
A simple linear
algorithm
for intersecting
convex polygons

Godfried T. Toussaint

School of Computer Science,
McGill University,
805 Sherbrooke Street West,
Montreal, Quebec H 3 A 2 K 6,
Canada

Let P and Q be two convex polygons with
m and n vertices, respectively, which are
specified by their cartesian coordinates in
order. A simple O(m+n) algorithm is
presented for computing the intersection
of P and Q. Unlike previous algorithms,
the new algorithm consists of a two-step
combination of two simple algorithms for
finding convex hulls and triangulations of
polygons.

K e y words: Algorithms - C o m p l e x i t y -

C o m p u t a t i o n a l geometry - Convex poly-
gons - Intersection

et P={Pl,P2, ...,Pro} and Q={ql,
q2, -.., q,} be two convex polygons whose
vertices are specified by their cartesian co-
ordinates in clockwise order. It is assumed

that the polygons are in standard form, i.e., the
vertices of each polygon are distinct and no three
consecutive vertices are colinear [7]. Several linear
time algorithms have recently been proposed for
computing the intersection of P and Q, which is
itself another convex polgon of at most m+n
vertices [6]-[9].The algorithms in [7]-[9] are rela-
tively cumbersome to program due to the large
number of cases that arise when intersecting the
trapezoids that result with the " s l ab" method
employed in [7]. The simplest and most elegant
of the above algorithms is the one due to O 'Rourke
et al. [6]. Here two "bugs" , one on the boundary
of P and the other on the boundary of Q, "chase"
each other in an alternating fashion as each tries
to cross the " forward line of sight" of the other.
In this paper we present a new simple algorithm
for constructing the intersection of P and Q in
O(m+n) time in the worst case. Unlike the
previous algorithm of [6]-[9] the new algorithm
is a combination of existing simple procedures for
computing convex hulls and triangulations of poly-
gons. Because of this it may be a little slower in
practice than the algorithm of O 'Rourke et al. [6],
depending on which convex hull algorithm is em-
ployed. On the other hand little new specialized
code is needed if the convex hull and triangulation
codes are already available. Furthermore, the algo-
rithm presented here is conceptually transparently
clear and affords an easy proof of correctness.

Preliminary results

In this section we present an informal description
of the algorithm and some preliminary results. A
detailed description of the algorithm and a proof
of correctness is included in section three. We as-
sume in this paper that the interiors of the poly-
gons P and Q intersect. If this is not true there
is no intersection polygon to construct and the
intersection then is either a line segment, a point,
or the empty set. In any case, determining whether
the interiors of P and Q intersect can be easily
performed in O0og(m+n)) time [11, [2]. In order
to simplify the description of the algorithm and
to prevent the essential aspects from drowning in
a sea of detail we further assume that no three
vertices in P ~ Q are colinear and all vertices in
P ~ Q are distinct. This implies that if P and Q
intersect then so do their interiors. It also implies

1 1 8 The Visual Computer (1985) 1:118 123
�9 Springer-Verlag 1985

l Aomp er
that if the boundaries of P and Q intersect the
intersection points do not coincide with vertices
of P or Q. Special case tests can be included for
the "singularities" that arise when this assumption
is not made and these are similar for all the algo-
rithms outlined above [6]-[9]. A very clear exposi-
tion on handling these cases is given by O'Rourke
et al. [6].
Consider then two polygons P and Q whose
boundaries intersect and construct the convex hull
of their union (Fig. 1). Let the boundaries of P
and Q intersect at k intersection points
I1, I2, ... , Ik indexed in clockwise order. The
boundaries of P, Q, and the convex hull of P and
Q, CH(P•Q), partition the plane into 2 k + 1
bounded regions: the convex intersection region
(I s , . . . , I 2 , . . . , I~,. . .) , k regions where P and Q
lie outside Pc~Q (Pst associated with I, and It,
and Q,v associated with I, and Iv) and k "pockets"
K1, K2, ..., Kk where a pocket Kv is associated with
I v and is in the region inside CH(P w Q) but outside
PwQ. With each pocket Kv we associate a bridge
which is an edge of CH(PwQ), denoted by
B~(Piv'qj~) , and which joins vertex Piv of P with
vertex qj~ of Q. The algorithm for computing P n Q
can now be described informally as the fol lowing

three-step procedure: first construct the convex
hull of P w Q, then for each bridge B i find its
corresponding intersection point I~, and finally
"merge" the corresponding polygonal chains that
connect adjacent intersection points.
We now prove some lemmas that we will need to
prove the correctness of the algorithm described
in section three. Let L(u, v) denote the directed
line through u, and v in the direction u, v and let
RH(u, v) denote the closed half-plane to the right
of L (u, v).
The following lemma has been proved by Guibas
et al. [4] using a powerful new framework involv-
ing convolutions (a special case of fiber products)
of polygons. We include an alternate elementary
proof here for completeness.

