
Discrete Comput Geom 4:423-432 (1989) C I ~l~.rJ'te d, Ccmttnllal~ ~ 1

Jeometrv
7~. 1989 Sprlnger-Vertag New York lnc

A Fast Las Vegas Algorithm for Triangulating a Simple Polygon

Kenneth L. Clarkson, ~ Robert E. Tarjan, ~'2'* and Christopher J. Van Wyk ~

J AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

2 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

Abstract. We present a randomized algorithm that triangulates a simple polygon
on n vertices in O(n log* n) expected time. The averaging in the analysis of running
time is over the possible choices made by the algorithm; the bound holds for any
input polygon.

I. Introduction

To triangulate a simple polygon on n vertices, we add to it n - 3 line segments
between vertices (diagonals) that partition its interior into triangles. Determining
the complexity of triangulating a simple polygon is an outstanding open problem
in computational geometry.

Previous work on the triangulation problem has concentrated on finding fast
deterministic algorithms to solve it. Garey et aL gave an algorithm to triangulate
an n-gon in O(n log n) time [GJPT]. Tarjan and Van Wyk devised a much more
complicated algorithm that runs in O(n log log n) time [TV].

In this revised and expanded version of our conference paper [CTV], we
present a randomized algorithm that triangulates a simple polygon on n vertices
in O(n log* n) expected time. Our algorithm uses the following key ideas:

• divide and conquer;
• the "random sampling" paradigm [C1], [CS], [ES], [HW];
• the vertical visibility decomposition determined by a set of noncrossing line

segments in the plane: each endpoint of a line segment defines the vertical
boundaries of two generalized trapezoids, generated by vertical rays that

* Research partially supported by the National Science Foundation under Grant No. DCR-
8605962.

424 K.L. Clarkson, R. E. Tarjan, and C. J. Van Wyk

are extended up and down from the endpoint until they encounter other
line segments [CI] , [FM];

• Jordan sorting [FNTV], [HMRT]: given the intersections of two simple
curves A and B in the order in which they occur along curve A, find the
order in which they occur along curve B.

Except for random sampling, these are the same ideas used in the algorithm of
Tarjan and Van Wyk [TV]. The addition of random sampling both simplifies the
algorithm and improves the time bound.

The rest of this paper is organized as follows. Section 2 describes the vertical
visibility decomposit ion in more detail, and explains its role in the solution of
the triangulation problem. Section 3 outlines our algorithm; Sections 4 and 5
describe at greater length how to perform some of its steps. Section 6 contains
an analysis of the running time of the algorithm. Throughout Sections 2-6 we
assume that no two vertices of the polygon being triangulated share the same
x-coordinate; Section 7 describes two ways to cope with input that does not have
this nice property. Section 8 explains how to use our algorithm to test whether
the input polygon is simple. Section 9 concludes with open problems.

2. Vertical Visibility Decomposition

Given a set S of noncrossing line segments, a line segment e and an endpoint v
of another line segment are mutually vertically visible if the vertical line segment
from v to e does not intersect any other element of S. Each endpoint of a line
segment in S can see at most one line segment in S above it and another line
segment in S below it, so the number of different vertically visible pairs of edges
and vertices is at most 4tSt.

The boundary of a simple polygon is a set of noncrossing line segments. In
this case, the set of vertically visible pairs of vertices and edges composes the
total vertical visibility information of the polygon. If the open vertical line segment
between vertex v and edge e lies inside the polygon, the pair is internally vertically
visible; if it lies outside the polygon, the pair is externally vertically visible; if it
lies on the boundary of the polygon, the pair is vertically visible along the boundary.
To simplify the presentation of the algorithm, we assume that no two vertices of
the polygon have the same x-coordinate; thus, there will be no vertex-edge pairs
that are vertically visible along the boundary. Section 7 describes two ways to
remove this restriction while preserving the bound on expected running time.

The algorithm in this paper computes the total vertical visibility information
of the polygon. This contrasts with earlier algorithms [CI], [FM], [TV], which
compute only the internal vertical visibility information. Given the internal vertical
visibility information for a polygon, we can triangulate it in linear time [CI], [FM].
Since the internal vertical visibility information can be deduced from the total
vertical visibility information, we rely on this linear-time reduction to triangulate
the polygon given the information computed by our algorithm.

