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OPTIMAL SEARCH IN PLANAR SUBDIVISIONS*

DAVID KIRKPATRICK"

Abstract. A planar subdivision is any partition of the plane into (possibly unbounded) polygonal
regions. The subdivision search problem is the following: given a subdivision S with n line segments and
a query point P, determine which region of S contains P. We present a practical algorithm for subdivision
search that achieves the same (optimal) worst case complexity bounds as the significantly more complex
algorithm of Lipton and Tarjan, namely O (log n) search time with O (n) storage. Our subdivision search
structure can be constructed in linear time from the subdivision representation used in many applications.
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1. Introduction. Any finite collection of finite, semi-infinite or infinite line seg-
ments induces a partition of the plane into polygonal regions. We will restrict our
attention, for the present, to collections of line segments whose pairwise intersections
are restricted to segment endpoints. We call such a collection (or the finite set of
polygonal regions induced by the collection) a (planar) subdivision.

We define the subdivision search problem to be the following: Given a subdivision
S with n line segments and an arbitrary query point P, determine which region of S
contains P. Our subdivision search problem is equivalent to the "region-searching"
problem of Dobkin and Lipton [6]. It is a slight (but, as we shall see, inconsequential)
generalization of both the "point-location" problem studied by Lee and Preparata
[14] and the "triangle" problem of Lipton and Tarjan [18]. The "point in polygon"
problem [1], [3], [24] (given a simple polygon, does it contain a specified query
point ?), the "rectangle searching" problem [27] (given a set of nonoverlapping
rectangles, which, if any, contains a specified query point?), and the "line searching"
problem [6] (given a set of lines in the plane, which, if any, contains a specified query
point?) can all be formulated as instances of our subdivision search problem.

Dobkin and Lipton [6] were the first to cast Knuth’s [12] "post-office" problem
(given a set of points in the plane, which is closest to a specified query point?) as a
subdivision search problem. Shamos [25] (and independently Dewdney [4]) refined
this formulation by introducing the Voronoi diagram of a point set, a planar subdivision
of remarkable utility in connection with nearest neighbor and other related problems.

In many applications, a planar subdivision is the object of numerous location
queries. For this reason, algorithms for point location are generally characterized by
three attributes: i) preprocessing timemthe time required to construct a search structure
from a standard representation of S; ii) spacemthe storage used in the construction
and representation of the search structures; and iii) search timemthe time required
to locate a specified query point, given the search structure. We restrict our attention
here to the worst-case behaviour of these attributes.

Dobkin and Lipton [6] employ a projective technique to reduce subdivision search
to linear search. The resulting algorithm is asymptotically optimal (among comparison-
based algorithms) in terms of search time but may be quite expensive in terms of both
preprocessing time and storage. Specifically, Dobkin and Lipton provide an O(lg n)l
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search-time, O(n 2) space, and O(n 2 lg n) preprocessing-time algorithm for subdivision
searching. Dobkin and Lipton were also the first to raise the question" Can subdivision
searching be done with O(lg n) search-time and O(n) (or even O(n lg n)) space?

Shamos [25] introduces an O((lg n)2) search-time, O(n) space, and O(n lg n)
preprocessing-time algorithm suitable for searching a class of subdivisions that includes
Voronoi diagrams. Employing an O(n lg n) algorithm for constructing a Voronoi
diagram on n points [28], this leads to an O((lg n)2) search-time, O(n) space, and
O(n lg n preprocessing-time solution of the "post-office" problem. Shamos’ algorithm
is generalized by Lee and Preparata [15] to an O((lg r/)2) search-time, O(n) space,
and O(n lg n) preprocessing-time algorithm for the location in arbitrary subdivisions.
Lee and Preparata’s approach is divide-and-conquer; each reduction of the subdivision
is achieved by discrimination of the query point with respect to a monotone chain of
edges that splits the subdivision (at a cost of O(lg n) comparisons, in the worst case).

