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Abstract
The continuous k-center problem aims at finding k balls with the smallest radius to cover
a finite number of given points in R

n . In this paper, we propose and study the following
generalized version of the k-center problem: Given a finite number of nonempty closed
convex sets in R

n , find k balls with the smallest radius such that their union intersects all of
the sets. Because of its nonsmoothness and nonconvexity, this problem is very challenging.
Based on nonsmooth optimization techniques, we first derive some qualitative properties of
the problem and then propose new algorithms to solve the problem. Numerical experiments
are also provided to show the effectiveness of the proposed algorithms.

Keywords k-center problem · Multifacility location problem · Majorization-minimization
principle · Difference of convex functions
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1 Introduction

Proposed by the English mathematician James Joseph Sylvester (1814–1897) in the nine-
teenth century, the smallest enclosing circle problem or the 1-center problem asks for the
smallest circle enclosing a finite number of points in the plane; see [33]. This problem and its
version in higher dimensions have received great attention from many researchers because
of their important applications to clustering, nearest neighbor search, data classification,
facility location, collision detection, computer graphics, and military operations. The read-
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ers are referred to [1,6,12,17,31,36–38,40] and the references therein for more information
involving the smallest enclosing circle problem and its generalizations from both theoretical
and numerical standpoints. Note that the smallest enclosing circle problem is significantly
different from the Fermat–Torricelli problem of finding a point that minimizes the sum of
the distances to a finite number of points in the plane; see, e.g., [16]. The smallest enclosing
circle problem and the Fermat–Torricelli problem are important examples of facility location
problems in which a single facility/service center is chosen to provide service to customers.
The distance from the center to the farthest customer is minimized in the case of the smallest
enclosing circle problem, and the total transportation cost is minimized in the case of the
Fermat–Torricelli problem. It is certainly of great interest to deal with multifacility location
versions of these problems with the motivation coming from building a chain of service
centers instead of one.

Given a finite number of data points a1, . . . , am in a Euclidean space and a fixed positive
integer k, we seek k centers x1, . . . , xk and assign each ai for i = 1, . . . , m to its nearest
center in a way that the largest distance r ≥ 0 from the centers to their assigned data points
is minimal. Then the union of the closed balls with k centers x1, . . . , xk and the same radius
r would cover all of the given data points. Observe that after k centers have been chosen, the
data points are divided into k clusters, and the radius of each cluster is determined by the
distance from the center to its farthest assigned data point. Thus, the objective of the k-center
problem is to find k balls to cover all of the target points such that the radius of the largest
balls is minimized; see [14,15] and the references therein. Depending on the way of choosing
the centers of the balls, there are two cases of the k-center problem in the literature. In the
discrete case, the centers must be chosen among the target points, while in the continuous
case these points can be located anywhere in Rn . In a similar way, the multifacility versions
of the Fermat–Torricelli problem are called the k-median problem; see, e.g., [20,28] and the
references therein.

In the classical models of facility location, each location is identified with a data point. A
question arises as follows: Can we deal with facility location problems in which given data
points are replaced by given sets? Following the developments from [5,21,23,24,27,30,32]
and related references for set-facility location versions of the smallest enclosing circle
problem and the Fermat–Torricelli location problem, in this paper we study a general-
ized version of the k-center problem: Given a finite number of nonempty closed convex
sets in R

n , find k balls of the same minimal radius such that their union intersects all
of the sets. Besides the mathematical motivation, this question appears in more compli-
cated models of facility location in which the sizes of the locations are not negligible, as
in bilevel transportation problems. For instance, people would like to deliver supplies to
different islands from k aircraft carriers, and suppose that the supplies delivered anywhere
on each island can be distributed using local transportation. Then it is necessary to find
a position for the aircraft carriers such that the maximum distance from an aircraft car-
rier to the nearest island is minimal. In this situation, without neglecting the sizes of the
islands, we need to deal with a model of facility location in which points are replaced by
sets.

The main challenge in solving the generalized k-center problem comes from the intrinsic
nondifferentiability and nonconvexity of the models. Our main goal in this paper is to study
these problems from both theoretical and numerical viewpoints. We focus particularly on
developing numerical algorithms for solving themusing a heuristicmethod and a newmethod
based on the DCA, an algorithm for minimizing differences of convex functions introduced
by Tao and An; see [34,35].
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The paper is organized as follows. In Sect. 2, we formulate the set model of the classical
k-center problem and introduce necessary notations and definitions. Basic tools of convex
analysis and the DCA are introduced in Sect. 3. Section 4 is devoted to some qualitative
properties of the generalized k-center problem.Numerical algorithms for solving this problem
are the main topics of Sect. 5. Finally, we provide numerical examples in Sect. 6.

2 Notations and problem formulations

Throughout the paper, we use the matrix X = (x1, . . . , xk)� ∈ R
k×n, whose �th row is

(x�)�, to store k centers to be found. Consider a finite number of nonempty closed and
convex subsets �1, . . ., �m of Rn . There always exist nonnegative real numbers R1, . . . , Rk

satisfying

�i ∩
[

k⋃
�=1

B(x�; R�)

]
�= ∅ for all i = 1, . . . , m. (2.1)

The objective of the generalized k-center problem generated by m target sets {�i }m
i=1 is to

find k balls such that property (2.1) holds and the largest radius Rmax := max{R1, . . . , Rk}
is minimal. In what follows we use the following index sets:

I := {1, . . . , m} andJ := {1, . . . , k}.