Given a set S of noncrossing line segments in the plane, its vertical visibility
decomposit ion T(S) is a set of open regions. To construct T(S), extend a ray

A Fast Las Vegas Algorithm for Triangulating a Simple Polygon 425

{d}

t I
J (b) t

(b)

(b} ~ 1 ~ . ~

~I Ca) I I
I I (o) t I I
I I I I
I i I I II

l,o~ l I I

I ~ ~ p (b)

(b) 1 I

I
1 (b) 1

I
I I
I I

(b)

(c)

I

I

(b) 1

I
I
I
I

(d)

Fig. I. Five line segments and their vertical visibility decomposition.

vertically from each endpoint of each line segment in S until it hits another line
segment in S or it sees infinity. Thus, each vertical segment bounding a region
in T(S) contains an endpoint of a segment in S. There are four kinds of regions
in T(S):

(a) those bounded by two portions of line segments in S and two vertical line
segments;

(b) those bounded by one portion of a line segment in S and two vertical rays;
(c) those bounded only by two vertical lines;
(d) those bounded only by one vertical line.

Figure 1 shows a vertical visibility decomposition whose regions have been labeled
with their types according to the above list. Regions of type (a) are trapezoids
(or triangles), so T(S) is often called a trapezoidal decomposition of the plane.

If S contains s noncrossing line segments, we can compute T(S) in O(s log s)
time. The lower bound follows because we can use the vertical visibility decompo-
sition to sort. The upper bound can be achieved either in the worst case by a
plane-sweep algorithm [PS], or on average by a randomized algorithm [CS].

3. Outline of the Algorithm

The algorithm computes the total vertical visibility information of polygon P by
computing the total vertical visibility information about a random subset of the
edges of P, then using that random subset to partition P into pieces on which
the algorithm is applied recursively.

The general step of the algorithm accepts as input a sequence S of line segments
that compose a simple polygon Ps. At the top level, the edges of the input polygon
P are processed by the algorithm as sequence S. Each recursive call of the

426 K, L. Clarkson, R, E. Tarjan, and C. J. Van Wyk

algorithm is on a sequence that defines a polygon bounded by pieces of edges
of P together with vertical line segments that correspond to mutually vertically
visible points on two edges of P.

We note that the input sequence S never contains two consecutive vertical
segments. The assumption that no two vertices of P have the same x-coordinate
guarantees that there are no vertical edges in P, so this is certainly true at the
top level. At each recursive call, each vertical line segment in S is preceded and
followed by nonvertical line segments that are pieces of edges of P.

The following is the general recursive step of the algorithm:

1. [Select random sample] Let S' be the subset of nonvertical line segments
in S; let s ' = t S ' t. Choose a random sample R c S' of size r (where r is a
function of s', to be determined in Section 6).

2. [Compute vertical visibility decomposit ion] Compute T(R) . Only vertices
in R that are original vertices of P need participate in this computation:
any other endpoints of line segments lie at either the extreme left or right
side of Ps, and whatever piece of P they see is already known.

3. [Break polygon edges at vertical visibility segments] Chop each line segment
in S each time it crosses the boundary of a region in T(R). Let I be the
number of such intersections. If ever I is about to exceed C, ota~, or some
region in T(R) is about to intersect more than Cm~x segments, immediately
restart the recursive step at step 1. (Both C~ot~ and Cma~ depend on r and
s'; we determine their exact values in Section 6. The value of I also appears
in the running-time analyses in Sections 4 and 6.)

4. [Jordan sort] For each region F ~ T(R) , Jordan sort the intersection points
found in step 3 around the boundary of F. Compute the "family trees"
associated with the Jordan sorting.

5. [Reconstruct subpolygons and recur] Decompose each region in T(R) into
a set of simple polygons, using the family trees computed in step 4. Apply
the algorithm recursively to each polygon that contains at least one vertex
of Ps that does not lie on a vertical visibility edge.

When all recursive calls are completed, the algorithm has computed a finer
partition of the plane than T(P). The internal vertical visibility information for
P, and hence a triangulation of P, can be computed from this partition.

4. Breaking the Polygon Boundary at Vertical Visibility Segments

We define the neighbors of a region F in a vertical visibility decomposition T(R)
to be the regions that we can reach by crossing a vertical edge of F. For our
application, the nonvertical edges of F will always be edges of the polygon,
which we would never want to cross; thus we do not consider the regions above
and below F with which it shares a nonvertical boundary to be neighbors of F.