Lemma 1. I f P and Q intersect there exists a unique
mutual one-to-one correspondence between the
bridges of CH(Pw Q) and the intersection points
of PnQ.

Proof. Let B(pi, q]) be a bridge and refer to Fig. 2.
L(pi, qj) must be a line of support for both P and
Q. Furthermore P and Q must both lie in
RH(pi, q]). Trace P in a clockwise manner starting

q J1

Fig. 1

q J3

K~ X I~

q J6

/ / K 5

Pi 4

L(q t ,q[+l) / /
/

/
/

\ \ . L (PK' PK+I) / /
/

\ \ / qj
\ \ R / /

\ \ \
\ \

/-"/-f2... .//X--i-i" "-,, \ ,
/ /

Fig. 2

119

at pz until an edge of P intersects an edge of Q
at I. Similarly trace Q in a counter-clockwise
manner starting at qj until an edge of Q intersects
an edge of P. From convexity it follows that this
intersection point is also I and thus I corresponds
to B(pz, @. On the other hand assume that I is
some intersection point between edge PkPk+I~P
and qlq t+teQ. Since P e R H (P k , Pk+~) and
Q ~ R H (q t , qz+t) it follows that no edge of P or
Q other than PkPk+I and q~qz+l may intersect the
region R = R H (p k + 1, Pk) C~ RH(qz + 1, ql)" Further-
more, since angle p k l q ~ + l < 1 8 0 ~ it follows that
there must exist an edge p z q j ~ C H (P w Q) that
intersects R and this is the bridge corresponding
t o / . Q.E.D.
We now define a restricted class of simple polygons
and establish some results concerning their trian-
gulation. While we are not explicitly interested in
triangulating these polygons these results will be
useful in understanding, and proving the
correctness of, the algorithm. A polygonal chain
C(pz, p ~ + I , . . . , p j) is a portion of consecutive
vertices and edges of a simple polygon. If all turns
are right (convex angles) we have a convex chain.
If all turns are left (reflex angles) we have a concave
chain.

Definition. A sail polygon P~ is one that contains
an edge p~p~+ 1 called the mast of P and a vertex

I / / /
I I I I I

mQst t o p ~

!
I

I
!

/
I

!
!

/
I

I

Fig. 3

120

pj called the sail tip of P such that pj is connected
to Pi and Pi+ 1 by concave chains (Fig. 3) Note that
P~ must be completely in RH(pz, Pi+ 1).

Definition. A line segment, lying in P, that connects
two non-adjacent vertices of P is a diagonal of P.

Definition. Three consecutive vertices p~ p~ + 1 p~ + 2
are said to form an ear of P at p~+ 1 if the diagonal
joining p / a n d pi+2 lies in P.

Definition. Two ears are non-overlapping if their
interior regions are disjoint.

Meisters [5] proves the following " two-ears" the-
orem.

Lemma 2. Every polygon o f n sides (n> 3) has at
least two non-overlapping ears.

This theorem leads Meisters to propose an O(n a)
algorithm for triangulating simple polygons by
finding ears and "cutt ing them off". Sail polygons
on the other hand have enough structure that we
can "cu t off all the ears" in O (n) time. Note that,
by definition, only convex vertices can be ears.
Also, a sail polygon has the property that only
p~,p~+l, and pj are convex, and thus candidates
for ears. We thus have the following results.

L e m m a 3. The tip of a sail polygon is an ear.

Proof. Extend pj p j_ 1 and p j p j+ 1 to intersect
L(pz, P~+I) at x and y, respectively, (Fig. 3) Point
x must lie on Pi P~ + 1 or else pj could not be joined
to p~ with a concave chain. The same argument
holds for y. By construction pj p j_ 1 x y pj+ 1 Pj
forms a triangle and by convexity it lies completely
in P~. Therefore the diagonal P j - l P ~ + I lies in
P~. Q.E.D.

L e m m a 4. Either the mast top or the mast bot tom
of a sail polygon is an ear.