For each i ∈ I , the distance from the target set �i to its closest center is defined by

di (X) := min{d(x�;�i ) | � ∈ J }, (2.2)

where the Euclidean distance function associated with a subset � of Rn is defined by

d(x;�) := inf{‖x − a‖ | a ∈ �}, x ∈ R
n .

For each � ∈ J , the cluster associated with the center x� is defined by

A(x�) := {�i | i ∈ I (x�)},

where I (x�) := {i ∈ I | d(x�;�i ) = di (X)}. We can see that for any X ∈ R
k×n ,⋃

�∈J I (x�) = I . Thus, A(x�) contains all the target sets that are closer to x� than other
centers. It is possible thatA(x�) = ∅ for some � ∈ J . The radius of cluster A(x�) is defined
by

R(x�) :=
{
max{di (X) | i ∈ I (x�)}, if I (x�) �= ∅
0, if I (x�) = ∅.

From the definition, we can show that the ball B(x�; R(x�)) intersects all the target sets in
the cluster A(x�), i.e., for any i ∈ I (x�),

�i ∩ B(x�; R(x�)) �= ∅. (2.3)

To ensure that each of the target sets is intersected by at least such a ball, we define the
radius
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R(X) := max
{

R(x�) | � ∈ J
}

and observe from these definitions that, for each i ∈ I , there exists � ∈ J such that
d(x�;�i ) = di (X) ≤ R(x�) ≤ R(X) and therefore �i ∩ B(x�; R(X)) �= ∅. It is obvi-
ous that

R(X) = max{di (X) | i ∈ I }.
The goal of the generalized k-center problem is to minimize R(X) by solving the following
optimization problem:

minimize Fk(x1, . . . , xk) := max
i∈I

min
�∈J

d(x�;�i )

x1, . . . , xk ∈ R
n .

(GkC)

Using X as a variable, we can rewrite problem (GkC) as

minimize Fk(X) := max
i∈I

di (X), X ∈ R
k×n,

where di (X) is defined in (2.2). Note that the nonconvexity and nondifferentiability of the
objective function Fk require nonsmooth optimization techniques beyond convexity.

If k ≥ m, by choosing arbitrarily x� ∈ �� for � = 1, . . . , m and x� ∈ R
n for � =

m + 1, . . . , k, it is obvious that X = (x1, . . . , xk)� is a solution with the optimal value
Fk(X) = 0. We henceforth assume that k < m as our standing assumption in this paper.

In the case where all the target sets are singletons with �i = {ai } for all i ∈ I , problem
(GkC) reduces to the classical continuous k-center problem (see, e.g., [9,11]):

minimize fk(x1, . . . , xk) := max
i∈I

min
�∈J

‖x� − ai‖,
x1, . . . , xk ∈ R

n .
(kC)

If k = 1, problem (GkC) reduces to the smallest intersecting ball problem considered in
[3,5,26]:

minimize F(x) := max
i∈I

d(x;�i ), x ∈ R
n . (SIB)

If x∗ is a solution of problem (SIB) in which F(x) = maxi∈I (x�) d(x;�i ), then the ball
B(x∗;F(x∗)) is called the smallest intersecting ball of the cluster A(x�).

When all the target sets are singletons with�i = {ai } for all i ∈ I , problem (SIB) reduces
to the smallest enclosing ball problem (see, e.g., [8,33,38]):

minimize f (x) := max
i∈I

‖x − ai‖, x ∈ R
n . (SEB)

3 Tools of convex analysis and optimization

In this section, we introduce some basic concepts of convex analysis and optimization tools
used to solve the generalized k-center problem (GkC).

Given a convex function f : Rn → (−∞,∞] with x̄ ∈ dom ( f ) := {x ∈ R
n |

f (x) < ∞}, the subdifferential in the sense of convex analysis of f at x̄ is defined by

∂ f (x̄) := {v ∈ R
n | 〈v, x − x̄〉 ≤ f (x) − f (x̄) for all x ∈ R

n} .
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It follows directly from the definition that x̄ is an absolute minimizer of f on Rn if and only
if

0 ∈ ∂ f (x̄). (3.1)

This generalized differentiation notion satisfies comprehensive calculus rules in both finite
and infinite dimensions. In particular, if fi : Rn → (−∞,∞) for i = 1, . . . , m are real-
valued convex functions on Rn , then

∂( f1 + . . . + fm)(x̄) = ∂ f1(x̄) + . . . + ∂ fm(x̄) for all x̄ ∈ R
n . (3.2)

Define f := maxi=1...,m fi and consider the active index set of f at x̄ ∈ R
n given by

Ĩ (x̄) := {i ∈ {1, . . . , m} | fi (x̄) = f (x̄)}.
Then we have the following subdifferential maximum rule (see, e.g., [25, Proposition 2.54]):

∂ f (x̄) = conv

⎛
⎝ ⋃

i∈ Ĩ (x̄)

∂ fi (x̄)

⎞
⎠ , (3.3)

where conv(A) stands for the convex hull of a set A in R
n .

Given a subset � of Rn , the Euclidean projection from a point x ∈ R
n to � is defined by

P(x;�) := {w ∈ �
∣∣ d(x;�) = ‖x − w‖}.

Note that if � is a nonempty closed convex set, then the projection P(x;�) is a singleton. In
addition, the squared distance function g(x) := d(x;�)2 for x ∈ R

n is Fréchet differentiable
on R

n with ∇g(x) = 2[x − P(x;�)]; see [18, p. 137].
Given a convex function ϕ : Rn → (−∞,∞), the Fenchel conjugate of ϕ is defined by

ϕ∗(y) := sup{〈y, x〉 − ϕ(x) : x ∈ R
n}, y ∈ R

n .

