A simple linear algorithm for intersecting convex polygons

Godfried T. Toussaint

School of Computer Science, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada

Let P and Q be two convex polygons with m and n vertices, respectively, which are specified by their cartesian coordinates in order. A simple $O(m+n)$ algorithm is presented for computing the intersection of P and Q. Unlike previous algorithms, the new algorithm consists of a two-step combination of two simple algorithms for finding convex hulls and triangulations of polygons.

Key words: Algorithms - Complexity Computational geometry - Convex polygons - Intersection
that if the boundaries of P and Q intersect the intersection points do not coincide with vertices of P or Q. Special case tests can be included for the "singularities" that arise when this assumption is not made and these are similar for all the algorithms outlined above [6]-[9]. A very clear exposition on handling these cases is given by O'Rourke et al. [6].
Consider then two polygons P and Q whose boundaries intersect and construct the convex hull of their union (Fig. 1). Let the boundaries of P and Q intersect at k intersection points $I_{1}, I_{2}, \ldots, I_{k}$ indexed in clockwise order. The boundaries of P, Q, and the convex hull of P and $Q, C H(P \cup Q)$, partition the plane into $2 k+1$ bounded regions: the convex intersection region $\left(I_{1}, \ldots, I_{2}, \ldots, I_{k}, \ldots\right), k$ regions where P and Q lie outside $P \cap Q$ ($P_{s t}$ associated with I_{s} and I_{t}, and $Q_{u v}$ associated with I_{u} and I_{v}) and k "pockets" $K_{1}, K_{2}, \ldots, K_{k}$ where a pocket K_{v} is associated with I_{v} and is in the region inside $C H(P \cup Q)$ but outside $P \cup Q$. With each pocket K_{v} we associate a bridge which is an edge of $C H(P \cup Q)$, denoted by $B_{v}\left(p_{i_{v}} q_{j_{v}}\right)$, and which joins vertex $p_{i_{v}}$ of P with vertex $q_{j_{v}}$ of Q. The algorithm for computing $P \cap Q$ can now be described informally as the following
three-step procedure: first construct the convex hull of $P \cup Q$, then for each bridge B_{i} find its corresponding intersection point I_{i}, and finally "merge" the corresponding polygonal chains that connect adjacent intersection points.
We now prove some lemmas that we will need to prove the correctness of the algorithm described in section three. Let $L(u, v)$ denote the directed line through u, and v in the direction u, v and let $R H(u, v)$ denote the closed half-plane to the right of $L(u, v)$.
The following lemma has been proved by Guibas et al. [4] using a powerful new framework involving convolutions (a special case of fiber products) of polygons. We include an alternate elementary proof here for completeness.

Lemma 1. If P and Q intersect there exists a unique mutual one-to-one correspondence between the bridges of $C H(P \cup Q)$ and the intersection points of $P \cap Q$.

Proof. Let $B\left(p_{i}, q_{j}\right)$ be a bridge and refer to Fig. 2. $L\left(p_{i}, q_{j}\right)$ must be a line of support for both P and Q. Furthermore P and Q must both lie in $R H\left(p_{i}, q_{j}\right)$. Trace P in a clockwise manner starting

Fig. 2
at p_{i} until an edge of P intersects an edge of Q at I. Similarly trace Q in a counter-clockwise manner starting at q_{j} until an edge of Q intersects an edge of P. From convexity it follows that this intersection point is also I and thus I corresponds to $B\left(p_{i}, q_{j}\right)$. On the other hand assume that I is some intersection point between edge $\overline{p_{k} p_{k+1}} \in P$ and $\overline{q_{l} q_{l+1}} \in Q$. Since $P \in R H\left(p_{k}, p_{k+1}\right)$ and $Q \in R H\left(q_{l}, q_{l+1}\right)$ it follows that no edge of P or Q other than $p_{k} p_{k+1}$ and $q_{1} q_{l+1}$ may intersect the region $R=R H\left(p_{k+1}, p_{k}\right) \cap R H\left(q_{l+1}, q_{l}\right)$. Furthermore, since angle $p_{k} I q_{l+1}<180^{\circ}$ it follows that there must exist an edge $p_{i} q_{j} \in C H(P \cup Q)$ that intersects R and this is the bridge corresponding to I. Q.E.D.
We now define a restricted class of simple polygons and establish some results concerning their triangulation. While we are not explicitly interested in triangulating these polygons these results will be useful in understanding, and proving the correctness of, the algorithm. A polygonal chain $C\left(p_{i}, p_{i+1}, \ldots, p_{j}\right)$ is a portion of consecutive vertices and edges of a simple polygon. If all turns are right (convex angles) we have a convex chain. If all turns are left (reflex angles) we have a concave chain.

