
Computational Geometry: Theory and Applications 1 (1991) 51-64

Elsevier
51

A simple and fast incremental
randomized algorithm for
computing trapezoidal
decompositions and for
triangulating polygons

Raimund Seidel*, **
Computer Science Division, University of California Berkeley, Berkeley, CA 94720, USA

Communicated by Kenneth Clarkson

Submitted 28 September 1990

Accepted 8 March 1991

Abstract

Seidel, R., A simple and fast incremental randomized algorithm for computing trapezoidal

decompositions and for triangulating polygons, Computational Geometry: Theory and Appli-

cations 1 (1991) 51-64.

This paper presents a very simple incremental randomized algorithm for computing the

trapezoidal decomposition induced by a set S of n line segments in the plane. If S is given as a

simple polygonal chain the expected running time of the algorithm is O(n log* n). This leads to

a simple algorithm of the same complexity for triangulating polygons. More generally, if S is

presented as a plane graph with k connected components, then the expected running time of

the algorithm is O(n log* n + k log n). As a by-product our algorithm creates a search structure

of expected linear size that allows point location queries in the resulting trapezoidation in

logarithmic expected time. The analysis of the expected performance is elementary and

straightforward. All expectations are with respect to ‘coinflips’ generated by the algorithm and

are not based on assumptions about the geometric distribution of the input.

1. Introduction

Polygon triangulation has been a problem of great appeal to computational

geometers: It can be easily stated as “given the coordinates of the n vertices of a

simple polygon P in order around P, find n - 3 diagonals that partition P into

* Large Portions of the research reported here were conducted while the author visited the Free
University Berlin.

**Supported by NSF grant CCR-8809040 and Presidential Young Investigator Award CCR-
9058440.

0925-7721/91/%03.50 0 1991- Elsevier Science Publishers B.V.

52 R. Seidel

it - 2 triangles;” . tt is of importance in various application areas; and finally, the
actual computational complexity of the problem remained unresolved for more
than a decade until very recently.

A brief history: Garey et al. [7] were the first to publish an O(n log n)
algorithm based on sweeping in 1978. Four years later another algorithm with the
same complexity was published by Chazelle [l]. The O(n log n) bound was then
improved to bounds of the form O(n log C,), where C, is a ‘shape’ parameter no
bigger than n that depends on the polygon P to be triangulated (for instance the
number of reflex vertices [6,8], or the ‘sinuosity’ of P [3]). On a different front an
ever-increasing class of polygons were shown to be triangulatable in linear time
[12-131. After a false start, Tarjan and Van Wyk [ll] made a major breakthro-
ugh with an O(n log log n) algorithm in 1986. This time bound was matched by a
different but simpler algorithm by Kirkpatrick et al. [lo] three years later. In the
mean time Clarkson et al. had published a randomized algorithm with
O(n log* n) expected running time [5]. Finally in 1990 Chazelle discovered a
linear time deterministic algorithm [2], which settles the question about the
intrinsic computational complexity of triangulating once and for all.

This paper presents another randomized algorithm with O(n log* n) expected
running time. Its virtues lie in its simplicity. It uses no divide-and-conquer or
recursion, and no ‘Jordan-sorting’ [5,9]. Its expected performance admits a very
straightforward and self-contained analysis. Finally, it is practical and relatively
simple to implement, a property that very few, if any, of the algorithms
mentioned can claim.

Like most of its predecessors our algorithm does not triangulate a polygon P
directly, but rather it computes what is known as the ‘horizontal visibility map’ or
‘trapezoidal decomposition’ of P. By an observation of Fournier and Montuno [6]
it is easy to derive from such a decomposition of P in linear time a triangulation
of P.

Section 2 of this paper gives some basic definitions and facts about trapezoidal
decompositions and how they relate to triangulations. Section 3 describes the new
algorithm.

2. Trapezoidations

Our setting is the Euclidean plane with the usual Cartesian x-y coordinate
system. We will feel free to use intuitive notions such as ‘vertical’ (meaning
parallel to the y-axis), ‘horizontal,’ ‘left of,’ etc.

