate

(p-x,py) <z (¢.2,qy) & (P < qx)V(pr=qx)A @y <qy)))

WILgy

e

> Universitat

o . v
RS
OIVscﬁé

o < .
g”:;_i ‘3% Technische
< A2 %z

Braunschweig

10



Sorting by Polar Coordinates

Observation:

® (Goal: CCW order

e Sort by polar angle. *S
e Sufficient: pairwise \ |
comparion of points s, q = @ .

e Check relative position Pmin
Of q wit Pmin$

Consequence: D

® Predicate: a <b:& ((@ = pmin) V (a = b) V (LEFTTURN(pmin, @, b) = TRUE))
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Review: Sorting

® Algorithms and Data Structures 1

® \arious algorithmic paradigms

Sorting algorithms:

® |[nhcremental methods:
- Bubble Sort, Selection Sort, Insertion Sort

e Divide-and-conquer methods:

- Quicksort, Mergesort

® Methods based on data structures:
- Heapsort, sorting by AVL tree

® Other methods:
- Bucket Sort, Shellsort, ...
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Incremental Methods

Difference: Selection Sort <-> Insertion Sort
® Selection Sort: Search in unsorted part of array
® |nsertion Sort: Search in sorted part of array

1 1
112(3l4|7]|sl6l5 2l3f(s5|(7[1]|8]|6]4
T A
minindex Insert
Selection Sort Insertion Sort

Approach:

® Selection Sort: Find next element for extending the order
® |nsertion Sort: Insert next element, such that sequence remains sorted
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® Split (Quicksort) or combine (Mergesort)
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Divide-and-Conquer

7 31211 4
3 1047 5
3|2 615
1|2 6|7
9 6|7
2 7 8
Quicksort

71503[2'1|8]6]|4
71532 18'6|4
7 1 7 1
715 3129 1'8 6'4
: : : :

7 5 2 3 1 8 6 4
517 213 1|8 416
2131517 114|618
1121345678
Mergesort
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Sorting Methods Based on Data Structures

»~Algorithms and Data Structures®: AVL-tree
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Sorting as a Lower Bound

Theorem 1.18: Computing the convex hull takes 2(nlogn)
iIn certain models of computation.

Proof: Recall that comparison-based sorting takes (2(nlogn).
Consider a set of n numbers, L1,...,Tn.
Map them to the points (1, l’%) ooy (T, x%).

5

3,5,1,2,4,7,6

The convex hull yields the sorted order of numbers.
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INFORMATION PROCESSING LETTERS 2 (1973) 18--21. NORTH-HOLLAND PUBLISHING COMPANY

ON THE IDENTIFICATION OF THE CONVEX HULL OF
A FINITE SET OF POINTS IN THE PLANE

R.A. JARVIS
The Australian National University, Department of Statistics, Box 4, Canberra, A.C.T. 2600, Australia

Received 6 December 1972
convex hull algorithm

1. Introduction

This paper presents an extremely simple algorithm
for identifying the convex hull of a finite set of points
in the piane in essentially, at most n(»: +1) operations
for n points in the set and m < n points on the convex
hull. In most cases far less than n(m + 1) operations
are necessary because of a powerful point deletion
mechanism that can easily be included. The operations
are themselves trivial (computationally inexpensive)
and consist of angle comparisons only. Even these
angle comparisons need not be actvally carried out if
an improvement suggested in » late- section is imple-
mented. Aithough Graham’s algorithm [1] requires
no more than (nlopn)/log2 i Cn operations*, the oper- ta identify convex hull point Na8 .
ations are themselves mgfe cmnp(;sx than those o1 :’he St necesaay ko slle. Sy 7 Ghgse exnutins
method presented here; in particular, Graham’s Fig. 1. Geometric interpretation of the algorithm.
method would niot be as efficient for low m.

the first point on the knl), “ake this the new origin
point and swing a radius arm from this point in the -

2. Geometric in‘erpretation same direction as before till the next hull point is
found. Repeat until the points are enclosed by the
The upderlyinz method uf the algorithm can be convex hull. Delete points from further consideration
described simply: find 2n origin point outside the if
point set and swing a radius arm in an arbitrary direc- (i) they have already b2en identi’ed as being on the
tion until a point of the set is met; this point becomes convex hull,

(ii) they lie in the area enclosed by a line from the
virst to the last convex hull point found and the

L] > “e o
To quots Graham, “C is a small positive cunstant which lines joining the convex hull points in the sequence

depcnds on what is meant by an “operation’”, In fact, Cis

distributed over the five basic stups of Graham’s aigorithm i.‘ound. . _
and his paper should be consulted for deralied interpreta- Fig. 1 illusirates this geometric interpretation.
tion.
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IDEA

A series of nonverbal
algorithm assembly instructions.
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Jarvis’ March [Jarvis, 1973]

Basic idea:

e |teratively find next edge on boundary of conv(P)
e Analogy: Selection Sort.