The first affirmative answer to the question of Dobkin and Lipton was provided
by Lipton and Tarjan [18]. Lipton and Tarjan’s O(lg n) search time, O(n) space, and
O(n lg n) preprocessing time algorithm for search in arbitrary triangular subdivisions
(each interior region of the subdivision is bounded by exactly three line segments) is
one of many important applications of their planar separator theorem [18], [19]. That
general subdivision search can be efficiently reduced to triangular subdivison search
follows from the O(n lg n) polygon triangulation algorithm of Garey et al. [8]; the
details of this reduction are discussed in 4. Unfortunately, Lipton and Tarjan’s
algorithm is of primarily theoretical interest; to quote Lipton and Tarjan [19], "We
do not advocate this algorithm as a practical one, but its existence suggests that there
may be a practical algorithm with an O(lg n) time bound and O(n) space bound".

A recent result of Preparata [21] claims to come "very close to providing a
complete substantiation" of Lipton and Tarjan’s conjecture. Preparata’s algorithm,
which he describes as an evolution of the approach of Dobkin and Lipton [6], uses
O(lg n) search time, O (n lg n) space, and O(n lg n) preprocessing time.

The purpose of this paper is to affirm Lipton and Tarjan’s conjecture; we present
a new subdivision search algorithm with exactly the same asymptotic bounds as Lipton
and Tarjan’s algorithm. The simplicity of our approach (and the existence of an
implementation) suggests that it may also deserve to be called practical. A discussion
of the implementation and more detailed evaluation of our algorithm will be presented
elsewhere.

In the next section we present some preliminary definitions and comments on
the data structures used by our algorithm. Sections 3, 4 and 5 describe our algorithm
and a number of its applications. Section 6 concludes the paper with a discussion of
some related open problems.

2. Definitions and preliminaries. A finite planar subdivision is a planar sub-
division each of whose line segments is finite. Such a subdivision is indistinguishable
from a straight-line embedding of a planar graph. Thus we can refer without confusion,
not only to the vertices, edges and regions (or faces) of a finite planar subdivision,
but also to such graph-theoretic notions as degree, incidence and independence [10].
It is an immediate consequence of Euler’s formula (cf. [10]) that the numbers of
vertices and edges of a finite planar subdivision are linearly related, and hence either
number serves to characterize the size of such a subdivision. Hereafter, [SI will denote
the number of vertices of the finite subdivision S.

Let S be a finite planar subdivision. We take as a starting point for our algorithm
what we call an edge-ordered representation of S. Specifically:

(a) if x is a line segment joining vertex v to vertex w, then x is represented by
the pair of directed edges {(v, w), (w, v)};
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(b) each vertex v has associated with it not only its coordinates but also a list,
in counterclockwise order, of all directed edges whose source is v; and

(c) each directed edge (v, w) has associated with it a pointer to the edge (w, v)
as well as the name of the region lying immediately to the right of (v, w).

An edge-ordered representation is provided either implicitly or explicitly by the
representations taken as standard in a number of earlier papers [20], [23]. It differs
from the basic (unordered) list of adjacencies chosen by Lee and Preparata [15] as
their initial representation. However, it should be clear that"

i) it occupies O(ISI) space;
ii) it can be constructed in O(ISI lg ISI) time from a list of adjacencies or other

standard representations of planar graphs;
iii) it can be constructed in O(ISI) time if the underlying planar graph has bounded

degree; and
iv) it can be constructed in O(ISI) time from the natural graph representation

provided in certain applications (cf. 5).
Thus our choice of representation for subdivisions is intended to allow a realistic
estimate of actual preprocessing costs.

The obvious redundancy in an edge-ordered representation can be neatly
exploited in the development of our hierarchical search structure. A detailed descrip-
tion of the data structures used in one efficient implementation or our algorithm will
be presented elsewhere.

A finite planar subdivision S has exactly one unbounded region, called the external
region of S. Its complement is called the interior of S. The edges bounding the external
region define what we call the boundary of S.

