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Let P and Q be two convex polygons with 
m and n vertices, respectively, which are 
specified by their cartesian coordinates in 
order. A simple O(m+n) algorithm is 
presented for computing the intersection 
of P and Q. Unlike previous algorithms, 
the new algorithm consists of  a two-step 
combination of  two simple algorithms for 
finding convex hulls and triangulations of  
polygons. 

K e y  words: Algorithms - C o m p l e x i t y  - 

C o m p u t a t i o n a l  geometry - Convex poly- 
gons - Intersection 

et P={Pl,P2, ...,Pro} and Q={ql, 
q2, -.., q,} be two convex polygons whose 
vertices are specified by their cartesian co- 
ordinates in clockwise order. It is assumed 

that the polygons are in standard form, i.e., the 
vertices of  each polygon are distinct and no three 
consecutive vertices are colinear [7]. Several linear 
time algorithms have recently been proposed for 
computing the intersection of  P and Q, which is 
itself another convex polgon of  at most m+n 
vertices [6]-[9].The algorithms in [7]-[9] are rela- 
tively cumbersome to program due to the large 
number of cases that arise when intersecting the 
trapezoids that result with the " s l ab"  method 
employed in [7]. The simplest and most elegant 
of  the above algorithms is the one due to O 'Rourke  
et al. [6]. Here two "bugs" ,  one on the boundary 
of  P and the other on the boundary of  Q, "chase"  
each other in an alternating fashion as each tries 
to cross the " forward  line of  sight" of  the other. 
In this paper we present a new simple algorithm 
for constructing the intersection of  P and Q in 
O(m+n) time in the worst case. Unlike the 
previous algorithm of [6]-[9] the new algorithm 
is a combination of  existing simple procedures for 
computing convex hulls and triangulations of  poly- 
gons. Because of  this it may be a little slower in 
practice than the algorithm of O 'Rourke  et al. [6], 
depending on which convex hull algorithm is em- 
ployed. On the other hand little new specialized 
code is needed if the convex hull and triangulation 
codes are already available. Furthermore, the algo- 
rithm presented here is conceptually transparently 
clear and affords an easy proof  of correctness. 

Preliminary results 

In this section we present an informal description 
of the algorithm and some preliminary results. A 
detailed description of  the algorithm and a proof  
of  correctness is included in section three. We as- 
sume in this paper that the interiors of  the poly- 
gons P and Q intersect. If  this is not true there 
is no intersection polygon to construct and the 
intersection then is either a line segment, a point, 
or the empty set. In any case, determining whether 
the interiors of  P and Q intersect can be easily 
performed in O0og(m+n)) time [11, [2]. In order 
to simplify the description of the algorithm and 
to prevent the essential aspects from drowning in 
a sea of  detail we further assume that no three 
vertices in P ~  Q are colinear and all vertices in 
P ~  Q are distinct. This implies that if P and Q 
intersect then so do their interiors. It also implies 
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that if the boundaries of P and Q intersect the 
intersection points do not coincide with vertices 
of P or Q. Special case tests can be included for 
the "singularities" that arise when this assumption 
is not made and these are similar for all the algo- 
rithms outlined above [6]-[9]. A very clear exposi- 
tion on handling these cases is given by O'Rourke 
et al. [6]. 
Consider then two polygons P and Q whose 
boundaries intersect and construct the convex hull 
of their union (Fig. 1). Let the boundaries of P 
and Q intersect at k intersection points 
I1, I2, ... ,  Ik indexed in clockwise order. The 
boundaries of P, Q, and the convex hull of  P and 
Q, CH(P•Q), partition the plane into 2 k + 1  
bounded regions: the convex intersection region 
( I s , . . . ,  I 2 , . . . ,  I~,. . .) ,  k regions where P and Q 
lie outside Pc~Q (Pst associated with I, and It, 
and Q,v associated with I, and Iv) and k "pockets"  
K1, K2, ...,  Kk where a pocket Kv is associated with 
I v and is in the region inside CH(P w Q) but outside 
PwQ. With each pocket Kv we associate a bridge 
which is an edge of  CH(PwQ),  denoted by 
B~(Piv'qj~) , and which joins vertex Piv of P with 
vertex qj~ of Q. The algorithm for computing P n Q 
can now be described informally as the fol lowing 