Definition. A sail polygon P_{s} is one that contains an edge $\overline{p_{i} p_{i+1}}$ called the mast of P and a vertex

p_{j} called the sail tip of P such that p_{j} is connected to p_{i} and p_{i+1} by concave chains (Fig. 3) Note that P_{s} must be completely in $R H\left(p_{i}, p_{i+1}\right)$.

Definition. A line segment, lying in P, that connects two non-adjacent vertices of P is a diagonal of P.

Definition. Three consecutive vertices $p_{i} p_{i+1} p_{i+2}$ are said to form an ear of P at p_{i+1} if the diagonal joining p_{i} and p_{i+2} lies in P.

Definition. Two ears are non-overlapping if their interior regions are disjoint.

Meisters [5] proves the following "two-ears" theorem.

Lemma 2. Every polygon of n sides $(n>3)$ has at least two non-overlapping ears.

This theorem leads Meisters to propose an $O\left(n^{3}\right)$ algorithm for triangulating simple polygons by finding ears and "cutting them off". Sail polygons on the other hand have enough structure that we can "cut off all the ears" in $O(n)$ time. Note that, by definition, only convex vertices can be ears. Also, a sail polygon has the property that only p_{i}, p_{i+1}, and p_{j} are convex, and thus candidates for ears. We thus have the following results.

Lemma 3. The tip of a sail polygon is an ear.
Proof. Extend $\overline{p_{i} p_{j-1}}$ and $\overline{p_{j} p_{j+1}}$ to intersect $L\left(p_{i}, p_{i+1}\right)$ at x and y, respectively, (Fig. 3) Point x must lie on $p_{i} p_{i+1}$ or else p_{j} could not be joined to p_{i} with a concave chain. The same argument holds for y. By construction $p_{j} p_{j-1} x y p_{j+1} p_{j}$ forms a triangle and by convexity it lies completely in P_{s}. Therefore the diagonal $\overline{p_{j-1} p_{j+1}}$ lies in P_{s}. Q.E.D.

Lemma 4. Either the mast top or the mast bottom of a sail polygon is an ear.

Proof. Only p_{i}, p_{i+1}, and p_{j} in P_{s} can be ears. By Lemma $3 p_{j}$ must be an ear. By Lemma $2 P_{s}$ must have at least two ears. Therefore either p_{i} or p_{i+1} must be an ear. Q.E.D.

Lemma 4 allows us to triangulate P_{s} in $O(n)$ time by "wrapping the sail around the mast" until only the sail tip remains. In other words, starting at
the mast we cut off either the top ear or the bottom ear and proceed to the polygon remaining. The correctness of the algorithm follows from the induction hypothesis that, at each step, the polygon remaining is a sail polygon. The proof of this induction hypothesis is left as an easy exercise for the reader. The linearity follows from the fact that at each step which takes constant time P_{s} contains one less vertex. Note that other linear time algorithms could be used for triangulating P_{s}. For example P_{s} is edge-visible from the mast and thus the algorithm of [13] can be used. Alternately, P_{s} is monotonic in the direction perpendicular to the mast and therefore the algorithm of Garey et al. [3] applies. The advantages of the algorithm presented here are that, first, unlike those of [13] and [3] it does not incorporate backtracking and is thus simpler, and second, the last diagonal to be added is $\overline{p_{j-1} p_{j+1}}$. This latter property is crucial for solving the polygon intersection problem. The "ear-cutting" algorithm is in essence a trimmed version of the algorithm of Garey et al. [3] that exploits the added structure that sail polygons have over monotone polygons.