A convex subdivision is any finite planar subdivision whose interior is convex and
whose interior regions are all convex. A triangular subdivision is a special case of a
convex subdivision in which each region (including the exterior region) is bounded
by three line segments. It is easily confirmed that a triangular subdivision on n _-> 3
vertices has exactly 3n-6 edges and 2n-4 regions (including the external region).

In 3, we give a new constructive proof of the following:
THEOREM 3.1. There is an O(lg n) search time, O(n space and O(n preprocess-

ing time algorithm ]’or the triangular subdivison search problem.
This result is extended to arbitrary planar subdivisions in 4.
3. Fast search in triangular subdivisions. Let S be an arbitrary triangular sub-

division with n vertices. A subdivision hierarchy associated with S is a sequence
S, S.,..., Sh<) of triangular subdivisions, where $1 S and each region R of Si/l
is linked to each region R’ of Si for which R’R (the so-called parents of R in
Si), for 1-_< < h (n). We call h (n) the height of the subdivision hierarchy. Obviously
the space required for a subdivision hierarchy is just the space required for the
individual subdivisions (O(,hi=)[Sil)) plus the space used by the intersubdivision links.

Our basic point location algorithm involves a single pass through the subdivision
hierarchy, locating the test point at each level. Let p denote an arbitrary test point.

ALGORITHM HIERARCHICAL SUBDIVISION SEARCH
CANDIDATESh(n)- regions of Sh(n)
R - region in CANDIDATESh(n) containing p
i-h(n)-i
while > 0 do

CANDIDATESi parents(R)
R region in CANDIDATESi containing p
i-i-1

report (region R)
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Since membership in any triangular region can be tested in constant time, the
complexity of this search procedure is O(h_-(’ICANDIDATESil). Obviously we are
motivated to construct subdivision hierarchies in which both the height and the size
of all CANDIDATE sets are minimized.

We start by constructing a subdivision hierarchy of height two.
LEMMA 3.1. There exist positive constants c and d such that for any triangular

subdivision S with ISI > 3, a triangular subdivision T can be constructed in O(ISI) time,
satisfying"

i) IT[-<_ (1 1/c)lSl, and
ii) each region of T has at most d parents in S.
Proof. Let v be any internal (nonboundary) vertex of S, and let deg (v) denote

its degree. Then, exactly deg (v) regions of S are incident with v. The union of these
regions, which we call the neighborhood of v, forms a star-shaped polygonal region
with deg (v) bounding edges. Now, if v and its deg (v) incident edges are removed
from S and the neighborhood of v is retriangulated (introducing deg (v)- 3 new edges)
what results is a new triangular subdivision with IS[-1 vertices. It should be clear that,
regardless of how the neighborhood of v is retriangulated, each new region intersects
at most deg (v) regions of S. Of course, the simplification achieved by this vertex
removal and retriangulation is minimal. However, if w is any vertex which is indepen-
dent of (i.e. nonadjacent to) v in S, then the neighborhoods of v and w do not intersect
except possibly along one or more edges of S. Hence, such a pair of vertices can be
removed in parallel and the triangular subdivision that is created by retriangulating
their vacated neighborhoods has the property that each of its regions intersects at
most max {deg (v), deg (w)} regions of S. By identical reasoning, if Vx," , v, form an
independent set of vertices in S, then the IS]- vertex triangular subdivision T formed
by removing v,..., v, and retriangulating all vacated neighborhoods has the
property that each of its regions intersects at most max {deg (vi), 1 _-</" _-< t} regions of
S. To complete the proof it suffices to show that if c and d are sufficiently large then
an independent set Vl, /At with deg (vg) -< d, 1 -< =< t, and >-]S]/c can always be
identified in o(Isl) time. This is an immediate consequence of the following lemma.

LEMMA 3.2. There exist positive constants c and d such that every planar graph
on n vertices has at least n/c independent vertices of degree at most d. Furthermore, at
least n/c of these can be identified in O(n time.