- Find next element for continuing sorted order

e Start: minimal point Pmin wrt <,

Intuition:

e Gift wrapping“
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Giftwrapping: Pseudocode and Animation

Algorithm 2.9: Compute conv(P) with Jarvis’ March.

algorithm jarvis(S) is
// S is the set of points
// P will be the set of points which form the
convex hull. Final set size is i.
pointOnHuUll = leftmost point in S // which is
guaranteed to be part of the CH(S)
i:=20
| repeat
P[i] := pointOnHull
endpoint := S[0] // initial endpoint
for a candidate edge on the hull
for j from 0 to |S| do
// endpoint == pointOnHull is a rare
case and can happen only when j == 1 and a better
endpoint has not yet been set for the loop
if (endpoint == pointOnHull) or (S[j]
is on left of line from P[i] to endpoint) then
endpoint := S[j] // found
greater left turn, update endpoint

im=1+1
pointOnHull = endpoint
until endpoint = P[0] // wrapped around

to first hull point

From Wikipedia, the free encyclopedia By Maonus, CC BY-SA 4.0 |
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Giftwrapping: Pseudocode and Animation

Algorithm 2.9: Compute conv(P) with Jarvis’ March.

algorithm jarvis(S) is
// S is the set of points
// P will be the set of points which form the
convex hull. Final set size is i.
pointOnHuUll = leftmost point in S // which is
guaranteed to be part of the CH(S)
i:=20
| repeat
P[i] := pointOnHull
endpoint := S[0] // initial endpoint
for a candidate edge on the hull
for j from 0 to |S| do
// endpoint == pointOnHull is a rare
case and can happen only when j == 1 and a better
endpoint has not yet been set for the loop
if (endpoint == pointOnHull) or (S[j]
is on left of line from P[i] to endpoint) then
endpoint := S[j] // found
greater left turn, update endpoint

im=1+1
pointOnHull = endpoint
until endpoint = P[0] // wrapped around

to first hull point

From Wikipedia, the free encyclopedia By Maonus, CC BY-SA 4.0 |
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Summary

Theorem 2.10

Jarvis’ March computes the # vertices of conv(P) in O(hn).

Algorithm 2.9: Compute conv(P) with Jatvis’_

algorithm jarvis(S) is

// S is the set of points

// P will be the set of points which form the
convex hull. Final set size is i.

pointOnHull = leftmost point in S // which is
guaranteed to be part of the CH(S)

i:=0 .

— repeat 1 " L.
PTi] := pointOnHull output-sensitive
endpoint := S[0@] // initial endpoint

for a candidate edge on the hull
for j from @ to |S| do
// endpoint == pointOnHull is a rare
case and can happen only when j == 1 and a better

endpoint has not yet been set for the loop
if (endpoint == pointOnHull) or (S[j]
is on left of line from P[i] to endpoint) then
endpoint := S[j] // found
greater left turn, update endpoint
im=1i+1
pointOnHull = endpoint
until endpoint = P[0] // wrapped around
to first hull point
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A New Convex Hull Algorithm for Planar Sets

' Quickhull [Eddy, 1977]

WILLIAM F. EDDY
Camegie-Mellon University

A new algorithm, CONVEX, that determines which points of a planar set are vertices of the
convex hull of the set is presented. It is shown that CONVEX operates in a fashion similar
to the sorting algorithm QUICKERSORT. Evidence is given which indicates that in some
situations CONVEX is preferable to earlier algorithms. A Fortran implementation, intended
to minimize execution time, is presented and an alternative, which minimizes storage require-
ments, is discussed.

Key Words and Phrases: convex hull, QUICKERSORT, partitioning, sorting

CR Categories: 5.30, 5.31

The Algorithm: CONVEX, A New Convex Hull Algorithm for Planar Sets. ACM Trans.
Math. Software 8, 4 (Dec. 1977), 411-412.