We call two straight line segments in the plane noncrossing iff their intersection
is either empty or a common endpoint. Consider a set S of n nonhorizontal,
noncrossing closed line segments. Starting at each endpoint of each segment in S
draw two horizontal rays, one towards the left and one towards the right, each
extending until it hits a segment of S. For a segment endpoint p we call the union

Trapezoidal decompositions and triangulating polygons 53

<____----_-____ _______-----_______________---_____________*

Fig. 1. A trapezoidation of 5 segments.

of these two possibly truncated rays emanating from p the horizontal extension

through p. The segments of S together with the horizontal extensions through the

endpoints form a plane graph, which we call the trapezoidation of S, or T(S) for

short (see Fig. 1). As each face of 9(S) has two horizontal sides (one of which

might have length 0) we are justified in calling the faces of Y(S) trapezoids.

What is the complexity of 9(S)? If S consists of n segments, then there are at

most 2n segment endpoints. Through each endpoint there is a horizontal

extension whose endpoints in turn can contribute at most two vertices to F(S).

Thus Y(S) has at most 6n vertices, and since it is a planar graph it follows

immediately that it has O(n) edges and faces. In particular, the number of faces

(trapezoids) is at most 3n + 1, which can be easily established using a sweep

argument.

For our purposes it would be advantageous if each trapezoid of T(S) had at

most two ‘neighboring’ trapezoids above it and at most two neighboring

trapezoids below it. By this we mean that if a trapezoid has a nondegenerate

upper (lower) side, then this side should have non-empty intersection with the

lower (upper) sides of at most two other trapezoids. This condition holds

automatically if no two distinct endpoints of segments in S have the same

y-coordinate. From now on we will assume that S satisfies this ‘nondegeneracy’

assumption. As noted already in [5], no generality is lost with this assumption,

since it can always be achieved by rotating the coordinate system by a sufficiently

small amount. Better yet, this perturbative rotation can simply be simulated using

a lexicographic technique: if two distinct points have the same y-coordinate, then

the one with smaller n-coordinate is considered the ‘lower’ one (see Fig. 2).

We end this section by giving the connection between computing trapezoida-

tions and triangulating simple polygons. This connection was originally estab-

lished in [6] and [3]. We include it for the sake of completeness.

Let S = {so, si, . . . ,s,_~} be a set of n segments that form a simple and closed

polygonal curve; i.e. si and si+, share a common endpoint, and si fl sj = 0 iff

Ii -i] > 1 (all index arithmetic here is modulo n). This polygonal curve bounds a