Proof. We make no attempt to optimize c and d here. (Their optimal values
influence the asymptotic constants for each of space, preprocessing time, and search
time, and some tradeoffs can be expected.) We have already noted that an n-vertex
planar graph has at most 3n-6 edges. Hence the average vertex degree is less than
6, and so less than half of the vertices have degree exceeding 11. Starting with the
set V of vertices of degree at most 11 (which can be identified easily in linear time),
a straightforward elimination procedure identifies an independent subset containing
at least IVI/12>-n/24 vertices.

Of course, a subdivision hierarchy of height two provides no significant
simplification over the original subdivision. However, if Lemma 3.1 is applied itera-
tively, we are led to a subdivision hierarchy in which asymptotically improved (in fact,
optimal) search is possible.

LEMMA 3.3. There exist positive constants c and d such that, for any triangular
subidivision $ with n vertices, an associated subdivision hierarchy $, S(, can be
constructed in O(n time, satisfying:

i) ]Sh([ 3;
ii) 1/c)lS, l., and
iii) each region ofS/ has at most d parents in
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Proof. Immediate from Lemma 3.1.
COROI.I.AR 3.1. The subdivision hierarchy above has height h (n) O(lg n) and

uses O(n) space in total.
Proof. It suffices to note that the sequence [$11, Is2l, .., Is.( )l forms a decreasing

geometric progression.
We now restate and prove our basic result.
TI-IZOIEM 3.1. There is an O(lg n) search time, O(n space, and O(n preprocess-

ing-time algorithm for the triangular subdivision search problem.
Proo]’. We use the hierarchical subdivision search algorithm in conjunction with

the subdivision hierarchy constructed in Lemma 3.3. By Lemma 3.3, the preprocessing
time is O(n). By Corollary 3.1, the total space is O(n). By our earlier observations,
the complexity of search is O([Sh(n)[-[- 2/h(t)-1Pi) where p maxRs,+ ([parents (R)[).
But, by Lemma 3.1 and Corollary 3.1, Sh(,) and p are O(1) and h(n) is O(lg n), so
the search time is O(lg n).

4. Fast search in general subdivisions. In this section we consider the reduction
of general subdivision searching problems to triangular subdivision search. Let S be
an arbitrary planar subdivision. We can reduce the question of searching in S to
searching in a finite planar subdivision by intersecting S with a sufficiently large triangle
chosen to contain all intersections of line segments of S. The interior of this triangle
is clearly a finite planar subdivision. The exterior can be searched using a straightfor-
ward generalization of binary search, exploiting the fact that none of the semi-infinite
line segments intersect in this region. This reduction adds a factor of only O([S[) to
both the preprocessing time and space and O(lg IS[) to the search time used in the
resulting finite subdivision search problem. Hence the asymptotic complexities of
general and finite subdivision searching are equivalent.

It remains to reduce finite subdivision searching to triangular subdivision search-
ing. Let S be a finite planar subdivision. We can assume from the preceding reduction
that the boundary of S is triangular. Let T be the subdivision formed from S by
triangulating each interior region of S. The size of T remains proportional to the size
of S and, since T is a refinement of S, the location of points in T immediately implies
their location in S. In the general case T can be formed from S in time O([S[lg[S[),
using the general polygon triangulation algorithm of Garey et al. [8]. However, if the
regions of S are all convex, or even star-shaped, a straightforward linear algorithm
exists for constructing T. Thus, we have demonstrated the following"

THEOREM 4.1. There is an O(lg n) search time, O(n) space and O(n lg n) prepro-
cessing time algorithm for the general subdivision search problem.

THEOREM 4.2. There is an O(lg n) search time, O(n) space and O(n) preprocess-
ing time algorithm for the convex subdivision search problem.

5. Applications. Earlier papers on subdivision search, notably [15], [21], have
mentioned a number of applications. We recall and expand on a few of these here.

5.1. Point in polygon proMem. A planar polygon is a special case of a finite
planar subdivision. Theorem 4.1 gives an immediate O(lg n) search time, O(n lg n)
preprocessing time and O(n) space algorithm for testing the inclusion of an arbitrary
point in an n vertex planar polygon. For convex or star-shaped polygons, or any other
family of polygons that can be triangulated in O(n) time, the preprocessing time is
linear.