Note that ϕ∗ : Rn → (−∞,∞] is also a convex function and v ∈ ∂ϕ∗(y) if and only if
y ∈ ∂ϕ(v); see, e.g., [18].

We are now ready to introduce an algorithm used broadly to cope with both nonconvex-
ity and nondifferentiability in the case where the objective function is representable as a
difference of two convex functions. Consider the problem

minimize f (x) := g(x) − h(x), x ∈ R
n, (3.4)

where g : Rn → (−∞,∞) and h : Rn → (−∞,∞) are convex functions. The function f
in (3.4) is called a DC function and g − h is called a DC decomposition of f . Introduced by
Tao and An [34,35], the DCA is a simple but effective optimization scheme for minimizing
differences of convex functions. Although the algorithm is used for nonconvex optimization
problems, the convexity of the functions involved still plays a crucial role as elements of
convex analysis such as subgradients and Fenchel conjugates are involved. The algorithm is
summarized below, as applied to (3.4).

It is well-known that v ∈ ∂g∗(y) if and only if

v ∈ argmin
{
g(x) − 〈y, x〉 | x ∈ R

n}.
Moreover, w ∈ ∂h(x) if and only if

w ∈ argmin
{
h∗(y) − 〈y, x〉 | y ∈ R

n}.
Thus, in the case where we cannot find x p or yp exactly in Algorithm 1, we can find them
approximately by solving convex optimization problems.
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Algorithm 1 : DCA for minimizing f (x) = g(x) − h(x)

INPUT: x1 ∈ R
n , N ∈ N.

for p = 1, . . . , N do
Find yp ∈ ∂h(x p).
Find x p+1 ∈ ∂g∗(yp).

end for
OUTPUT: xN+1.

4 Some properties of the generalized k-center problem

In this section, we study some qualitative properties of the generalized k-center problem. In
particular, we study sufficient conditions for the existence of optimal solutions and necessary
optimality conditions with illustrative examples.

According to [26, Proposition 3.2], the smallest intersecting ball problem (SIB) admits a
solution if one of the target set is bounded. However, in the general case of problem (GkC)
the boundedness of one target set is not enough to guarantee the solution existence.

Example 4.1 Consider problem (GkC) in R
2 with k = 2 and four target sets given by

�1 :=
{
(x, y) ∈ R

2 | x ≥ 1, y ≥ 1

x

}
, �2 := {(x, y) ∈ R

2 | x ≥ 1, y ≤ 0
}
,

�3 and �4 are two closed and bounded subsets in the region {(x, y) ∈ R
2 | x < 0} with

nonempty intersection. This problem has no solution.

Theorem 4.2 below shows that if all the target sets are bounded, then the set of global
solutions of the generalized k-center problem (GkC) is nonempty. Moreover, we can find a
global solution in a compact domain.

Theorem 4.2 Assume that all the target sets �i are bounded. Then problem (GkC) admits a
global optimal solution.

Proof Consider the smallest intersecting ball problem (SIB) generated by {�i }m
i=1. By [26,

Proposition 3.2], this problem has a solution x∗ with optimal value r := F(x∗). Using the
assumption on the boundedness of all target sets, we can choose δ > r such that⋃

i∈I

�i ⊂ B(x∗; δ).

Let X = (x1, . . . , xk)� ∈ R
k×n . Without lost of generality, we can assume that there exists

a positive integer p with 1 ≤ p ≤ k such that

‖x� − x∗‖ > 2δ for all � = 1, . . . , p,

and

‖x� − x∗‖ ≤ 2δ for all � = p + 1, . . . , k.

For any � = 1, . . . , p and i = 1, . . . , m, we have

d(x�;�i ) ≥ d(x�;B(x∗; δ)) = ‖x� − x∗‖ − δ > 2δ − δ > r ≥ d(x∗;�i ). (4.1)

Define

� :=
{
X = (x1, . . . , xk)� ∈ R

k×n | ‖x j − x∗‖ ≤ 2δ for all j ∈ J
}

.
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Then � is a compact subset of Rk×n . It follows from (4.1) that

Fk

(
x1, . . . , xk

)
≥ Fk

(
x∗, . . . , x∗, x p+1, . . . , xk

)
≥ inf

{
Fk

(
x1, . . . , xk

)
| (x1, . . . , xk)� ∈ �

}
,

where the last inequality is due to (x∗, . . . , x∗, x p+1, . . . , xk)� ∈ �. We thus have

inf
{
Fk(X) | X ∈ R

k×n
}

= inf {Fk(X) | X ∈ �} .

Since Fk is a continuous function and � is a compact set, Fk has a global minimum on �

by the classical Weierstrass theorem. The proof is now complete. ��
It is well-known that, the smallest enclosing ball problem (SEB) always has a unique

solution; see [26, Proposition 3.9]. This result is still valid for the smallest intersecting ball
problem (SIB) under the additional assumption that all the target sets �i are strictly convex;
see [3, Theorem 3.1]. The example below shows that this property no longer holds for the
case of k-center problems with k ≥ 2. The latter usually has infinitely many solutions, the
solution set may be unbounded, and there may be some centers having empty clusters.

Example 4.3 Consider the 3-center problem (kC) in R
2 generated by four points {ai }4i=1

corresponding to the columns of the matrix(−4 −2 2 4
0 0 0 0

)
.

