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Abstract

A number of seemingly unrelated problems involving the proximity of N points in the plane are studied, such

as finding a Euclidean minimum spanning tree, the smallest circle enclosing the set, k nearest and farthest

neighbors, the two closest points, and a proper straight-line triangulation. For most of the problems considered

a lower bound of O(N log N) is shown. For all of them the best currently-known upper bound is O(N2 ) or worse.

The purpose of this paper is to introduce a single geometric structure, called the Voronoi diagram, which can be

constructed rapidly and contains all of the relevant proximity information in only linear space. The Voronoi

diagram is used to obtain D(N log N) algorithms for all of the problems.

I. Introduction

Computational geometry is of practical importance

because Euclidean space of two and three dimensions

forms the arena in which real physical objects are

arranged. A large number of manufacturing problems

involve wire layout l , facilities 10cation2 , cutting-

stock and related geometric optimization problems 3 •

Solving these efficiently on a high-speed computer

requires the development of new geometrical tools, as

well as the application of fast-algorithm techniques,

and is not simply a matter of translating well-known

theorems into computer programs. From a theoretical

standpoint, the complexity of geometric algorithms is

of interest because it sheds new light on the intrinsic

difficulty of computation.

In this paper we are concerned specifically with

problems involving the "closeness" of points in a finite

set. How many operations, for example, are required to

determine the two closest of N points? Given two points

that are purported to be the closest pair, how long does

it take to verify this? Nearest neighbor questions

arise in clustering4 and contouring 5 and in a number of

other problems where the connection with closeness is

not so evident.

We already know that it is crucial to exploit the

geometric properties of these problems to the fullest

when designing efficient algorithms 6 and to avoid

embedding a problem in a structure so general that the

geometric aspects are lost. As a case in point, con-

sider the textbook example of linear programming in two

variables with N constraints. The simplex method, which

in higher dimensions achieves its speed by avoiding the

combinatorially hopeless task of forming the feasible

polytope explicitly, is inferior here because it requires

O(N2 ) time. In the plane, however, it is possible 7 to

construct the feasible polygon directly in O(N log N)

time by geometric techniques. Embedding a small problem

in a structure designed for larger ones obscures the

inherent complexity of the problem and leads to ineffi-

ciencies. Burying a geometry problem in a graph model

can also lead to difficulty. Finding the tree of mini-

mum length joining N points, whose vertices are at the
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given points, is a problem that fundamentally involves

2N parameters, the coordinates of the points. This

problem is usually formulated as a minimum spanning tree

problem on the complete N-graph and the number of para­

meters immediately jumps to O(N2 ). In this paper we

will endeavor to concentrate on the geometry of the

problems and avoid such trouble.

II. The Problems

Pl. (All closest points) Given N points in the

Euclidean plane~ find the nearest neighbor of each.

No algorithm has yet appeared that is faster than the

naive approach of computing all O(N2 ) interpoint dist­

ances, but this does not achieve the lower bound:

Theorem 1. O(N log N) is a lower bound on the time

required to determine the two closest of N points in

dimension one or higher.

Proof: This problem is related to the element-uniqueness

question, which asks whether any two of N real numbers

are equal. O(N log N) is a lower bound on the element­

uniqueness problem even if comparisons among linear

functions of the input are allowed 8 • In linear time

the element-uniqueness problem can be mapped into a

closest-point problem in one dimension. We merely find

the two closest points -- if their distance is zero the

elements are not unique. The result follows in higher

dimensions simply by embedding the line. 0

This result implies an O(N log N) lower bound on the

all closest points problem.

P2. (Euclidean minimum spanning tree) Given N points

in the plane~ find an interconnecting tree of minimum

total length whose vertices are the given points.