three-step procedure: first construct the convex 
hull of  P w Q, then for each bridge B i find its 
corresponding intersection point I~, and finally 
"merge"  the corresponding polygonal chains that 
connect adjacent intersection points. 
We now prove some lemmas that we will need to 
prove the correctness of the algorithm described 
in section three. Let L(u, v) denote the directed 
line through u, and v in the direction u, v and let 
RH(u, v) denote the closed half-plane to the right 
of  L (u, v). 
The following lemma has been proved by Guibas 
et al. [4] using a powerful new framework involv- 
ing convolutions (a special case of fiber products) 
of  polygons. We include an alternate elementary 
proof  here for completeness. 

Lemma 1. I f  P and Q intersect there exists a unique 
mutual one-to-one correspondence between the 
bridges of CH( Pw Q) and the intersection points 
of PnQ. 

Proof. Let B(pi, q]) be a bridge and refer to Fig. 2. 
L(pi, qj) must be a line of support for both P and 
Q. Furthermore P and Q must both lie in 
RH(pi, q]). Trace P in a clockwise manner starting 
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at pz until an edge of P intersects an edge of Q 
at I. Similarly trace Q in a counter-clockwise 
manner starting at qj until an edge of  Q intersects 
an edge of P. From convexity it follows that this 
intersection point is also I and thus I corresponds 
to B(pz, @. On the other hand assume that I is 
some intersection point between edge PkPk+I~P 
and qlq t+teQ.  Since P e R H ( P k ,  Pk+~) and 
Q ~ R H ( q t ,  qz+t) it follows that no edge of  P or 
Q other than PkPk+I and q~qz+l may intersect the 
region R = R H ( p  k + 1, Pk) C~ RH(qz  + 1, ql)" Further- 
more, since angle p k l q ~ + l < 1 8 0  ~ it follows that 
there must exist an edge p z q j ~ C H ( P w Q )  that 
intersects R and this is the bridge corresponding 
t o / .  Q.E.D. 
We now define a restricted class of simple polygons 
and establish some results concerning their trian- 
gulation. While we are not explicitly interested in 
triangulating these polygons these results will be 
useful in understanding, and proving the 
correctness of, the algorithm. A polygonal chain 
C(pz, p ~ + I , . . . , p j )  is a portion of  consecutive 
vertices and edges of  a simple polygon. If  all turns 
are right (convex angles) we have a convex chain. 
If all turns are left (reflex angles) we have a concave 
chain. 

Definition. A sail polygon P~ is one that contains 
an edge p~p~+ 1 called the mast of P and a vertex 
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pj called the sail tip of P such that pj is connected 
to Pi and Pi+ 1 by concave chains (Fig. 3) Note that 
P~ must be completely in RH(pz,  Pi+ 1). 

Definition. A line segment, lying in P, that connects 
two non-adjacent vertices of  P is a diagonal of P. 

Definition. Three consecutive vertices p~ p~ + 1 p~ + 2 
are said to form an ear of P at p~+ 1 if the diagonal 
joining p / a n d  pi+2 lies in P. 

Definition. Two ears are non-overlapping if their 
interior regions are disjoint. 

Meisters [5] proves the following " two-ears"  the- 
orem. 

Lemma 2. Every polygon o f  n sides (n> 3) has at 
least two non-overlapping ears. 