Proof. Only Pi, Pi + 1, and pj in P~ can be ears. By
Lemma 3 pj must be an ear. By Lemma 2 Ps must
have at least two ears. Therefore either p~ or p~+ 1
must be an ear. Q.E.D.

Lemma 4 allows us to triangulate Ps in 0 (n) time
by "wrapping the sail around the mast" until only
the sail tip remains. In other words, starting at

the mast we cut off either the top ear or the bot tom
ear and proceed to the polygon remaining. The
correctness of the algorithm follows from the in-
duction hypothesis that, at each step, the polygon
remaining is a sail polygon. The proof of this in-
duction hypothesis is left as an easy exercise for
the reader. The linearity follows from the facf that
at each step which takes constant time Ps contains
one less vertex. Note that other linear time algo-
rithms could be used for triangulating P~. For
example Ps is edge-visible from the mast and thus
the algorithm of [13] can be used. Alternately, P~
is monotonic in the direction perpendicular to the
mast and therefore the algorithm of Garey et al.
[3] applies. The advantages of the algorithm
presented here are that, first, unlike those of [13]
and [3] it does not incorporate backtracking and
is thus simpler, and second, the last diagonal to
be added is pj_~ p~+a. This latter property is cru-
cial for solving the polygon intersection problem.
The "ear-cut t ing" algorithm is in essence a
trimmed version of the algorithm of Garey et al.
[3] that exploits the added structure that sail poly-
gons have over monotone polygons.

The algorithm

Before describing the complete algorithm we pres-
ent P R O C E D U R E S T E P D O W N which receives
as input a bridge B~ (pi, p j) of CH(P w Q) and exits

with the corresponding pair of edges that
determine the intersection point I k. Without loss
of generality assume pa and q~ form the bridge,
Q is given in counter-clockwise order, and p~ ps+
c~qtqt+~ determines the intersection point L
(Fig. 4.) A convenient data structure for P and
Q here is a doubly-linked circular list so that we
can scan in either direction and set up pointers
between the vertices of P and those of Q.
Procedure S T E P D O W N finds the two vertices p~
and qt that can then be used to compute L The
variables Pi and qj are the "cur rent" vertices under
consideration and are a tentative solution. When
the algorithm stops Pi =P~ and @ = qt. The boolean
variable "f inished" indicates when p~ and 6 are
reached by taking on the value " t rue" after an
execution of the " repea t " loop.

P R O C E D U R E S T E P D O W N
{initialization} i ~ 1 ; j ~ 1

repeat
f inished ~- t rue
while (PiPi+ 1 qj+ 1) left do
begin

j+- - j+ l
f inished ~ false

end
while (qj q~+l P i+ l) r ight do
begin

i<--i+l
f inished +- false

end
until f inished

Ps~p i ; q ~ - q j
E N D S T E P D O W N

Fig. 4

1 / I / "

q3 Q

Ps*l

Lemma 5. Procedure S T E P D O W N correctly com-
putes the intersection point corresponding to a bridge
in O(n) time.

Proof. The proof follows essentially from the reali-
zation that S T E P D O W N is an implementation of
the "ear-cutt ing" triangulation algorithm for sail
polygons given in the previous section. Note that
(Pl, ql , q2, - . - , qt, I, Ps, Ps- t , P2) would be a
sail polygon if I were a vertex connected to Ps and
qt. Thus the "ear-cut t ing" algorithm must eventu-
ally arrive at Ps qt. Now in a true sail polygon
the algorithm automatically stops here because
Ps+I =qt+l. However, in this situation this is not
the case since ps+ 1 and 6+ 1 belong to different
polygonal chains. The tests for left and right turns
in the inner WHILE loops of S T E P D O W N not

121

only prevent the algorithm from continuing past
ps and qt, but also determine an ordering for "ear-
cutting", by invoking Lemma 4. Q.E.D.

We now describe the algorithm for computing the
intersection of two intersecting convex polygons
P and Q. The portions of the boundaries of P
and Q outside P n Q will be referred to as outer
chains, those portions inside P u Q as inner chains.

ALGORITHM INTERCONPOL
Begin

Step 1. Find the convex hull of the union of P and Q,
CH(P~ Q).
If CH(Pu Q)=P(or Q)
then Exit with Q (or P) as
the intersection; Else continue.

Step 2. For each bridge of CH(Pu Q) call procedure
STEPDOWN to compute the intersection points
of Pc~Q.

Merge the inner chains of P and Q determined
by the intersection points found in step 2.

Step 3.