This. problem has been studied extensively in a graph­

theoretic setting9 10 11 and is usually solved by reg­

arding the points as vertices of a complete N-graph

whose edge weights are the Euclidean distances between

the corresponding points. An O(N2 ) algorithm is known 12

and is easily seen to be optimal for arbitrary graphs:

by a result of Prim lO a shortest edge of the graph must

occur in the minimum tree. The tree has exactly N-l

edges and the shortest of these can be found trivially

in O(N) time. If the tree itself could be constructed

in less than O(N 2 ) time then we would be able to find

the smallest of O(N 2 ) independent quantities (the edge

lengths) in less than O(N2 ) time, which is impossible.

In the Euclidean problem, however, the edge lengths are

not independent and we have a different lower bound:

Theorem 2. O(N log N) is a lower bound on the time

required to construct a Euclidean minimum spanning tpee

on N points in any dimension.

Proof A: Since the two closest points are joined by an

edge of the tree, given the tree we can find the two

closest points in O(N) time. Thus by Theorem I it must

take O(N log N) time to construct a minimum tree.

Proof B: Consider N points on a line. The minimum

spanning tree consists of the line segments joining the

points in the order in which they occur on the line.

Given the tree, we can reconstruct the sorted list of

points in O(N) time, so any minimum spanning tree alg­

orithm can sort. 0

P3. (Triangulation) Given N points in the plane~

join them by non-intersecting straight line segments

so that every region interior to the convex hull is a

triangle. In particular~ find a triangulation the sum

of whose edge lengths is a minimum.

This problem arises in the numerical interpolation of

bivariate data when function values are available at N

irregularly-spaced data points (xi' Yi) and an approx­

imation to the function at a new point (x, y) is desired.

One approach, called the polyhedron method l3 , is to

approximate the function surface by a network of triang­

ular facets. Each point (x, y) then lies within a

single facet and the function value is obtained by

linear interpolation of the facet vertices. The mini­

mum weight triangulation has good numerical properties

and an O(N 3) algorithm for constructing it is known 14
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which resembles Prim's minimum spanning tree procedure.

Figure 1. A triangulation.

Theorem 3. O(N log N) is a lo~er bound on the time

required to triangulate N points in dimension two or

higher.

Proof: Consider N collinear points and another point

not on the line. This set possesses exactly one triang-

ulation and from it one can reconstruct in O(N) time

the points in sorted order. (Figure 2) Thus any

triangulation algorithm must be able to sort. 0

Figure 2. Triangulation lower bound.

Note that this lower bound applies to the formation of

~ triangulation, not just one of minimum weight.

P4. (Convex hull) Given a set of N points in the

plane~ find its convex hull.

An O(N log N) algorithm for this problem is known 15

and is optima1 6 . It is presented here because of its

relation to other closest-point problems and a new

algorithm will be given.

P5. (Largest empty circle) Given N points in the

plane~ find a largest circle containing no points of

the set yet whose center is interior to the convex hull.

Such a circle is not necessarily unique. This problem

can be viewed as one of maximin facilities layout in

which it is desired to locate a new facility so that it

or for a new business establishment not wishing to com-

pete for territory with stores already in the area.

These questions are often encountered in operations

research and industrial engineering 16 • For the present

problem an algorithm has been given whose worst-case

running time is O(N 3) 17. In one dimension the problem

reduces to finding the two adjacent points on a line

that are farthest apart and O(N log N) is a lower bound

analogous to Thm. 1, in which we seek the two closest

adjacent points.

Figure 3. A largest empty circle.

P6. (k closest points) Given N points in the plane~

~ith preprocessing allo~ed~ ho~ quickly can the k points

closest to a ne~ point x be found?

If preprocessing is not allowed then O(N) is both an

upper and a lower bound: find the N distances from x

to each of the points and find the k smallest by the

linear selection algorithm of Blum et a1 18 • With pre-

processing, the best algorithm available has an expected

run time of O(IkN) 19. The information-theoretic lower

bound is O(max(k, log N». Algorithms for the case

k = 1 are given in references 6 and 7.

P7. (Smallest enclosing circle) Given N points in

the plane~ find the smallest circle enclosing them.