The algorithm

Before describing the complete algorithm we present PROCEDURE STEPDOWN which receives as input a bridge $B_{k}\left(p_{i}, p_{j}\right)$ of $C H(P \cup Q)$ and exits

Fig. 4
with the corresponding pair of edges that determine the intersection point I_{k}. Without loss of generality assume p_{1} and q_{1} form the bridge, Q is given in counter-clockwise order, and $\overline{p_{s} p_{s+1}}$ $\cap \overline{q_{t} q_{t+1}}$ determines the intersection point I. (Fig. 4.) A convenient data structure for P and Q here is a doubly-linked circular list so that we can scan in either direction and set up pointers between the vertices of P and those of Q. Procedure STEPDOWN finds the two vertices p_{s} and q_{t} that can then be used to compute I. The variables p_{i} and q_{j} are the "current" vertices under consideration and are a tentative solution. When the algorithm stops $p_{i}=p_{s}$ and $q_{j}=q_{t}$. The boolean variable "finished" indicates when p_{s} and q_{t} are reached by taking on the value "true" after an execution of the "repeat" loop.

```
PROCEDURE STEPDOWN
{initialization} i\leftarrow1; j\leftarrow1
    repeat
        finished }\leftarrow\mathrm{ true
        while (pipit+ q}\mp@subsup{q}{j+1}{})\mathrm{ left do
        begin
            j\leftarrowj+1
            finished }\leftarrow\mathrm{ false
        end
        while ( }\mp@subsup{q}{j}{}\mp@subsup{q}{j+1}{}\mp@subsup{p}{i+1}{\prime}\mathrm{ ) right do
        begin
            i\leftarrowi+1
            finished }\leftarrow\mathrm{ false
        end
    until finished
p
END STEPDOWN
```

Lemma 5. Procedure STEPDOWN correctly computes the intersection point corresponding to a bridge in $O(n)$ time.

Proof. The proof follows essentially from the realization that STEPDOWN is an implementation of the "ear-cutting" triangulation algorithm for sail polygons given in the previous section. Note that $\left(p_{1}, q_{1}, q_{2}, \ldots, q_{t}, I, p_{s}, p_{s-1}, \ldots, p_{2}\right)$ would be a sail polygon if I were a vertex connected to p_{s} and q_{t}. Thus the "ear-cutting" algorithm must eventually arrive at $p_{s} q_{t}$. Now in a true sail polygon the algorithm automatically stops here because $p_{s+1}=q_{t+1}$. However, in this situation this is not the case since p_{s+1} and q_{t+1} belong to different polygonal chains. The tests for left and right turns in the inner WHILE loops of STEPDOWN not
only prevent the algorithm from continuing past p_{s} and q_{t}, but also determine an ordering for "earcutting", by invoking Lemma 4. Q.E.D.

We now describe the algorithm for computing the intersection of two intersecting convex polygons P and Q. The portions of the boundaries of P and Q outside $P \cap Q$ will be referred to as outer chains, those portions inside $P \cup Q$ as inner chains.

```
ALGORITHM INTERCONPOL
Begin
    Step 1. Find the convex hull of the union of P and Q,
        CH(P\cupQ).
        If CH(P\cupQ)=P(or Q)
        then Exit with Q(or P) as
        the intersection; Else continue.
```

Step 2. For each bridge of $C H(P \cup Q)$ call procedure STEPDOWN to compute the intersection points of $P \cap Q$.
Step 3. Merge the inner chains of P and Q determined by the intersection points found in step 2 .
End

Theorem. Algorithm INTERCONPOL correctly computes the intersection polygon of two intersecting convex polygons P and Q in $O(m+n)$ time.