5.2. Point in convex polyhedron problem. Lee and Preparata [15] note that the
problem of testing the inclusion of an arbitrary point in an n-vertex convex polyhedron
can be reduced to convex subdivision search with O(n) preprocessing. It follows, by
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Theorem 4.2, that an O(lg n) search time, O(n) preprocessing time and O(n) space
algorithm exists for the point in convex polyhedron problem.

By dualization, an algorithm with identical attributes can be formulated for the
problem of testing for the intersection of an arbitrary plane and a polyhedron in
3-space [5].

5.3. Locating a set of points in a planar subdivision. Preparata [22] shows that
a set of k points can be located on an n-vertex planar subdivision in O(k lg k + n +
k lg n) time, given O(n lg n) preprocessing time. This result is an immediate con-
sequence of Theorem 4.1. Furthermore, by Theorem 4.2, the preprocessing time can
be reduced to O(n) for convex planar subdivisions (which arise in a principal applica-
tion [20] of Preparata’s batched point location algorithm).

5.4. Closest point problems. The problem of determining which of a set of data
points is closest to a given test point has been extensively studied. Shamos [25] (and
independently Dewdney [4]) show how this problem can be reduced to point location
in a particular family of planar subdivisions known as Voronoi diagrams. Voronoi
diagrams (in any Lp metric) can be constructed in O(n lg n) time [13]. While Voronoi
diagrams in arbitrary Lp metrics may involve curved edges, every region is star-shaped
and hence Voronoi point location can be solved using subdivision search followed by
at most one test against a curved edge. Furthermore, only linear preprocessing is
required following the construction of the Voronoi diagram. This fact can be exploited
in the dynamic maintenance of Voronoi diagrams and dynamic solution of closest
point problems [9].

By replacing Voronoi diagrams by what are called generalized Voronoi diagrams
[11], [14] it is possible to use an analogous approach to solve the closest line problem
(which of a set of lines or line segments is closest to a given test point?).

6. Open problems and conclusions. It is tempting to extend the approach of this
paper to the location of points in higher-dimensional subdivisions. Such an extension
is by no means obvious. The number of vertices, edges, faces and regions of three-
dimensional subdivisions are not necessarily linearly related, and the analogue of
triangulation (tetrahedralization) is not a straightforward process. A more detailed
discussion of subdivision search in higher dimensions will be taken up elsewhere.

Our algorithm seems to depend on the fact that the given subdivision is formed
out of straight line segments. While the algorithm can be adapted to certain other
situations (for example, when all internal regions are star shaped), the general problem
of optimal search in subdivisions formed from arbitrary curve segments may require
a totally new approach. As a concrete example of such a subdivision, consider those
subdivisions which arise in the so-called locus approach to the fixed-radius nearest
neighbor search problem [2]. Such subdivisions are formed by the intersection of
fixed-radius circles, and in general do not seem to admit a simple refinement using
straight edges. Thus the fixed-radius nearest neighbor search problem still awaits an
O(lg n) search time, O(n 2) space and O(n 2 lgn) preprocessing time solution. A
solution using O(log n) search time, O(n log n) space and O(n log n) preprocessing
time is a byproduct of Preparata’s subdivision search algorithm [21]. Edelsbrunner
and Maurer [7] present search algorithms for subdivisions formed by segments other
than straight lines.

We have described a new subdivision search algorithm which, as pointed out by
Lipton and Tarjan [18], is optimal for both search time and space, assuming only
binary decisions are possible. Our algorithm is based on the hierarchical decomposition
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of an arbitrary subdivision. It is conjectured that this technique will find a number of
other applications in computational geometry and elsewhere. On this point we should
acknowledge the fact that this technique does not originate with this paper; Lipton
and Miller [17] use a very similar idea in developing a fast algorithm for coloring
planar graphs.
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