This is a minimax facilities location problem in which

we seek a point x (the center of the circle) whose

greatest distance to any point of the set is a minimum.

This criterion is useful in siting emergency services,

where worst-case response time is an important consid­

eration20 , and in optimizing the location of a radio

is as far as possible from any of N existing ones. The transmitter serving a number of discrete stations so

new site may be for a source of pollution, for example, as to minimize the RF power required 21 •
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The smallest enclosing circle is unique and is det-

ermined either by three points of the set or two points

which define a diameter22 . Thus a finite algorithm

exists which examines all circles determined by two or

three points of the set and selects the smallest that

encloses all the points. This rate method has been

improved by Elzinga and Hearn23 to run in O(N 2 ) time and

The Voronoi polygons partition the plane 25 , forming a

net which we will refer to as the Voronoi diagram.

Unbounded polygons correspond to vertices of the convex

hull and the entire diagram contains only O(N) Voronoi

points and edges joining them6 • The Voronoi points are

circumcenters of triangles since they are the junctions

of triples of points. (Figure 5)

is the best algorithm to date2 . The defining points of

the smallest circle are extreme points of the set and

identification of the extreme points of a set in two or

more dimensions requires O(N log N) time 24 , so we con-

jecture that the smallest circle also requires O(N log N)

time.

The problems posed above are related in the sense

that they all deal with the respective distances among

points of a finite set. However, the algorithms that

have been proposed to solve them, with the exception of

P2 cid P3, are not even remotely similar. We will now

introduce a geometric structure which can be created in

O(N log N) time and yields optimal algorithms for all of

the closest-point problems.

III. The Voronoi Diagram

Surrounding each point Pi of a finite set there is

a convex polygon V(i), called the Voronoi polygon assoc-

iated with Pi' having the property that Pi is the

closest of the given points to any xEV(i). If h(i,j)

denotes the half-plane containing Pi defined by the

perpendicular bisector of Pi and Pj' then we have

V(i) = n h(i,j) , which shows that V(i) is a convex
j 7 i

polygonal region having at most N-l sides. (Figure 4)

o
Figure 4. A Voronoi polygon.

Figure 5. The Voronoi diagram.

Theorem 4. The Voronoi diagram of N points in the

plane can be constructed in O(N log N) time.

Proof: This result is proved in reference 7 and we give

only a sketch here. Suppose that the set S of N points

is divided into two subsets Land R, each containing

N/2 points, such that every point of L lies to the left

of every point of R. Assume that we already possess the

Voronoi diagrams V(L) and V(R) of Land R separately.

If these can be merged in linear time to form the dia-

gram V(S) of the entire set, then splitting the problem

recursively will give an O(N log N) algorithm.

The merge procedure is quite simple. There exists

a polygonal line P with the property that any point to

the left of P is closest to some point of L and any

point to the right of P is closest to some point of R.

The locus of points that are closer to some point of L

than to any point of R is just the union of Voronoi

polygons (in V(S)) of points of L. Similarly, the union

of the remaining polygons is the locus of points closer

to some point of R. P is the collection of Voronoi

edges shared by a polygon of L and a polygon of R.
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Figure 6 shows V(S) and the dividing line P (solid).

in x is monotonic in y, that is, each horizontal line

P to be constructed in a single scan of the Voronoi

The polygonal line separating two sets that are disjoint
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Figure 6. The polygonal line P divides Land R.

diagrams VeL) and VCR). Once P is formed, the merge

intersects P in exactly one point 7 • This fact enables

Figure 9. VeL), VCR) and P superimposed.
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Figure 10. Final Voronoi diagram

............ , ..'.

procedure is practically finished. If a point z lies

present in the final diagram V(S). Similarly, the edges

to the left of P, it is closest to some point of L.