I f the input polygon contains two or more vertices with the same x-coordinate,
then a region in the vertical visibility decomposit ion could have more than two
neighbors on each side. We describe in Section 7 how to deal with this anomaly,

A Fast Las Vegas Algorithm for Triangulating a Simple Polygon 427

T

Fig. 2. A simple curve through the line segments of Fig. 1. The endpoints of the original segments
are (1, 37), (6.9). (13, 16), (19, 22), and (30, 31), In a polygon the curves would be polygonal chains.

but for now we assume that the polygon is in general position so this does not
happen. That is, each region has at most four neighbors, and we can move from
a region to one of its neighbors in O(1) time.

To perform step 3, traverse the boundary of Ps as it moves from region to
neighboring region in T(R). (Figure 2 shows how Ps might meander through
T(R).) Since each region has at most four neighbors, we can perform step 3 in
0 (I + s') time.

5. Jordan Sorting and Polygon Reconstruction

In step 4 we need to sort the points at which Ps intersects each region Fc T(R)
according to their ordering around the boundary of F, given their order along
Ps. We use the simplified Jordan-sorting algorithm of Fung et aL [FNTV] to sort
the sequence of intersection points found in step 3 into the order in which they
lie along the boundary of F in time linear in the number of points.

To apply the Jordan-sorting algorithm as stated [FNTV], we must transform
the boundary of each region into a straight line, while preserving the connections
defined by the points of intersection between Ps and F. The appropriate transfor-
mation depends on the type of the region:

(a) split the trapezoid at the midpoint of its lower nonverticat edge and unfold
it into a straight line;

(b) unfold the semi-infinite trapezoid to a straight line;
(c) connect the two bounding lines by a line segment that lies entirely above

all pieces of Ps, then unfold the boundary to a straight line;
(d) the boundary is a straight line already.

428 K.L. Clarkson, R. E. Tarjan, and C. J. Van Wyk

. • 33 t 32

344 71bta 25626
Fig. 3. Representative family trees for the curve shown in Fig. 2. The tree on the left is the inner
family tree for the region whose corners are 7, 8, 15, and 14. The tree on the right is the inner family
tree for the region of type (c) in Fig. 1.

The inner family tree of Ps with respect to F shows how polygon pieces nest
with respect to the t ransformed region boundary. Figure 3 shows the inner family
trees for two regions in Fig. 2. The Jordan-sorting algorithm [FNTV] produces
family trees as part of its operation.

Each node in the inner family tree, together with any children it may have,
defines a subpolygon of F. To perform step 5, we traverse the inner tree of each
region F ~ T (R) , constructing the subpolygons of F and passing nontrivial ones
to recursive instances of the algorithm. All of this can be done in time linear in
the size of the tree.

6. Expected Running Time

In this section we derive a bound on the expected running time of the algorithm
if it is applied to a polygon P with n sides. The analysis relies on general theorems
about random sampling in computational geometry. We define enough notation
here to state the theorems we need; readers who wish to see the definitions
and theorems stated in full generality should consult Clarkson and Shor's
paper [CS].

As in Sections 2-5, S is a set of s line segments in the plane. The set S (b~
contains all subsets of S of at most b elements. The binary operator 8 relates
each member of S <b~ to one or more regions that belong to a set F of regions in
the plane. In our application, the set F is the set of all planar regions that can
be represented as the intersection of at most four open halfplanes, and relation
8 is defined as follows: i f X is a set of line segments, then for any F~ T (X) , FSX.
The set Fs is the set of all generalized trapezoidal regions defined by any collection
of at most four line segments in S:

Fs - {FI F c F, FSX, X c S('~}.

For any F ~ Fs, let XF be a set in S (4) of minimum cardinality such that FSXF.
I f no two endpoints of line segments in S share the same x-coordinate, then XF
is unique for each F ~ Fs, and we say that relation 8 is functional.

Let R be any subset of $. For any F s Fr , I FI denotes the number of elements

A Fast Las Vegas Algorithm for Triangulating a Simple Polygon 429

of S that have nonempty intersection with F. We define

T,.(R)= S tFI".
F E T (R)

Thus, To(R) is the number of trapezoids in T(R) , and T~(R) is the number of
segments into which S \ R would be divided were we to chop segments in S \ R
along the boundaries of regions in T(R).