54 R. Seidel

___________________________--

i i

___-___ __ ____ * <______________.
<___________________________ ___________----

<_________- ________________

\ -___________ __________--- _____________ _________________)

~~~~~~_~~r/___________l”‘/’ 111111111111111111 -: 

_______________ ____________________________* 

I _____________________-_______________._____* <_______________ 

Fig. 2(a). A ‘degenerate’ trapezoidation. 

simple polygon P with n vertices. Triangulating P amounts to finding a set of 

it - 3 noncrossing diagonals of P that partition P into n - 2 triangles. 

Lemma 1. Let S = {so, sl, . . . ,s,_,} be the set of edges around a simple polygon 

P. If F(S) is available, then a triangulation of P can be computed in O(n) time. 

Proof. (Sketch) Assume that no two vertices of P have the same y-coordinate. 

As mentioned above, this assumption entails no loss of generality. We compute a 

triangulation of P from a trapezoidation T(S) in three stages: 

First remove from consideration all trapezoids of T(S) that do not lie in the 

interior of P. 
Second, for each of the remaining trapezoids check whether it has two vertices 

of P on its boundary that do not lie on the same side. If such a pair of vertices 

Fig. 2(b). Degeneracies removed by rotation of coordinate system (or lexicographic method). 



Trapezoidal decompositions and mriangulating polygons 

Al mm- 

______ ---- _______---- ____________ 
(a) ________ _______-__ __ ____________________--- 

______ ______________--- _____--- Y i 

Fig. 3. (a) Trapezoids inside the polygon; (b) Introducing diagonals; (c) Decomposition of polygon 

into pieces that are easy to triangulate. 

exists draw a diagonal between them. 

The diagonals introduced in the second phase partition P into a number of 

subpolygons, each of which has a very special form: its boundary consists of two 

y-monotone chains, one of which is a single edge. A polygon of such a form can 

easily be triangulated in linear time by repeatedly ‘cutting off’ convex corners of 

the y-monotone chain (see Fig. 3). For more details see [6,3]. 0 

3. The Algorithm 

For the purposes of this section we assume a representation of the trapezoida- 

tion 9(S) that allows for each trapezoid r E Y(S) to determine in constant time 

the segments of S that bound t to its left and to its right (if any), the (up to two) 

adjacent trapezoids of 5(S) above t, and the (up to two) adjacent trapezoids 



56 R. Seidel 

below t. Here we assume nondegeneracy in the sense outlined in the previous 

section, namely that no two non-identical segment endpoints have the same 

y-coordinate. Again this condition can easily be simulated using lexicographic 

techniques. Our representation allows efficient navigation through T(S), i.e. 

tracing a curve C through T(S) at cost proportional to the complexity of C plus 

the number of trapezoid traversals, provided C crosses no segment of S. Note 

that the size of such a representation is linear in the number of segments of S. Let 

S?(S) be a point location query structure for F(S), i.e. 9(S) is a directed acyclic 

graph with one source and with exactly one sink for each trapezoid of 3(S). Each 

nonsink node has outdegree 2 and is labeled either X, in which case it has a 

segment of S associated with it as a key, or the node is labeled Y, in which case 

its associated key is a real number, namely the y-coordinate of an endpoint of 

some segment in S (or in other words, the horizontal extension through the 

endpoint). A query with query point q is supposed to proceed as follows: It starts 

at the source of S(S) and proceeds along a directed path to some sink whose 

corresponding trapezoid of F(S) is to contain q. At each nonsink node along the 

way the decision which of the two outedges to follow is dictated by the outcome 

of the comparison of q with the key (At an X-node: Is q left or right of the key 

Fig. 4. A trapezoidation and an associated query structure. 



Trapezoidal decompositions and triangulating polygon 57 

segment? At a Y-node: Is q’s y-coordinate less or greater than the key? or: Does 

q lie below or above the horizontal extension?). We assume that the trapezoids of 

3(S) and the sinks of S?(S) are properly correlated, i.e. for a trapezoid of y(S) 

one can tell in constant time its corresponding sink of 9(S), and vice versa (see 

Fig. 4). 

Let s be a nonhorizontal segment with upper endpoint a and lower endpoint b 

that crosses no segment of S, and let S’ be S U {s}. We consider the problem of 

computing 3(S’) and S?(S), given y(S) and S(S). 

If the upper endpoint a is not an endpoint of some segment in S already, we 

first use 9(S) to locate the trapezoid of r, of F(S) that contains a. We split r, with 