The dividing line P consists of a ray,

Thus no edges of VCR) that appear to the left of Pare

Figures 7, 8, 9, and 10 illustrate the relationships

of VeL) that lie to the right of P are also absent.

the points are numbered by increasing x-coordinate.

among VeL), VCR), P, and V(S) in detail. In figure 9

To form V(S) it is only necessary to delete the irrel-

endicular bisector of a pair of consecutive vertices of

convex polygons results in the creation of two new hull

evant edges of VeL) and VCR) determined by P.

the convex hull of S. The hull of S is the hull of

segments, and another ray. A ray of V(S) is the perp-

and 7 and 13. The perpendicular bisectors of the new

L u R and forming the hull of the union of two disjoint

These new edges join a point of L to a point of R. In

edges (Figure 11), which can be found in linear time 7 •

edges are the rays of P.

the example, the edges occur between points 4 and 10
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Since, at any instant. lies in two Varonoi polygons,

7 1 3 one of Vel) and one of VCR), we must find the lowest

6· segment that will intersect on the four resulting

5 •
8

14

• 1 1 •

• 12
15

16 tonic chains, if p continues in its current direction

To determine this it is only necessary to examine the

chains in round-robin fashion, ever ascending, in a

4 ----- 10

Figure 11.
The hull of the union of disjoint convex polygons.

We can imagine forming P by moving a point p inward

from infinity along one of the rays. Suppose we begin

on the 4,10 bisector. Initially, p lies the Voronoi

polygons V(4) and V(lO) and proceeds along the locus of

manner reminiscent of merging four ordered lists. Every

time a new Voronoi edge is examined, it is either dis-

carded (p did not intersect it) or a new segment of P

is begun. Since P, VeL) and VCR) together have only

O(N) edges, linear time suffices to construct P, and

recursion yields an O(N log N) algorithm. 0

Theorem 5. O(N log N) is a lower bound on the time

points equidistant from 4 and 10 until it becomes closer required to construct a Voronoi diagram on N

to a different point. This occurs when p hits the edge

of one of the polygons. Referring to figure 9, as p

moves upward it hits the edge shared by V(4) and V(8)

before crossing any edge of V(lO). At this point, p

is closer to 8 than to 4 and it must continue along the

8,10 bisector. Moving further, p crosses an edge of

V(lO), becomes closer to 12 than to 10, and moves off

along the 8,12 bisector. The path of p zig-zags upward

until it reaches the 7,13 bisector, at which point it

has traced out the desired polygonal line P.

We will now show how to form P by scanning the

diagrams V(L) and V(R) once each, with no backtracking.

Proof: We show that D(N log N) time is required just to

construct a single Voronoi polygon! Any Voronoi diagram

algorithm must be able to sort: consider N real numbers

Xl' ... , x
N

and map them stereographically onto the unit

circle in O(N) time. Now find the Voronoi diagram of

the N points and the origin. The Voronoi polygon of the

origin has edges that are in one-to-one correspondence

with the given numbers, in sorted order. 0

This implies that the algorithm of Thm. 4 is asymptot-

ically optimal.

IV. Applying the Voronoi structure.

Every Voronoi polygon is convex and is divided by its For each of the closest-point problems we are going

lowest vertex l and its highest vertex h into two chains to exploit the Voronoi diagram so that an easy suhproblem

of segments that are monotonic in y. (Figure 12)

h

results.

Theorem 6. The all closest points problem can be solved

in O(N log N) time.

Proof: The perpendicular bisector of any point Pi and

its nearest neighbor p. coincides with an edge of the
J

Voronoi polygon V(i). It thus suffices to examine each

Voronoi polygon V(i) once and find the edge closest to

Figure 12.
Partition of a convex polygon into monotonic chains.

Pi for all i. Each Voronoi edge occurs in exactly two

polygons, so this procedure never encounters an edge

more than twice. Since there are only D(N) Voronoi
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edges, linear time suffices once the diagram is avail-

able. By Thm. 4 the Voronoi diagram can be constructed

in O(N log N) time. 0

Theorem 7. A Euclidean minimwn spanning tl~ee on N

points in the plane can be constructed in O(N log N)

time.