Let Tc(r) be the expected value of To(R) where R c S, IRI = r, and each R is
equally likely to be chosen. Finally, let

To(r) = max To(r).
l < z ~ r

The definition of T(R) implies that To(r), and hence ~'o(r), are both at most 4r.
We have the following theorem:

Theorem. Assume S is a set of noncrossing line segments of size s, and R is a
random subset of S of size r; let T(R) be the vertical visibility decomposition that
R defines on the plane. There exist constants ktot~J and k~x such that with probability
at least 1/2, the following two conditions hold simultaneously:

(1) T~(g)<-k~o,a,s.
(2) For each F e T(R), IF[< - k~a~(s/r) log r.

Proof. We appeal to Corollary 3.8 of [CS], which says that if 8 is functional

a n d i f K existssuchthatFsContainsatmostK(b)elements, thenwithprobability

3 / 4 - t / e 2, both of the following conditions hold:

T~(R) <- O(n/r)'co(r); (A)

for some constant z = O(Iog r) + 2 + l o g e K,

max IFt-< zs/r. (B)
F E T (R)

We can satisfy the hypotheses of the corollary by taking K = 4. Since ~ro(r)-< 4r,
equation (A) implies that there exists a constant ktotat such that T~(R)<-ktotats,
which is condition (1). Equation (B) implies that there exists a constant k~ax
such that for each F e T(R), IF[-< kmax(S/r) log r, which is condition (2).

Since 3 / 4 - l / e 2 > 1/2, the probability that conditions (1) and (2) hold simul-
taneously is at least 1/2, as required. []

430 K.L. Clarkson, R. E. Tarjan, and C. J. Van Wyk

In the algorithm we take Ctotat = k t o t a l S ' and Cm,,x = k~ax(s'/r) log r. The theorem
implies that with probability at least 1/2, step 3 will "succeed," and not restart
the recursive step with another random sample; in other words, the expected
number of times we need to restart step 3 is O(1). If we take r = s ' / log s', then
condition (2) further implies that the maximum depth of recursion is O(log* n).

Next we compute the work done during the recursive steps of the algorithm.
A vertex sends out visibility segments above and below during exactly one
recursive step of the algorithm, when it is an endpoint of an edge that is chosen
for the random sample at that step; this is the only time that a vertex can cause
the boundary of P to be cut into pieces.

Condition (1) implies that over the course of the entire algorithm, the total
number of pieces into which the boundary of P can be cut is /qotatn. Since the
boundary can contain at most one vertical segment for each nonvertical segment,
the number of different vertical segments considered during the algorithm is also
at most ktotaln. Therefore, at a single level of recursion, the algorithm considers
at most 2/qo,atn pieces of the boundary. Since each piece can serve as the boundary
of at most two regions, and the subpolygons processed at a single level of recursion
have disjoint interiors, they contain at most 4ktota~n pieces.

At each level of the recursion, the vertical visibility decomposition can be
computed in O(r log r)= O(n) time, and the boundary can be chopped, the
crossing points Jordan sorted, and the pieces reconstructed into subpolygons in
0 (I + n) time, which is O(n) by the preceding observations. Thus a single level
of recursion can be performed in O(n) time, and all O(log* n) levels of recursion
can be completed in O(n log* n) time.

7. Dealing with Singularities

Figure 4(a) shows how vertically aligned vertices could cause a visibility region
to have more than four neighbors. This could cause a problem in the analysis of
the running time, since it could take longer than O(1) time to move from region
to neighboring region. A conceptually simple way to deal with the singular case
is to apply a random rotation to the original input polygon whenever we detect

" ill,

t " i - - 'I' ' - ' - ' q ~L

I ~ iI I q - -

Co) (b)

Fig. 4. The region in (a) has more than two neighbors on each side. By rotating it slightly, as in
(b), we can construct a vertical visibility decomposition in which no region has more than two
neighbors.

A Fast Las Vegas Algorithm for Triangulating a Simple Polygon 431

a trapezoid that has more than four neighbors. With probability 1, such a rotation
avoids any vertical alignment of vertices.