a horizontal line through a to obtain a new trapezoidal decomposition 3’. The 

sink of S(S) that corresponds to ra becomes a Y-node whose key is the 

y-coordinate of a and whose two successors are two new nodes, which are sinks 

and correspond to the two new trapezoids of 5’. Thus we obtained besides 3’ 

also a new query structure 2’. 

If a was an endpoint of some segment of S already, then let y’ be 9 and let 2’ 

be 22. 

Next we proceed likewise with the lower endpoint b to obtain from 3’ and 22’ a 

trapezoidation P and a corresponding query structure 2”. 

Now we ‘thread’ segment s through y, i.e. we determine all trapezoids of y 

that are intersected by s, cut them in two, and on each side of s we merge 

contiguous sequences of trapezoids that agree in their bounding segments. Thus 

we have obtained y(S’). 

We obtain 9(S’) as follows: For each ‘new’ trapezoid of y(S’) along s we 

create a new corresponding sink-node. Each sink of 9” that corresponds to a 

trapezoid of y that is cut by s becomes an X-node whose key is s and whose two 

successors are the appropriate new sinks. 

The time necessary to obtain y(S’) and S?(S’) from .7(S) and Z!(S) consists of 

the query time for locating the two endpoints of s and the ‘threading time’ for s. 

Note that the latter is proportional to the number of horizontal lines of 5(S) that 

are cut by s, or equivalently, it is proportional to the number of horizontal lines 

of .7(S’) that abut upon s. 

What is the total time necessary for constructing y(S) and S?(S) by successive 

insertion of the segments of S, starting with empty structures? Clearly this 

depends very much on the order of insertion. Note that F(S) is independent of 

this order, but 22(S) and the query time it admits very much depend on this order. 

It is not hard to concoct bad examples: Consider, for instance, a set S of n vertical 

segments that all intersect the x-axis. If these segments are inserted by increasing 

x-coordinate, then the resulting query structure will have very long source-sink 

paths and locating a query point on the x-axis to the right of all segments will take 

O(n) time. 

In the following we argue that if the segments of S are inserted in random 

order, with each ordering occuring equally likely, then S(S) will behave nicely in 



58 R. Seidel 

expectation, and the overall expected construction time will be reasonable. For 

this purpose we will need to show something about the expected point location 

query time and the expected ‘threading’ time. 

Lemma 2. Let sl, . . . ,s, be a random ordering of the segments of S, and let 
S, = {Sl, . . . ,si} for 0 G i s n. For 1 <i c n the expected number of horizontal 
lines of S(S,_J that are intersected by the relative interior of si is at most 4. 

Proof. For a segment s E Si let deg(s, S(Si)) d enote the number of horizontal 

extensions of S(Si) that abut upon sir i.e. they end in the relative interior of s. 

As the number of horizontal extensions of S(Si_l) that are intersected by si is 

the same as the number of horizontal extensions of S(Si) that abut upon si, we 

are interested in the expected value Exp(deg(s, S(S,))). 

As there are at most 2i horizontal extensions in S(S), each abutting upon at 

most two segments, we have &Es, deg(s, 5(S,)) 6 4i. Because of the random 

ordering, si is any one of the i segments in S, with equal probability. Thus 

Exp(deg&, 5(S))) < 4. Cl 

Let H, = 1 + l/2 + l/3 + * * * + l/n, and recall that H,, = @(log n), in particular 

forn>lwehavelog,n<H,<l+log,n. 

Lemma 3. Let sl, . . . ,s, be a random ordering of the segments of S, and let 
Si = {Sl, . . . ,si} for 0 6 i <It. For 1s i <n let T(S,) and 9(Si) be the trapezoid- 
ation and query structure for S, obtained from S(Si_l) and S(S,_,) by inserting 
segment si. If q is any query point, then, taken over all orderings of S, the expected 
number of key comparisons necessary to locate q in .T(S,) using 9(S,) is at most 
.5H,, i.e. O(logn). 

Proof. Let ri be the trapezoid in S(S) that contains q. Assuming rj_, is known, 

what is Ei, the expected number of comparisons necessary to identify Zi? In other 

words, assuming we know the trapezoid of S(S,_,) that contains q, what is the 

expected number of comparisons necessary to determine the trapezoid of S(Si) 

that contains q? 
Clearly no comparisons are necessary if ri-1 and Zi are the same. If they are 

different, then at least one of the sides of ri has to be part of the new segments si 

or part of the horizontal extension through one of the endpoints of si. 

If the right side of r, is part of si, then exactly one comparison is necessary to 

identify ti, namely an X-comparison between q and si. Because of the random 

ordering every one of the i segments of Si has the same chane l/i of being si. Thus 