Proof: Consider the straight-line dual of V(S), that

is, join Pi and Pj by a line segment if and only if V(i)

and V(j) share an edge. The result is a planar graph

on the original N points and hence has O(N) edges. We

will show that a minimum spanning tree must also be a

minimum spanning tree of the dual graph.

Recall Prim's algorithm for a minimum spanning tree

of a graph with arbitrary edge weights 10 : begin with

all vertices unlabeled and select a starting vertex s.

Label s and insert an edge between s and its nearest

unlabeled neighbor, t, and label t. At each subsequent

step, add the shortest edge that joins a labeled and an

unlabeled vertex. Ties may be resolved arbitrarily and

the algorithm terminates when all vertices are labeled.

Applying the above procedure to the Euclidean case,

begin with any point s. Its nearest neighbor t is det-

ermined by some edge of V(s), and the tree link st to

be added is dual to that edge. We now seek a point u

that is closer to s or t than any other point is. But

u is determined by some edge of V(s) u Vet), so su or

tu, whichever is added, will be an edge of the dual.

At each step the link to be added is determined by rhe

union of the Voronoi polygons of vertices already

labeled and hence is an edge of the dual.

The dual can be constructed in O(N) time, if V(S) is

available, by connecting with a straight line segment

the two points that determine each edge of the Voronoi

diagram. The dual is a graph with N vertices and O(N)

edges, for which a minimum spanning tree can be found

in O(N log log N) time 26 . The construction of V(S) thus

dominates the computation and O(N log N) time suffices.D

(see Figure 13). We note in passing that no two edges

I
.>-- .... I

"' \
\ ,

\
\

\

Figure 13. Relation between the Voronoi
diagram and a Euclidean minimum spanning tree.

of a Euclidean minimum spanning tree intersect and such

a tree has maximum degree five 24 •

Theorem 8. A Euclidean traveling salesman tour that is

not longer than twice the length of an optimal tour can

be found in O(N log N) time.

Proof: The algorithm is based on an observation by Nick

Pippenger that the Euclidean minimum spanning tree can

be used to obtain an approximate traveling salesman tour.

Let OPT denote the length of an optimal tour and let MST

be the total length of a Euclidean minimum spanning tree.

Removal of any edge of the optimal tour leaves a spanning

tree, so OPT> MST. By traversing the minimum spanning

tree twice (as in Figure 14) we produce a traveling

salesman tour of length 2·MST < 2·0PT. 0

Finding a similar tour in the complete graph with arbit-

rary edge weights requires O(N 2 ) time and an algorithm

. .• .. ...;.. ? 7WhlCh aChleves rnls Douno lS Known--.

Figure 14. The Euclidean minimum
spanning tree (- - -) provides an approximate

traveling salesman tour (----).
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Theorem 9. beginning with each ray of the diagram. No Varonoi edge

TV) t{me. will be examined more than once, so linear time suffices.

Proof: By a theorem of Delaunay, the straight-line dual For each such intersection point, calculate the distance

of a Voronoi diagram is a triangulation 28 • That it has to either of the two points determining the Voronoi edge

minimal total length follows by analogy to Thm. 7 and involved. The center of the circle is located by finding

the algorithm of Duppe and Gottschalk 14 • D the point that yields the largest radius. Again, the

The minimum-weight triangulation is useful for inter- running time is dominated by the time required to form

polation because the circumcircle of every triangle the Voronoi diagram. 0

contains no other points of the set (since the circum-

Figure 15. Relation between the Voronoi
diagram and the minimum-weight triangulation.
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Figure 16. The Voronoi diagram locates
a largest empty circle.
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center is a Voronoi point).

Theorem 10. The largest empty circle prob lem c~ar2 be found in 0 (N log LV) t1:rne.

solved in O(N log N) time. Proof: We show that D(N) time is sufficient, given the

Proof: The center of the required circle must lie at Voronoi diagram. Unbounded Voronoi polygons and vertices

a Voronoi point or at the intersection of a Voronoi of the hull are in one-to-one correspondence. Begin by

edge and the convex hull of the set. If the circle is marking each polygon as being bounded or unbounded. This

determined by three points its center is at their can be done by scanning each polygon once, in D(N) time.