Employing the collinear property of these target points, we can see that the optimal value
of this problem is R∗ = 1, and the solution set of this problem contains the unbounded set
S = {(−3, 0)} × {(3, 0)} × R

2. Moreover, if a solution X∗ ∈ S has the third component
x3 /∈⋃4

i=1 B(ai ; 1), then A(x3) = ∅.
Remark 4.4 (a) Let X ∈ R

k×n be the matrix whose �th row is (x�)�. We can easily see that

Fk(X) = R(X) = min

⎧⎨
⎩t ≥ 0 | �i ∩

⎡
⎣⋃

j∈J

B(x j ; t)

⎤
⎦ �= ∅ for all i ∈ I

⎫⎬
⎭ .

(b) We also observe that solving problem (GkC) reduces to finding k balls with the same
smallest radius such that each of the target sets can be intersected by at least one of the
balls. In fact, let X∗ = (x1∗, . . . , xk∗)� ∈ R

k×n and let R∗ := Fk(X∗). Then X∗ is an
optimal solution of problem (GkC) if and only if the following conditions hold:

(i) For each i ∈ I , there exists � ∈ J satisfying �i ∩ B(x�∗; R∗) �= ∅.
(ii) For any X = (x1, . . . , xk)� ∈ R

k×n and any R ≥ 0 such that
�i ∩ [⋃�∈J B(x�; R)

] �= ∅ for all i ∈ I , we have R∗ ≤ R.

(c) Let X∗ = (x1∗, . . . , xk∗)� be an optimal solution of problem (GkC). Then Fk(X∗) = 0 if
and only if R(x�∗) = 0 for all � ∈ J . This is equivalent to

x�∗ ∈
⋂

i∈I (x�∗)

�i for all � ∈ J .

This means that each center x�∗ is one of the common points of all target sets in its
corresponding cluster A(x�∗). If Fk(X∗) > 0, then there exists a cluster A(x�∗) such that
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⋂
i∈I (x�∗) �i = ∅ and therefore the smallest intersecting ball of this cluster has a positive

radius.

An important property of problem (SEB) is that the solution must belong to the convex
hull of all target points lying on the boundary of the smallest ball; see, e.g., [8, Theorem 3.6].
A generalization of this property for problem (SIB) is given in [26, Corollary 3.11]. We now
extend these results and give a necessary optimality condition for the generalized k-center
problem (GkC).

Theorem 4.5 If X∗ = (x1∗, . . . , xk∗)� is an optimal solution of problem (GkC) with the
optimal value R∗ = Fk(X∗) > 0, then there exists a component x�∗ satisfying the following
conditions:

(i) B(x�∗; R∗) is the smallest intersecting ball of the corresponding cluster A(x�∗),
(ii) |I (x�∗)| ≥ 2 and R(x�∗) = R∗,

(iii) x�∗ ∈ conv {P(x�∗;�i ) | i ∈ Ĩ (x�∗)}, where Ĩ (x�∗) := {i ∈ I (x�∗) | d(x�∗;�i ) = R∗}.
Proof LetX∗ = (x1∗, . . . , xk∗)� be an optimal solution of problem (GkC) with R∗ = Fk(X∗).
Since R∗ = Fk(X∗) = max{R(x�∗) | � ∈ J }, we have

�i ∩ B(x�∗; R∗) �= ∅ for all i ∈ I (x�∗).

Thus, each ball B(x�∗; R∗) intersects all the target sets in the corresponding cluster A(x�∗).
By contradiction, suppose that the ball B(x�∗; R∗) is not the smallest intersecting ball of
A(x�∗). Then there exist r1, . . . , rk belonging to the interval [0, R∗) and y1∗, . . . , yk∗ such that
B(y�∗; r�) is the smallest intersecting ball ofA(x�∗) for � ∈ J . Thus, for each � ∈ J , we have

�i ∩ B(y�∗; r�) �= ∅ for all i ∈ I (x�∗).

Let r := max{r1, . . . , rk}. Since Fk(X∗) > 0, by Remark 4.4, 0 < r < R∗. Moreover, since⋃
�∈J I (x�∗) = I , we have

�i ∩
[⋃

�∈J

B(y�∗; r)

]
�= ∅ for all i ∈ I . (4.2)

SinceX∗ is a solution, by Remark 4.4(b), we have from (4.2) that R∗ ≤ r . This is a contradic-
tion and thus there must exist a component x�∗ such thatB(x�∗; R∗) is the smallest intersecting
ball of its cluster A(x�∗).

Now assume that B(x�∗; R∗) is the smallest intersecting ball ofA(x�∗). Using (2.3) and the
minimality of R∗, we have R(x�∗) = R∗. Moreover, since R∗ > 0 by the assumption, cluster
A(x�∗) contains at least two sets; i.e., |I (x�∗)| ≥ 2. SinceB(x�∗; R∗) is the smallest intersecting
ball of A(x�∗), x�∗ is the solution of the following problem:

minimizeϕ(x) := max
i∈I (x�∗)

d(x;�i )2, x ∈ R
n . (4.3)

The optimal value of this problem is ϕ(x�∗) = R2∗ . Since (4.3) is a convex problem, using
optimality condition (3.1) and the subdifferential maximum rule (3.3), we have

0 ∈ ∂ϕ(x�∗) = conv
{
2(x�∗ − P(x�∗;� j )) | j ∈ Ĩ (x�∗)

}
,

inwhich Ĩ (x�∗) = { j ∈ I (x�∗) | d(x�∗;� j ) = R∗}.Therefore, there existλ j ≥ 0 for j ∈ Ĩ (x�∗)
with