Proof. The correctness of the algorithm follows from Lemmas 1 and 5. Thus we turn to its complexity. Finding the convex hull of two intersecting convex polygons in step 1 can be done in $O(m+n)$ time with several algorithms [7], [10], [11]. The simplest of all the algorithms is the "rotating caliper" method [11] which, unlike those of [7] and [10], does not involve backtracking and at the same time can answer the question of whether $C H(P \cup Q)=P$ or Q. If there are k bridges on $C H(P \cup Q)$ then STEPDOWN is called k times in step 2 . Each call requires time linear in the number of vertices processed and the total number of these vertices is the sum total of the vertices on all the outer chains of P and Q. Thus step 2 runs in $O(m+$ n) time. Finally, if we leave pointers from the intersection points to the inner and outer chains in both directions, as we find them in step 2, then the merge step of the inner chains in step 3 can be done in linear time by a mere traversal of the two lists for P and Q. Q.E.D.

Concluding remarks

As a final remark we mention that the "ear-cutting" triangulation algorithm for sail polygons presented in section two can be applied to the problem of triangulating a set of n points on the plane in $O(n \log n)$ time via divide-and-conquer. Here, if the points have been presorted, at each step we must merge two triangulations T_{1} and T_{2} which are linearly separable triangulated convex polygons (Fig. 5). The merge step consists of triangulating the hourglass polygon "in between" T_{1} and T_{2}. This region lies outside T_{1} and T_{2} but inside $\operatorname{CH}\left(T_{1} \cup T_{2}\right)$. An hourglass polygon is a polygon consisting of two edges called the top (bridge p_{i}, p_{j}) and the bottom (bridge p_{k}, p_{l}) such that p_{i} and p_{l} (as well as p_{k}, p_{j}) are joined by concave chains and ($p_{i}, p_{j}, p_{k}, p_{i}$) forms a convex quadrilateral. Now consider a critical line of support between T_{1} and T_{2} at p_{u} and p_{v}. This line decomposes the hourglass polygon into two sail polygons $P_{s_{1}}$ and $P_{s_{2}}$. Finding the bridges and the edge $p_{u} p_{v}$ can be done in linear time with the rotating calipers [11]. Triangulating the sail polygons will thus solve the merge of T_{1} and T_{2} in linear time which is sufficient to obtain the overall $O(n$ $\log n$) performance. Note that the triangulation algorithms of [13] and [3] cannot be used here since an hourglass polygon need be neither edge-visible nor monotone. Finally, we remark that this algo-

Fig. 5
rithm can be applied to the problem of computing distances between crossing convex polygons [12].

References

1. Chazelle B (1980) Computational geometry and convexity. Ph.D. thesis, Carnegie-Mellon University
2. Chazelle B, Dobkin D (1980) Detection is easier than computation. Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing. pp 146-153
3. Garey MR, Johnson DS, Preparata FP, Tarjan RE (1978) Triangulating a simple polygon. Information Processing Lett 7:175-179
4. Guibas L, Ramshaw L, Stolfi J (1983) A kinetic framework for computational geometry. Technical report. Xerox Park and Stanford University
5. Meisters GH (1975) Polygons have ears. American Mathematical Monthly. June/July 1975, 648-651
6. O’Rourke J (1982) A new linear algorithm for intersecting
convex polygons. Comput Graph Image Processing 19:384-391
7. Shamos MI (1978) Computational Geometry, Ph.D. thesis, Yale University
8. Shamos MI (1977) Problems in Computational Geometry. Carnegie-Mcllon University
9. Shamos MI, Hoey D (1976) Geometric intersection problems Proc. Seventeenth Annual IEEE Symposium on Foundations of Computer Science. October 1976, pp 208-215
10. Toussaint GT (1981) Computational geometric problems in pattern recognition. In: Kittler J (ed) Pattern Recognition Theory and Applications. p 73-91
11. Toussaint GT (1983) Solving geometric problems with the 'rotating calipers'. Proc. MELECON, Athens. Greece
12. Toussaint GT (1984) An optimal algorithm for computing the minimum vertex distance between two crossing convex polygons. Computing 32:357-364
13. Toussaint GT, Avis D (1982) On a convex hull algorithm for polygons and its application to triangulation problems. Pattern Recognition 15:23-29