Voronoi point (circumcenter). If the circle is deter- Begin with any unbounded polygon V(i) and examine its

mined by two points and an edge of the hull it lies on edges, looking for an edge that is shared with another

the perpendicular bisector of the points. (Figure 16) unbounded polygon V(j). Points i and j are consecutive

The circumradii associated with all the Voronoi points on the convex hull and we continue by searching V(j),

can be found in D(N) time, given V(S). We will show proceeding point by point around the hull. No Voronoi

that all the intersections of Voronoi edges and convex edge is examined more than a constant number of times.l]

hull edges can also be found in D(N) time. Given V(S),

the convex hull of S can be found in linear time by Thm.
V. Generalization of the Voronoi diagram.

11. Consider any edge of the hull. Corresponding to The Voronoi diagram, while very powerful, has no

is a ray r which coincides with the perpendicular means of dealing with farthest points, k closest points,

bisector of Beginning with P, conduct a breadth- and other distance relationships, and, as such, is unable

first search of the Voronoi diagram until all Varonoi to solve the remainder of the problems we have posed.

edges are found \..;11 i ell in t eTse c t Repeat this procedure
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We have been considering the Voronoi polygon associated

with a single point, but such a restriction is not

necessary and it will be useful to speak of the Voronoi

polygon VCR) of subset R of points, defined by

VCR) = {x: VyER VZlR d(x,y) < d(x,z)} .

That is, VCR) is the locus of points closer to some

point in R than to ~ point not in R. An equivalent

definition is: VCR) = { n h(i,j): iER, jES-R },

where h(i,j) is again the half-plane containing i that

is defined by the perpendicular bisector of i and j.

This shows that the generalized Voronoi regions are

convex polygons. It may, of course, occur that VCR)

are closer to some point of R than to any point of S-R,

so VCR) must be unbounded. Conversely, if V(H) is un-

bounded it must contain a ray, which we may take to be

the positive x-axis. Since now all points of H have

greater x-coordinate than any point of S-R, H must be

exposed.

Every line determined by two points of S gives rise

to two exposed subsets. Let points a and b determine

line l and suppose that l divides S into two subsets, L

and R, neither of which contains a or b. The dividing

line produces two partitions of S, ({Lua},{Rub}) and

({Lub},{Rua}), which define four exposed subsets, but

is empty. A set S of N points has 2
N

subsets. How many each subset occurs in two partitions. The number of

of these possess non-empty Voronoi polygons? To answer

this question we must probe the structure of the gener-

alized polygons a little deeper.

determined lines is N(N-1)/2, so the number of exposed

subsets is 4N(N-1)/4 = N(N-l). D

We define the Voronoi diagram of order k, denoted

Vk(S), as the collection of all Voronoi polygons of

k-subsets of S, so Vk(S) = { u V(H): HeS, IHI=k } .
It is proper to speak of Vk(S) as a diagram because its

polygons partition the plane. Given Vk(S), the k points

closest to a new given point x can be determined by

finding the polygon of Vk(S) in which x lies. Figure

17 shows the Voronoi diagram of order two associated

with the set of sixteen points considered earlier. The

relevant subsets H are shown in braces, where space

permits.

We call a subset ReS expuseu iff Hand S-H lie in

complementary half-planes, that is, if Hand S-R are

separable.

Theorem 12. The number of unbounded Voronoi polygons

(of all orders) of a set of N points is N(N-l). Figure 17. A Voronoi diagram of order two.

Proof: We first show that V(H) is unbounded iff H is

exposed and then count the number of exposed subsets.

If R is exposed then Rand S-H lie in complementary

half-planes, which we may take without loss of general-

ity to be the right and left half-planes, respectively.