End

Theorem. Algorithm INTERCONPOL correctly
computes the intersection polygon of two intersect-
ing convex polygons P and Q in 0 (m + n) time.

Concluding remarks

As a final remark we mention that the "ear-cut-
t ing" triangulation algorithm for sail polygons
presented in section two can be applied to the
problem of triangulating a set of n points on the
plane in O(n log n) time via divide-and-conquer.
Here, if the points have been presorted, at each
step we must merge two triangulations T1 and T2
which are linearly separable triangulated convex
polygons (Fig. 5). The merge step consists of trian-
gulating the hourglass polygon "in between" T1
and T2. This region lies outside T1 and T2 but
inside CH(T1u T2). An hourglass polygon is a
polygon consisting of two edges called the top
(bridge Pi, P j) and the bottom (bridge Pk, Pt) such
that Pl and Pz (as well as Pk, Pj) are joined by con-
cave chains and (Pi,Pj,Pk,Pl) forms a convex
quadrilateral. Now consider a critical line of sup-
port between Tt and T2 at p, and Pv- This line
decomposes the hourglass polygon into two sail
polygons Ps and P~ . Finding the bridges and the
edge p, pv cain be dolce in linear time with the rotat-
ing calipers [11]. Triangulating the sail polygons
will thus solve the merge of T1 and T2 in linear
time which is sufficient to obtain the overall O (n
log n) performance. Note that the triangulation al-
gorithms of [13] and [3] cannot be used here since
an hourglass polygon need be neither edge-visible
nor monotone. Finally, we remark that this algo-

Proof. The correctness of the algorithm follows
from Lemmas I and 5. Thus we turn to its com-
plexity. Finding the convex hull of two intersecting
convex polygons in step 1 can be done in O (m + n)
time with several algorithms [7], [10], [11]. The
simplest of all the algorithms is the "rotat ing cali-
per" method [11] which, unlike those of [7] and
[10], does not involve backtracking and at the
same time can answer the question of whether
C H (P u Q)= P or Q. If there are k bridges on
CH(P u Q) then STEPDOWN is called k times in
step 2. Each call requires time linear in the number
of vertices processed and the total number of these

vertices is the sum total of the vertices on all the
outer chains of P and Q. Thus step 2 runs in O (m +
n) time. Finally, if we leave pointers from the
intersection points to the inner and outer chains
in both directions, as we find them in step 2, then
the merge step of the inner chains in step 3 can
be done in linear time by a mere traversal of the
two lists for P and Q. Q.E.D.

\ P]

Pi T2

P[\\ Pk

\
\
\
\
\
\
\
\
\

Fig. 5

122

rithm can be applied to the problem of computing
distances between crossing convex polygons [12].

References
1. Chazelle B (1980) Computational geometry and convexity.

Ph.D. thesis, Carnegie-Mellon University
2. Chazelle B, Dobkin D (1980) Detection is easier than com-

putation. Proceedings of the Twelfth Annual ACM Sympo-
sium on Theory of Computing. pp 146-153

3. Garey MR, Johnson DS, Preparata FP, Tarjan RE (1978)
Triangulating a simple polygon. Information Processing Lett
7:175-179

4. Gnibas L, Ramshaw L, Stolfi J (1983) A kinetic framework
for computational geometry. Technical report. Xerox Park
and Stanford University

5. Meisters GH (1975) Polygons have ears. American
Mathematical Monthly. June/July 1975, 648-651

6. O'Rourke J (1982) A new linear algorithm for intersecting

convex polygons.
19:384-391

7.

Comput Graph Image Processing

Shamos MI (1978) Computational Geometry, Ph.D. thesis,
Yale University

8. Shamos MI (1977) Problems in Computational Geometry.
Carnegie-Mellon University

9. Shamos MI, Hoey D (1976) Geometric intersection prob-
lems Proc. Seventeenth Annual IEEE Symposium on Founda-
tions of Computer Science. October 1976, pp 208-215

10. Toussaint GT (1981) Computational geometric problems
in pattern recognition. In: Kittler J (ed) Pattern Recognition
Theory and Applications. p 73-91

11. Toussaint GT (1983) Solving geometric problems with the
'rotating calipers'. Proc. MELECON, Athens. Greece

12. Toussaint GT (1984) An optimal algorithm for computing
the minimum vertex distance between two crossing convex
polygons. Computing 32: 357-364

13. Toussaint GT, Avis D (1982) On a convex hull algorithm
for polygons and its application to triangulation problems.
Pattern Recognition 15 : 23 29

123