the probability that Si happens to be the segment bounding Zi to its right is at most 

l/i (rj might be unbounded to the right). Thus the expected number of 

comparisons between q and the right side of rj is at most l/i. By symmetry the 

same holds for the left side of ri. 



Trapezoidal decomposition and triangulating polygons 59 

Similarly, if the upper side of r; is part of a horizontal extension through an 

endpoint of si, then one comparison is necessary to identify Zi, namely a 

Y-comparison between q and that extension. Again, because of the random 

ordering this happens with probability l/i at most, and thus the expected number 

of comparisons between q and the upper side of r, is at most l/i. The same holds 

for the lower side of ti. 

Thus the expected number of comparisons between q and the sides of tl is at 

most 4/i. (Note that here we are exploiting the fact that the expectation of a sum 

of random variables is simply the sum of the individual expectations, even if the 

random variables are dependent.) However, Mike Hohmeyer at U.C. Berkeley 

has pointed out that one additional kind of comparison can occur: Assume the 

upper side of r, is part of the horizontal extension of an endpoint of s, (which 

happens with probability at most l/i), in particular assume the upper side of rl is 

the horizontal extension of the lower endpoint of si. In addition assume that no 

horizontal extension abuts upon the relative interior of si and that no other 

segment of S, shares an endpoint with si. This means that the segment si is 

contained in the interior of the trapezoid r;-,. By the way we obtain the query 

structure 9?(Si) from 9(S,_,) it is clear that in order to locate q in ri at first also a 

comparison between q and the horizontal extension of the upper endpoint of si 

has to be made. Thus if this particular configuration occurs, one additional 

comparison has to be performed with probability at most l/i. 

It follows that E,, the expected number of comparisons necessary to ascertain 

that q lies in ti knowing that it lies in t;_, is at most 5/i. 

To prove the lemma it now suffices to observe that the expected overall query 

time is clearly C ,sirn Ei. 0 

Lemmas 2 and 3 together with the preceding discussion immediately imply the 

following theorem. 

Theorem 1. Let S be a set of n noncrossing, nonhorizontal line segments in the 
plane. Let the trapezoidation 5(S) and the query structure CC!(S) be built 
incrementally by inserting the segments of S in random order. 

(1) The expected time necessary to build 9(S) and .9(S) in O(n log n). 
(2) The expected size of .5?(S) is O(n). 
(3) For any query point q the expected time for locating q in 9(S) via Z?(S) is 

O(log n). 

(All expectations are with respect to the random ordering of S, where each 
permutation of S is assumed to occur equally likely.) 

In the following we show that if S is the set of segments of a simple polygonal 

chain, then F(S) and %?(S) can be built even faster. 

The expensive part of inserting a segment seems to be the location queries for 

its endpoints. How could one do without them? If S derives from a polygonal 



60 R. Seidel 

chain C, then an obvious fix seems to be to insert the segments in order along C. 
This way one endpoint of Si coincides with an endpoint of the just inserted 
segment si_l whose location is known. The location of the other endpoint could 
be determined while ‘threading’ Si through the current trapezoidation. Unfortun- 
ately this strategy forgoes the use of randomization, and it is not true any more 
that the expected cost of ‘threading’ si through the current trapezoidation is 
constant. Indeed it is not hard to concoct examples where this ‘threading’ cost is 
O(i) for n/2 i G ~12, which leads to an O(n”) algorithm. 

We will pursue the following strategy: We will still insert the segments in 
random order. But every once in a while we will stop and locate all endpoints 
(which are vertices of C) in the current trapezoidation by tracing out C. To 
document the efficiency of this approach we will need two lemmas: one tells how 
much this intermediate location information helps with the searches later on; the 
other one tells how expensive it is to trace C through the current trapezoidation. 

Lemma 4. Let sI, . . . ,s, be a random ordering of the segments of S, and let 
si = {sl, . . . ,si} for 0 c i c n. For 1 c i c n let S(Si) and 2?(Si) be the trapezoida- 
tion and query structure for Si obtained from Y(Si_1) and 9(S’_l) by inserting 
segment si. Let 1 G j s k =z n. Zf q is a query point whose location in S(S) is 
known (along with the corresponding sink node of ??(Sj)), then q can be located 
via ?I(&) in Y(S,) in expected time at most 5(Hk_Hj), which is O(log(k/j)). 