Points on the x-axis with sufficiently large coordinates

Theorem 13. The number of bounded Voronoi polygons of

(N-3l) .(of all orders) of a set of N points is

Proof: Any vertex of a generalized Voronoi polygon is

a circumcenter of some triple of points. Let x be a

Voronoi vertex which is the circumcente~ of points a, b,
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and e and let H be the set of points or S that dTe Theorem 14.
--_.,~---_.--,-~.----

closer to x than to any of ,D,,}j. (11 may be empty)

Let k = IHI. Now, x appears in the order k+l Voronoi Proof: The required circle is determined by twu or

diagram as the meeting point of V(H u a), V(H b), and points of the set 22 . 1£ it is determined by two points

V(H u c) and in the order k+2 diagram as the meeting then these two points are the ends of a diameter of the

point of V(H u a u b), V(H u b u c), and V(H u c u a). circle and hence are the two farthest points of S. If

Except for degeneracies which do not affect the order the circle is determined by three points, \1, b, and c,

of the result, every Voronoi vertex, being the circum- then its center is interior to triangle abc.

center of three points, has degree three, except the Consider the farthest-point Voronoi diagram (that is,

vertex at infinity where the rays meet. If a planar the diagram of order N-l). Associated with each point i

graph has f faces, V vertices of degree three, and one

vertex of degree i, then 2f = 2 + V + 't. Letting f k

is a convex polygonal region VN_
I

(i) such that i is the

farthest neighbor of every point in the region. The

denote the number of non-empty Voronoi polygons in the order N-I diagram is determined only by points on the

,order k diagram, uk the number of Voronoi vertices, and

i
k

the number of unbounded regions and summing over k,

convex hull of 8, which are all exposed, so V
N

_
1

(8) has

no bounded regions. An example is given in Figure 18.

we have

result follows. 0

the order k diagram does not exceed O(k(N-k» and a

" REGION 8
3

/

REGION 4

, so

But
N-l
L ~i
k=l k

N-I
L v kk=l

N-I
L vk +
k=l

and

N -

2N - 2 +

N-I
L f kk=l

N-I
L i kk=l

N-l
2 L f kk=l

2(~) + (NJl)

Since the number of unbounded polygons is 2(~) , the

Thus the total number of polygons in all the Varonoi

3 Ndiagrams is O(N ), not 2. The number of polygons in

we obtain

beautiful unifying result is that the union of the Figure 18. A farthest-point Voronoi diagram.

Given

Voronoi polygons of all orders is precisely the set of

perpendicular bisectors of all pairs of points.

The generalized Voronoi diagram places closest-

point and farthest-point problems on an equal footing

since the locus of points whose k nearest neighbors are

the set H is also the locus of points whose N-k farthest

neighbors are the set 8-H. Thus the order k closest-

point diagram is and order N-k farthest-point diagram.

The farthest-point diagram can be constructed in

o (N log N) time by a procedure analogous to the closest--,

point algorithm. The dividing lines P are identical. It

is only necessary to discard those edges of VN-
l

(L) that

lie to the left of P and similarly for VN_l(R).

V
N

_
I

(8), the two farthest points of 8 can be found in

O(N) time just by examining each edge of the diagram

and computing the distance between the points determining
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it. The greatest distance thus obtained is the diameter

of S. If the circle determined by the two farthest

points encloses the set, we are done. Otherwise, we

claim that the center of the smallest enclosing circle

is a vertex of the farthest-point Voronoi diagram. For

let the circle pass through points a, b and c~ Then the

center is the point cornman to V (a), V (b) and
N-l N-l

V (e)! There are only O(N) vertices in VN_l(S), so
N-l

all the circumradii can be found in O(N) time, once the

diagram is constructed. D

In figure 18 the smallest enclosing circle is deter-

mined by points 1, 8, and 4 and their circumcenter is,

as expected, a vertex of the diagram.

combine geometric insight with contemporary fast-

algorithm techniques.
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