∑
j∈ Ĩ (x�∗) λ j = 1 satisfying

0 =
∑

j∈ Ĩ (x�∗)

2λ j (x�∗ − P(x�∗;� j )).
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Fig. 1 Let a1 = (0, 0), a2 = (4, 0), a3 = (8, 0), a4 = (11, 0) be four points in R
2. The solution set

of the 2-center problem (GkC) generated by four balls with the same radius r = 1 coincides with the

solution set of the 2-center problem (kC) generated by four centers {ai }4i=1. This solution set is given by

S :=
{
(x1, x2) ∈ R

2 × R
2 | x1 = a1+a2

2 , ‖x2 − a3‖ ≤ 2, ‖x2 − a4‖ ≤ 2
}

This is equivalent to x�∗ = ∑
j∈ Ĩ (x�∗) λ j P(x�∗;� j ). Therefore, x�∗ ∈ conv {P(x�∗;� j ) | j ∈

Ĩ (x�∗)}. The proof is now complete. ��

We now consider an example of the generalized k-center problem where each target set
�i is a ball B(ai , ri ) for i = 1, . . . , m. Note that in this example, these balls have different
radii.

Example 4.6 In R
2, the 1-center problem (SIB) generated by two balls B((0, 0); 2) and

B((5, 0); 1) has a unique solution x∗ = (3, 0), while the 1-center problem (kC) generated
by two points a1 = (0, 0) and a2 = (5, 0) has a unique solution x̄ = ( 52 , 0).

In the next example, we consider the generalized k-center problem where the target sets
�i for i = 1, . . . , m are the balls B(ai , r) for i = 1, . . . , m with the same radius; see Fig. 1.

Remark 4.7 Let {�i := B(ai ; r)}m
i=1 be m pairwise disjoint balls with the same radius r

in R
n . Then the solution set of the k-center problem (kC) generated by m points {ai }m

i=1
coincides with the solution set of the generalized k-center problem (GkC) generated by m
balls {�i }m

i=1.
Indeed, the objective function of problem (GkC) with m target sets {�i }m

i=1 is given by
Fk(X) = maxi∈I di (X), where

di (X) = min{d(x1;�i ), . . . , d(xk;�i )}
= min

{
max{‖x� − ai‖ − r , 0}, . . . ,max{‖xk − ai‖ − r , 0}

}
.

Given X ∈ R
k×n , we define Î (X) := {i ∈ I | di (X) > 0}. Let us first claim that Fk(X) > 0

for all X ∈ R
k×n or, equivalently, Î (X) �= ∅ for all X ∈ R

k×n . Indeed, if this is not the case,
then there existsX such that di (X) = 0 for all i ∈ I . Since di (X) = min{d(x�;�i ) | � ∈ J },
this implies that each target set �i contains at least one component x� of X. By our standing
assumption k < m, there exists a component belonging to at least two target sets. This
contradicts the assumption that all �i are pairwise disjoint. From this fact, we can rewrite
the cost function as
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Fk(X) = max
i∈ Î (X)

di (X)

= max
i∈ Î (X)

min{‖x1 − ai‖ − r , . . . , ‖xk − ai‖ − r}

= max
i∈ Î (X)

min{‖x1 − ai‖, . . . , ‖xk − ai‖} − r

= max
i∈I

min
�∈J

‖x� − ai‖ − r = fk(X) − r .

The last equality is satisfied since Î (X) �= ∅ and min{‖x1 − ai‖, . . . , ‖xk − ai‖} ≤ r
for every i /∈ Î (X). Thus, the difference between the objective function of the
k-center problem (kC) generated by m points {ai }m

i=1 and the objective function of the gener-
alized k-center problem (GkC) generated by m balls {�i }m

i=1 is just a constant r . Therefore,
they have the same solution set.

5 Numerical solutionmethods

In this section, we propose two descent methods for solving the generalized k-center problem
(GkC). The first method is based on the DCA and the second one is a heuristic method
motivated by Theorem 4.5.

5.1 The DCA-basedmethod for (GkC)

As previously mentioned, problem (GkC) is a continuous optimization problem with a non-
smooth and nonconvex objective function. Among available schemes, the DCA is perhaps
the most suitable option for solving our problem. The DCA is a descent method without line-
search and has a rigorous convergence guarantee; see [34,35]. It is nowadays an effective
tool for solving nonconvex optimization problems. We refer the reader to the comprehensive
survey [2] for many applications of the DCA in different fields.

In what follows, we propose a DC representation for the objective function of problem
(GkC) which is favorable for applying the DCA. We first observe that

di (X)2 = min
1≤�≤k

d(x�;�i )2 =
k∑

�=1

d(x�;�i )2 − max
1≤r≤k

k∑
�=1,��=r

d(x�;�i )2. (5.1)

Since Fk(X) ≥ 0 for all X ∈ R
k×n , X∗ is a minimizer of Fk if and only if it is a minimizer

of 1
2F2

k . From (5.1), we choose the following DC decomposition for the function 1
2F2

k :

1

2
F2

k (X) =
[
G(X) + λ

2
‖X‖2F

]
−
[
H(X) + λ

2
‖X‖2F

]
,

where λ > 0 is a fixed parameter, ‖X‖F =
(∑k

�=1 ‖x�‖2
) 1

2
is the Frobenius norm ofX and

G(X) := 1

2
max
1≤i≤m

⎧⎨
⎩

k∑
�=1

d(x�;�i )2 +
m∑

j=1, j �=i

max
1≤r≤k

k∑
�=1,��=r

d(x�;� j )2

⎫⎬
⎭ ,

H(X) := 1

2

m∑
i=1

max
1≤r≤k

k∑
�=1,��=r

d(x�;�i )2.
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Recall that to minimize the DC function 1
2F2

k associated with the above decomposition, the
DCA repeatedly solves a sequence of the following subproblems:

Xp+1 ∈ argmin
Y∈Rk×n

{
G(Y) + λ

2
‖Y‖2F − 〈Vp + λXp,Y〉

}
, (5.2)

where Vp ∈ ∂H(Xp). To proceed further, for each index i ∈ I we define

Gi (X) := 1

2

k∑
�=1

d(x�;�i )2,

Hi (X) := max
1≤r≤k

Hi,r (X),

where Hi,r (X) := 1
2

∑k
�=1,��=r d(x�;�i )2. From the definition, we can rewrite

G(X) = max
1≤i≤m

⎧⎨
⎩Gi (X) +

m∑
j=1, j �=i

H j (X)

⎫⎬
⎭ ,

H(X) =
m∑

i=1

Hi (X).

The functions Gi and Hi,r are Fréchet differentiable on R
k×n with gradients respectively

given by

∇Gi (X) = X − Pi (X),

∇Hi,r (X) = X − Pi (X) − er (xr − P(xr ;�i ))�,

for X = (x1, . . . , xk)� ∈ R
k×n , where Pi (X) is the k × n matrix whose �th row is[

P(x�;�i )
]�

for � ∈ J , and er is the k × 1 column vector with a one in the r th posi-
tion and zeros elsewhere.

For each i ∈ I , the active index set of function Hi at a point X is defined by

Ji (X) := {r ∈ J | Hi,r (X) = Hi (X)}.
From the definition of Hi and H, we have

Ji (X) =
{

r ∈ J | d(xr ;�i ) = di (X)
}

=
{

r ∈ J | �i ∈ A(xr )
}

.

Employing (3.3), we have ∂Hi (X) = conv {∂Hi,r (X) | r ∈ Ji (X)}. For each i ∈ I , we pick
an index r(i) such that �i ∈ A(xr(i)) and then we can take

V =
m∑

i=1

[
X − Pi (X) − er(i)(xr(i) − P(xr(i);�i )�

]
,

as an explicit subgradient of H at X by subdifferential sum rule (3.2).
To apply the DCA, we need to solve subproblem (5.2). We rewrite the objective function

of this subproblem as 	(Y) := max1≤i≤m 	i (Y), where
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	i (Y) := Gi (Y) +
m∑

j=1, j �=i

H j (Y) + λ

2
‖Y‖2F − 〈Vp + λXp,Y〉.

Subproblem (5.2) has a unique solution because its objective function is strongly convex.
However, this problem is nonsmooth and is very hard to apply some available smoothing
techniques. Subgradient-basedmethods seem tobe an appropriate choice for us. In its simplest
form, the classical subgradient method is given by

Yt+1 = Yt − αt Wt ,

where Wt ∈ ∂	(Yt ). It remains to show how to find a subgradient of 	 at a given point Y.
From the definition of two functions 	 and G, we have

{i | 	i (Y) = 	(Y)} = {i | Gi (Y) − Hi (Y) = G(Y) − H(Y)}
= {i | di (Y) = Fk(Y)}.

Let i ∈ I be an arbitrary index such that di (Y) = Fk(Y). By the subdifferential maximum
rule (3.3), we can choose W ∈ ∂	(Y) as follows

W = Y − Pi (Y) +
m∑

j=1, j �=i

[
Y − P j (Y) − er( j)(yr( j) − P(yr( j); � j )�

]
+ λY − (Vp + λXp).

5.2 The k-center algorithm for (GkC)

Theorem4.5 shows that a necessary condition forX = (x1, . . . , xk)� ∈ R
k×n to be a solution

of problem (GkC) is that there exists a component x� such that B(x�; R(X)) is the smallest
intersecting ball of the corresponding cluster A(x�). This observation is the motivation for
us to propose the following algorithm called the k-center algorithm.

The algorithm starts by selecting an initial guess X = (x1, . . . , xk)� ∈ R
k×n . At the

current iteration X, one computes k clustersA(x1), . . . ,A(xk) associated with X by finding
the index sets

I (x�) = {i ∈ I | d(x�;�i ) = di (X)} for � ∈ J ,

where di (X) is defined in (2.2). After that, the next iteration X+ = (x1+, . . . , xk+)� is com-
puted by reassigning each component x� with I (x�) �= ∅ to a solution of problem (SIB)
generated by sets in A(x�) and keeping the other components unchanged. It means that we
update by the following rule:

x�+ ←− argmin
x∈Rn

F(x) := maxi∈I (x�) d(x;�i ), if I (x�) �= ∅,

x�+ ←− x�, if I (x�) = ∅.

One repeats this process until there is no difference between two successive iterations,
i.e., X+ = X.
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Algorithm 2 : k-center algorithm for solving (GkC)

INPUT: Target sets �i for i ∈ I and the number of centers to be found k.
INITIALIZATION: Initial guess X = (x1, . . . , xk )� ∈ R

k×n and tolerance ε > 0.
For p = 1, . . . , ∞ do
1. Find the clusters A(x�) for � = 1, . . . , k.