(The expectation is with respect to all possible orderings of S.) 

Proof. Proceed as in the proof of Lemma 3. However, the expected query time 
in this case is CjciSk Ei. 0 

Lemma 5. Let S be a set of n noncrossing, nonhorizontal segments in the plane 

and let R be a random subset of S of size r. Let Z be the number of intersections 
between horizontal trapezoid sides of Y(R) and segments in S\R. The expected 

value of Z is at most 4(n - r), where the expectation is over all subsets R of S of 
size r. 

Proof. For T c S and s E T let deg(s, 3(T)) d enote the number of horizontal 

extensions of endpoints of segments in T that abut upon the relative interior of s. 
As every horizontal extension abuts upon at most two segments we have 

CsETdeg(s, y(T)) s 4 ITI . 
For R c S and s 4 R observe that the number of horizontal trapezoid sides of 

9(R) that are intersected by s is exactly deg(s, .Y(R U {s})). We are interested in 



Trapezoidal decompositions and triangulating polygons 61 

Expressing this double sum slightly differently, this is the same as 

-$ $, .z, deg(s, %R’)) 

0 r 
IR’I=r+l 

Before presenting the final algorithm and its analysis a bit of notation: Let 

log(‘) n denote the ith iterated logarithm, i.e. log(‘) n = n and for i > 0 we have 

log(‘) n = log(log(‘-” n). For n > 0 let log* n denote the largest integer 1 so that 

log”’ n 2 1, and for n > 0 and 0~ h s log* n let N(h) be shorthand for 

In /log@) nl . 

The input to the algorithm below is a simple polygonal chain C of n segments in 

consecutive order along C. 

(1) 
(2) 

(3) 

(4) 

Generate sI, s2, . . . J,,, a random ordering of the segments of C 

Generate YI, the trapezoidation for the set {s,} along with the cor- 

responding search structure 9,. 

For h = 1 to log* n do 

(3.1) For N(h - 1) < i 6 N(h) do 

(3.1.1) Obtain trapezoidation z and search structure Z!i from z-1 and 

&r by inserting segment si. 

(3.2) Trace C through TN(k) to determine for each endpoint of all 

non-inserted segments the containing trapezoid of Y&). 

For N(log* n) < i G n do 
(4.1) Obtain trapezoidation q and search structure & from z_, and 92i_l 

by inserting segment si. 

What is the expected running time of this algorithm? We assume that Step 1 

can be executed in linear time (see Section 4 for a discussion of this assumption). 

Step 2 takes constant time. 

For Step 3 let us consider some h, with 1 6 h G log* n. By Lemma 5 Step 3.2 

can be performed on O(n) expected time. What about Step 3.1? The expected 

cost of Step 3.1.1, inserting segment sir is the sum of the expected time necessary 

to locate q’s endpoints in 9i-1 and the expected time for ‘threading’ si through 

.Y_r. By Lemma 2 the latter is constant. Since the location of Si’S endpoints in 

9 N(h-1) is known already, by Lemma 4 the expected location time is only 

O(log(i/N(h - 1))). Since i c n and N(h - 1) = [n/log(h-l) n1 , this is O(log@) n). 
For fixed h Step 3.1.1 is executed at most N(h) = [n/log@) nl times. Thus for 

fixed h the total cost of Step 3 is O(n), and hence the entire expected cost of step 

3 over all h is O(n log* n). 



62 R. Seidel 

The analysis for step 4 is similar to the one of Step 3.1. Note that 

N(log* n) 2 n/e, and therefore the expected point location cost is constant. It 

follows that Step 4 takes O(n) expected time. Thus we have proved the following 

theorem. 

Theorem 2. Let S be a set of n noncrossing segments in the plane that are 
presented as a simple polygonal chain C. The above algorithm computes the 
trapezoidation 3(S) along with a point location structure 9!(S) for this trapezoida- 
tion in expected time O(n log* n). The point location structure uses expected O(n) 
space and admits an expected O(log n) query time. 

This theorem admits easy generalizations. Note that the algorithm exploits only 

one property of the chain C, namely its connectedness. If S was presented as a 

connected plane graph G with the order of the incident edges around each vertex 

given explicitly, then the result would continue to hold. Only the tracing of Step 3.2 

of the algorithm would have to be performed in order of some graph traversal of 

G. Allowing the graph G to have several connected components leads to a 

unification of Theorems 1 and 2. 

Theorem 3. Let S be a set of n noncrossing segments in the plane that are 
presented as a plane graph with k connected components. Let Y(S) be the 
trapezoidation of S. 

Trapezoidation Y(S) along with a query structure 9(S) can be built in time 

O(n log* n + k log n). 
The expected size of .22(S) is O(n). 
For any query point q the expected time for locating q in 9(S) via 2(S) is 

O(log n). 

Proof. Apply the algorithm outlined above, but modify Step 3.2 so as to trace 

the segments of each connected component of the graph through the current 