INTRODUCTION

The convex hull of a planar set is the minimum-area convex polygon containing
the planar set. A convex polygon is clearly determined by its vertices. Graham [1]
suggests an algorithm for determining which points of a planar set are vertices of
its convex hull. Because his algorithm requires sorting the points, if there are N
points then at least O(N log N) operations are needed to determine the vertices.
Recently, Preparata and Hong [3, 4] have shown that there exist sets of points for
which every algorithm requires at least O(N log N) operations to determine the
vertices of the convex hull. Jarvis [2] gives an algorithm which requires O(N-C)
operations, where C is the number of vertices. For some configurations of the
points in the plane (those with small values of C) the algorithm given by Jarvis
will be faster than the algorithm of Graham; for other configurations it may be
slower. An adaptive algorithm, CONVEX, is presented here which never requires
more than O(N-C) operations to determine the vertices of the convex hull and
may require substantially fewer. However, CONVEX may require more opera-
tions than Graham’s algorithm for some configurations of points. Evidence is
presented which suggests that in applications CONVEX is preferable to the ‘“‘sort-
ing” algorithms [1, 3, 4] and to Jarvis’s algorithm [2].

METHOD

Operationally, this algorithm is analogous to the sorting algorithm QUICKERSORT
[5). At each step QUICKERSORT partitions the input array with respect to a

Copyright © 1977, Association for Computing Machinery, Inc. General permission to re-
publish, but not for profit, all or part of this material is granted provided that ACM’s copy-
right notice is given and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the Association for Com-
puting Machinery.

This research was supported in part by the National Science Foundation under Grant DCR75-
08374.

Author’s address: Department of Statistics, Carnegie-Mellon University, Schenley Park,
Pittsburgh, PA 15213.

ACM Transactions on Mathematical Software, Vol. 3, No. 4, December 1977, Pages 398-403.
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KVICK SORT

idea-instructions.com/quick-sort/ m
v1.2, CC by-nc-sa 4.0
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Quickhull [Eddy, 1977]
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Quickhull [Eddy, 1977]

Basic idee:

® Use pivot element for subdivision into independent subsets

® Analogy: Quicksort >T1 31 V506 {I

- Pivotelement m€ A: A— A_,,0A_,,0As,

- Concatenate subsequences

Transfer to R*: o

e Separation of P by line ¢ g

e ¢ :=line through extreme points [, r o

e (Concatenation of recursively computed hull

— conv(P)
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Recursion in Quickhull

Choosing the pivot element:
e Points above g
® Auxiliary point : maximal distance to g.

e New pivot elements: (A, Ar

® Delete PNA(,r, h). g1

® [wo recursions: p
Above [h and below rh \ pad

e _Exhaustion from inside®

e Analogously below g
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Quickhull: Animation

150ttt e -

By Maonus, CC BY-SA 4.0 '
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Quickhull: Pseudocode

Algorithm 2.11: Compute conv(P) with Quickhull.

Input = a set S of n points
Assume that there are at least 2 points in the input set S of points

function QuickHull(S) is
// Find convex hull from the set S of n points
Convex Hull := {}
Find left and right most points, say A & B, and add A & B to convex hull
Segment AB divides the remaining (n - 2) points into 2 groups SI and S2
where S1 are points in S that are on the right side of the oriented line from A to B,
and S2 are points in S that are on the right side of the oriented line from B to A
FindHull(S1, A, B)
FindHull(S2, B, A)
OQutput := Convex Hull
end function

function FindHull(Sk, P, Q) is
// Find points on convex hull from the set Sk of points
// that are on the right side of the oriented line from P to Q
if Sk has no point then
return
From the given set of points in Sk, find farthest point, say C, from segment PQ
Add point C to convex hull at the location between P and Q
Three points P, Q, and C partition the remaining points of Sk into 3 subsets: S@, S1, and
S2
where S0 are points inside triangle PCQ, SI are points on the right side of the
oriented
line from P to C, and S2 are points on the right side of the oriented line from C to
Q.
FindHull(S1, P, C)
FindHull(S2, C, Q)
end function
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Analysis

Theorem 2.12
Quickhull computes conv(P) in O(n?)worst-case and in O(nlogn) best-case runtime.

Excercises:
® Details of implementation
® Jermination

e Runtime
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Thank you!
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