2. Update centers:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

For � = 1, . . . , k do
If I (x�) �= ∅, then x�+ ←− argmin

x∈Rn
F(x) = maxi∈I (x�)

d(x; �i )

else x�+ ←− x�.

end
3. Check the termination condition and reassign: If ‖X+ − X‖F < ε, then break

else X ←− X+.

end
OUTPUT: X+

The main step in the k-center algorithm is solving the smallest intersecting ball problem
(SIB) generated by sets in the cluster A(x�):

minimize F(x) := max
i∈I (x�)

d(x;�i ), x ∈ R
n, (5.3)

for each � with I (x�) �= ∅. This convex subproblem is nonsmooth and cannot be solved in
a closed form. To overcome the slow convergence rate of the classical subgradient method,
we use a scheme proposed in [3]. In the first step, one approximates the objective function
F by the log-exponential smoothing function given by

Fμ(x) := μ ln
∑

i∈I (x�)

exp

(√
d(x;�i )2 + μ2

μ

)

where μ > 0 is a smoothing parameter. Then we try to minimize Fμ with a sufficient small
value of μ by employing the majorization-minimization algorithm [19,22].

Given a starting point x0, the MM sequence {x p}∞p=1 is recursively defined by

x p+1 := argmin
x∈Rn

Gμ(x, x p),

where

Gμ(x, x p) := μ ln
∑

i∈I (x�)

exp

⎛
⎝
√

‖x − P(x p;�i )‖2 + μ2

μ

⎞
⎠

is a surrogate function of Fμ(x) at x p that satisfies the following two conditions:

Fμ(x p) = Gμ(x p, x p) and Fμ(x) ≤ Gμ(x, x p) for all x ∈ R
n .

For fixedμ and x p , the function Gμ(x, x p)with variable x is a convex differentiable function
on R

n with

∇xGμ(x, x p) =
∑

i∈I (x�)

λi
μ(x, x p)

Gi
μ(x, x p)

(
x − P(x p;�i )

)
,
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where

Gi
μ(x, x p) : =

√
‖x − P(x p;�i )‖2 + μ2,

λi
μ(x, x p) : = exp

(Gi
μ(x, x p)/μ

)
∑

i∈I (x�) exp
(Gi

μ(x, x p)/μ
) .

Moreover, the gradient ∇xGμ(x, x p) is Lipschitz continuous with constant L = 2
μ
; see [39,

Proposition 2]. For solving each subproblem (5.3), one can apply Nesterov’s accelerated
gradient method [29]. The final algorithm is outlined in Algorithm 3; see [3] for more details.

Algorithm 3 : MM algorithm for solving subproblem (5.3)

INPUT: Target sets �i for i ∈ I (x�).
INITIALIZATION: x0 ∈ R

n , μ0 > μ∞ > 0, 0 < σ < 1, ε > 0.
Set y ←− x0, μ ←− μ0
Repeat

1. Use Nesterov’s accelerated gradient method to solve approximately
y ←− argminx∈Rn Gμ(x, y)

with stopping criteria ‖∇xGμ(x, y)‖ < ε.
2. Update μ ←− σμ.

until μ < μ∞.
OUTPUT: y

Proposition 5.1 Let {Xp}∞p=1 be the iterative sequence generated by the k-center algorithm.
The sequence of objective function values {Fk(Xp)}∞p=1 is convergent.

Proof Let X be the current iteration point of the k-center algorithm. We first show that
each step of the algorithm drives the objective function downhill, i.e., Fk(X+) ≤ Fk(X).
For a fixed i ∈ I , there exists � ∈ J such that �i is closest to the center x�. This means
d(x�;�i ) = di (X) = min{d(x j ;�i ) | j ∈ J } or, equivalently, i ∈ I (x�). We now consider
two cases:

1. If I (x�) = ∅, then x�+ = x�. It follows that d(x�+;�i ) = d(x�;�i ) ≤ R(x�) ≤ R(X) =
Fk(X).

2. If I (x�) �= ∅, then x�+ is a solution of the subproblem (5.3) with the optimal value
denoted by F�+ := maxi∈I (x�) d(x�+;�i ). This means that B(x�+;F�+) is the smallest ball
that intersects all of the sets in A(x�). Combining this fact with (2.3), we can conclude
that F�+ ≤ R(x�) ≤ R(X) = Fk(X). Moreover, since �i ∩ B(x�+;F�+) �= ∅, we also
have d(x�+;�i ) ≤ F�+.

Thus, in both cases we always have d(x�+;�i ) ≤ Fk(X). This implies that

di (X+) = min
{

d(x j
+;�i ) | j ∈ J

}
≤ d(x�+;�i ) ≤ Fk(X).

As i is arbitrarily taken in I , we conclude that Fk(X+) = max{di (X+) | i ∈ I } ≤ Fk(X).
Thus, the sequence {Fk(Xp)}∞p=1 is monotone decreasing and bounded from below by 0.
Therefore, it is convergent. The proof is now complete. ��
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Algorithm 4 : Farthest-first traversal algorithm

INPUT: Target sets �i for i ∈ I and number of centers k.
Find c ←− argminx∈Rn F(x) = maxi∈I d(x; �i )

Pick randomly r ∈ I and set x1 := P(c;�r )

Set j := 2
While j ≤ k do

Find t ←− argmax
i∈I

min
{

d(x1; �i ), . . . , d(x j−1; �i )
}

Set x j := P(c; �t )
Set j := j + 1

end
OUTPUT: X = (x1, . . . , xk )� ∈ R

k×n

The performance of the k-center algorithm is quite sensitive to the choice of the initial
guess. For our problem, we use an adapted version of the farthest-first traversal algorithm
proposed by Gonzalez [13]. One starts by finding the center c of problem (SIB) generated by
all the target sets and takes the first center as the projection of c onto an arbitrary target set.
Then one finds the set that is farthest from the centers chosen so far and adds the projection
of c onto this set as the next center. One repeats this process until k centers are found. The
pseudocode is shown in Algorithm 4.