trapezoidation in the order of some graph traversal, say, depth-first-search. In 

order to start the tracing of one connected component, one of its vertices has to 

be located in the current trapezoidation. Because of Lemma 3 the cumulative 

expected cost for this over the entire algorithm is O(log n) per component. 0 

4. Remarks 

An algorithm somewhat similar to the one described in this paper has also been 

discovered by Clarkson, Cole, and Tarjan [4]. However, their approach is based 

on divide-and-conquer and the main thrust of their approach is towards a fast 

parallel trapezoidation algorithm. 



Trapezoidal decompositions and triangulating polygons 63 

Our algorithm can be viewed as a holistic version of the divide-and-conquer 

algorithm in [4] or its predecessor in [5]. The log* II stops in our segment insertion 

routine at which the curve is traced through the current trapezoidation cor- 

respond to the log* II levels of recursion in the divide-and-conquer algorithms. 

However, by always dealing with the global trapezoidation our algorithm avoids 

the myopia brought about by the very high divisiveness of the divide-and-conquer 

algorithms. 

The algorithm presented in this paper seems to require that every one of the n! 

permutations of II segments can be generated with equal likelihood. This might 

seem unsatisfactory from the theoretical point of view, since this requires 

@(n log n) random bits. As a matter of fact this makes the main result of this 

paper questionable at best, if a model of computation is used that requires unit 

cost for single random bits. For our result to be interesting we need to be able to 

obtain random integers distributed over a polynomially sized range at unit cost. 

However, such a model of computation is not at all unreasonable: From the 

practical point of view today’s pseudo-random number generators do provide 

such ‘random’ integers at unit cost. From the theoretical point of view it seems 

unfair to work with a uniform cost model for the arithmetic but with a bit model 

for the randomness. Note that if a bit model is assumed throughout, then the 

number of random bits required is proportional to the input size (measured in 

bits, of course). 

The question of estimating the probability that the running time of our 

algorithm significantly exceeds its expectation is currently being investigated. 

Acknowledgements 

I would like to thank Mike Hohmeyer for pointing out an error in the original 

version of the proof of Lemma 3. I would also like to thank Emo Welzl for 

inviting me to the Freie Universitat Berlin. I doubt this research would have 

happened without the stimulating visit there. 

References 

[l] B. Chazelle, A theorem on polygon cutting with applications, Proc. 23rd Annual IEEE Symp. on 

Found. of Comput. Sci. (1982) 339-349. 

[2] B. Chazelle, Triangulating a simple polygon in linear time, Princton Univ. Computer Science 

Tech. Rep. CS-TR-26490; to appear in Proc. 31st Annual IEEE Symp. on Found. of Comput. 

Sci. (1990). 
[3] B. Chazelle and J. Incerpi, Triangulation and shape-complexity, ACM Trans. on Graphics 3 

(1984) 135-1.52. 
[4] K. Clarkson, R. Cole and R.E. Tarjan, Randomized parallel algorithms for trapezoidal 

diagrams, to appear in Proc. 7th ACM Symposium on Computational Geometry (1991). 



64 R. Seidel 

[5] K. Clarkson, R.E. Tarjan and C.J. Van Wyk, A fast Las Vegas algorithm for triangulating a 

simple polygon, Discrete Comput. Geom. 4 (5) (1989) 423-432. 

[6] A. Fournier and D.Y. Montuno, Triangulating simple polygons and equivalent problems, ACM 

Trans. on Graphics 3 (1984) 153-174. 

[7] M.R. Garey, D.S. Johnson, F.P. Preparata and R.E. Tarjan, Triangulating a simple polygon, 

Inform. Process. Lett. 7 (1978) 175-180. 

[8] S. Hertel and K. Mehlhorn, Fast triangulation of a simple polygon, Proc. Conf. Found. Comput. 

Theory, Lecture Notes in Comput. Sci. 158 (Springer, Berlin, 1983) 207-218. 

[9] K. Hoffman, K. Mehlhorn, P. Rosenstiehl and R.E. Tarjan, Sorting Jordan sequences in linear 

time using level-linked search trees, Inform. and Control 68 (1986) 170-184. 

[lo] D.G. Kirkpatrick, M.M. Klawe and R.E. Tarjan, O(n log logn) polygon triangulation with 

simple data structures, Proc. 6th Annual ACM Symp. Comput. Geom. (1990) 34-43. 
[ll] R.E. Tarjan and C.J. Van Wyk An O(n loglogn)-time algorithm for triangulating a simple 

polygon, SIAM J. Comput. 17 (1988) 143-178. 

[12] G. Toussaint and D. Avis, On a convex hull algorithm for polygons and its applications to 

triangulation problems, Pattern Recognition 15 (1) (1982) 23-29. 

[13] G. Toussaint, An output-complexity-sensitive polygon triangulation algorithm, Report SICS- 

86.3, McGill University, Montreal, 1988. 