By careful consideration of Fig. 4, however, we can avoid performing any
random rotation at all. Let S be the sequence of segments that gave rise to the
region in Fig. 4, and let S' be S rotated slightly so that no vertices are vertically
aligned. Figure 4(b) depicts the effect of this rotation on the region in Fig. 4(a):
a layer of thin regions appears on either side of the original region. When we
trace the boundary of S' through an edge of the region in Fig. 4(b), the sequence
of steps is equivalent to performing a linear search in clockwise order through
the multiple vertices on an edge of the unrotated region in Fig. 4(a). Since the
same time bound holds whether the algorithm runs on S or S', the algorithm can
simply use clockwise linear search to perform step 3 even when the input polygon
is not in general position; in order for the running-time analysis to apply to this
version of the algorithm, the count of intersections I must be incremented at
each step in searches along region edges, as well as at each intersection of Ps
and T(R).

8. Simplicity Testing

The algorithm described in this paper decomposes the plane into regions and
considers all parts of the input polygon that lie in each region. If the polygon is
not simple, then the algorithm will detect a self-crossing of the boundary during
one of the following operations:

• the random sample may contain crossing edges, which will be detected
during the computation of the vertical visibility decomposition of the sample;

• the boundary may cross one edge of the random sample, which will be
detected during step 3;

• the Jordan sorting in step 4 may fail because the pieces of the polygon do
not nest properly.

Thus, this algorithm can test whether an input polygon is simple in O(n log* n)
expected time.

9. Remarks

A nonrecursive version of this algorithm, which uses a single level of random
sampling to partition the polygon and then the straightforward algorithm on each
piece, would run in O(n log log n) time [C2].

The foremost remaining open problem is to produce a triangulation algorithm
that runs in o(n log log n) time or in o(n log* n) expected time. A related problem
is to devise a parallel algorithm whose time-processor product is o(n log n)
[ACG]; some progress has been reported on this problem [CCT].

432 K. L Clarkson, R. E. Tarjan, and C. J. Van Wyk

References

[ACG]

[cl]

[cl]

[C2]

[CCT]
[cs]

[CTV]

[ES]

[FM]

[FNTV]

[GJPT]

[HW]

[HMRT]

[PS]

[TV]

M. J. Atallah, R. Cole, and M. T. Goodrich, Cascading divide-and-conquer: a technique
for designing parallel algorithms, Proceedings of the 28th Annual Symposium on Founda-
tions of Computer Science, 1987, pp. 151-160.
B. Chazelle and J. lncerpi, Triangulation and shape complexity, ACM Transactions on
Graphics, 3 (1984), 135-152.
K. L. Clarkson, New applications of random sampling in computational geometry,
Discrete and Computational Geometry, 2 (1987), 195-222.
K. L. Clarkson, Applications of random sampling in computational geometry, 11, Proceed-
ings of the Fourth Annual Symposium on Computational Geometry, 1988, pp. 1-11.
K. L. Clarkson, R. Cole, and R. E. Tarjan, private communication.
K. L. Clarkson and P. W. Shor, Applications of random sampling in computational
geometry, II, Discrete and Computational Geometry, this issue, 387-421.
K. L. Clarkson, R. E. Tarjan, and C. J. Van Wyk, A fast Las Vegas algorithm for
triangulating a simple polygon, Proceedings of the Fourth Annual Symposium on Computa-
tional Geometo,, 1988, pp. 18-22.
P. Erdos and J, Spencer, Probabilistic Methods in Combinatorics, Academic Press, New
York, 1974.
A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems,
ACM Transactions on Graphics, 3 (1984), t53-174.
K. Y. Fung, T. M. Nicholl, R. E. Tarjan, and C. J. Van Wyk, Simplified linear-time Jordan
sorting and polygon clipping, ACM Transactions on Graphics, submitted.
M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple
polygon, Information Processing Letters, 7 (1978), 175-180.
D. Haussler and E. Welzl, e-nets and simplex range queries, Discrete and Computational
Geometry, 2 (1987), 127-151.
K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. Tarjan, Sorting Jordan sequences in
linear time using level-linked search trees, Information and Control, 68 (1986), 170-184.
F. P. Preparata and M. 1. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, New York, 1985.
R. E. Tarjan and C, J. Van Wyk, An O(n log log n)-time algorithm for triangulating a
simple polygon, SIAM Journal on Computing, 17 (1988), 143-178.

Received July 25, 1988, and in revised form March 25, 1989.