6 Numerical experiments

In this section, we implement proposed algorithms to solve the generalized k-center problem
in a number of examples. In each of the following examples, we set λ = 0.1 for the DCA
and use the termination condition ‖X+ − X‖F < 10−10 for Algorithm 2. All the tests are
implemented by MATLAB R2016b on a personal computer with an Intel Core i5 CPU 1.6
GHz and 4G of RAM.

Example 6.1 Let us first consider the 4-center problem in R
3 generated by 10 cubes with

their centers given by the columns of the following matrix⎛
⎜⎜⎝
29 42 37 79 14 91 29 50 79 68

6 28 6 38 36 21 28 40 6 31

34 32 8 18 1 14 6 19 23 32

⎞
⎟⎟⎠

and the respective radii given by [2, 3, 4, 4, 3, 4, 1, 4, 2, 1]. We run the DCA and the k-
center algorithm (Algorithm 2) using different starting points generated by Algorithm 4.
Both algorithms yield the same approximate solution

X∗ =

⎛
⎜⎜⎜⎜⎜⎝

64.500 35.965 22.0569

35.692 14.875 23.1380

22.500 31.000 4.5010

84.000 12.500 19.500

⎞
⎟⎟⎟⎟⎟⎠

with the optimal value Fk(X∗) = 12.158; see Fig. 2.
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Fig. 2 A generalized 4-center problem generated by 10 cubes in R
3

Example 6.2 In this example, Algorithm 2 is applied to solve the classical k-center problem
(kC) on 6 datasets from the TSP-Library (m = 76, 101, 130, 195, 535, 575) using value of k
ranging from k=10–50 with an increment of 10. All of these datasets are available at http://
elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html. For each dataset and for each k, the
best optimal radius Fbest

k with starting points generated by Algorithm 4, the running time in
seconds and the number of iterations when Fbest

k was found are reported in Table 1.

Example 6.3 We now consider the latitudes and longitudes of the 50 most populous US cities
taken from 2014 United States Census Bureau data.1 Each city is approximated by a ball with
radius 0.1

√
A/π , where A is the city’s reported area in squaremiles.We solve the generalized

k-center problem generated by these 50 balls by the k-center algorithm and the DCA. For
each k from 4 to 20 with an incremental step of 4, we run both algorithms using 100 different
random starting points with coordinates in (−122.65,−71.0202)× (25.7752, 47.6205) (the
range of the geographical coordinates of the cities). We terminate the DCA whenever the
relative error ‖X+ − X‖F is smaller than 10−3. The overall best objective value Fbest

k , the
average of objective values Fmean

k for the 100 runs and the number of iterations when Fbest
k

was found are reported in Table 2.
The best approximate solution obtained by the k-center algorithm when k = 8 is plotted

in Fig. 3 using a plate Carrée projection2. This solution is given below with an approximate
objective value Fk(X∗) = 4.639280:

1 https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population.
2 https://www.mathworks.com/help/map/pcarree.html.
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Table 2 Performance of DCA and k-center algorithm

k DCA k-center algorithm

Fbest
k Fmean

k # Iterations Fbest
k Fmean

k # Iterations

4 9.645034 11.490791 117 8.947238 9.594627 7

8 4.781154 5.868804 168 4.639280 5.162225 6

12 3.175647 4.156655 109 3.174503 3.621956 4

16 2.096450 2.720009 215 2.064151 2.515924 7

20 1.598951 2.085603 190 1.596295 1.974087 8

-130 -120 -110 -100 -90 -80 -70
20

25

30

35

40

45

50

55

Fig. 3 A generalized 8-center problem for 50 most populous US cities

X∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−91.963 42.171

−119.084 36.526

−80.752 27.482

−107.838 36.024

−73.632 39.992

−94.171 33.380

−82.658 37.896

−122.491 46.645

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Table 2 shows that in almost all cases (except when k = 4), the best valuesFbest
k obtained

by two methods for 100 runs are almost the same. However, the average value Fmean
k and

the number of required iterations of the k-center algorithm is much smaller than that of the
DCA.
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7 Conclusion

In this work we proposed a generalized version of the continuous k-center problem. The
intrinsic nonsmoothness and nonconvexity of its optimization model make the problem very
difficult to solve. We provided our first effort in studying this problem from both theoretical
and numerical aspects. We particularly focused on numerical algorithms for solving the
problem using mathematical programming and heuristic optimization approaches. The first
approach involves a DCA-based method with mathematical programming formulation. In
the second approach, we introduced a heuristic algorithm based on available algorithms for
solving the smallest intersecting ball problems. TheDCA-basedmethod is slowdue to the fact
that a subproblemmust be solved in each iteration of the DCA using the subgradient method,
which is known to be slow. Meanwhile, the heuristic algorithm does not guarantee to find a
global optimal solution. We would like overcome these shortcomings in our future research
by developing more effective algorithms for solving the generalized k-center problem with
the use of more tools such as mixed integer programming, accelerated versions of the DCA
(see [4]), and the combination of the DCA and derivative-free methods. As suggested by
one of the referees, it would be interesting to apply the numerical methods developed in this
paper for the k-center problems on the sphere with geodesic distances, see [7,10] and the
references therein. The challenge in this new research direction would be the possibility that
the distortion of real-world distances could get worse near the poles.
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the paper.
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