This theorem leads Meisters to propose an O(n a) 
algorithm for triangulating simple polygons by 
finding ears and "cutt ing them off".  Sail polygons 
on the other hand have enough structure that we 
can "cu t  off all the ears" in O (n) time. Note that, 
by definition, only convex vertices can be ears. 
Also, a sail polygon has the property that only 
p~,p~+l, and pj are convex, and thus candidates 
for ears. We thus have the following results. 

L e m m a  3. The tip of  a sail polygon is an ear. 

Proof. Extend pj p j_ 1 and p j p  j+ 1 to intersect 
L(pz, P~+I) at x and y, respectively, (Fig. 3) Point 
x must lie on Pi P~ + 1 or else pj could not be joined 
to p~ with a concave chain. The same argument 
holds for y. By construction pj p j_ 1 x y pj+ 1 Pj 
forms a triangle and by convexity it lies completely 
in P~. Therefore the diagonal P j - l P ~ + I  lies in 
P~. Q.E.D. 

L e m m a  4. Either the mast top or the mast bot tom 
of  a sail polygon is an ear. 

Proof. Only Pi, Pi + 1, and pj in P~ can be ears. By 
Lemma 3 pj must be an ear. By Lemma 2 Ps must 
have at least two ears. Therefore either p~ or p~+ 1 
must be an ear. Q.E.D. 

Lemma 4 allows us to triangulate Ps in 0 (n) time 
by "wrapping the sail around the mast"  until only 
the sail tip remains. In other words, starting at 



the mast we cut off either the top ear or the bot tom 
ear and proceed to the polygon remaining. The 
correctness of  the algorithm follows from the in- 
duction hypothesis that, at each step, the polygon 
remaining is a sail polygon. The proof  of  this in- 
duction hypothesis is left as an easy exercise for 
the reader. The linearity follows from the facf that 
at each step which takes constant time Ps contains 
one less vertex. Note that other linear time algo- 
rithms could be used for triangulating P~. For  
example Ps is edge-visible from the mast and thus 
the algorithm of [13] can be used. Alternately, P~ 
is monotonic in the direction perpendicular to the 
mast and therefore the algorithm of Garey et al. 
[3] applies. The advantages of  the algorithm 
presented here are that, first, unlike those of  [13] 
and [3] it does not incorporate backtracking and 
is thus simpler, and second, the last diagonal to 
be added is pj_~ p~+a. This latter property is cru- 
cial for solving the polygon intersection problem. 
The "ear-cut t ing" algorithm is in essence a 
trimmed version of  the algorithm of Garey et al. 
[3] that exploits the added structure that sail poly- 
gons have over monotone polygons. 

The algorithm 

Before describing the complete algorithm we pres- 
ent P R O C E D U R E  S T E P D O W N  which receives 
as input a bridge B~ (pi, p j) of CH(P  w Q) and exits 

with the corresponding pair of  edges that 
determine the intersection point I k. Without loss 
of  generality assume pa and q~ form the bridge, 
Q is given in counter-clockwise order, and p~ ps+ 
c~qtqt+~ determines the intersection point L 
(Fig. 4.) A convenient data structure for P and 
Q here is a doubly-linked circular list so that we 
can scan in either direction and set up pointers 
between the vertices of  P and those of  Q. 
Procedure S T E P D O W N  finds the two vertices p~ 
and qt that can then be used to compute L The 
variables Pi and qj are the "cur rent"  vertices under 
consideration and are a tentative solution. When 
the algorithm stops Pi =P~ and @ = qt. The boolean 
variable "f inished" indicates when p~ and 6 are 
reached by taking on the value " t rue"  after an 
execution of  the " repea t "  loop. 

P R O C E D U R E  S T E P D O W N  
{initialization} i ~ 1 ; j ~ 1 

repeat 
f inished ~- t rue 
while (PiPi+ 1 qj+ 1 ) left do 
begin 

j+- - j+ l  
f inished ~ false 

end 
while (qj q~+l P i+ l )  r ight  do 
begin 

i<--i+l 
f inished +- false 

end 
until f inished 

Ps~p i ;  q ~ - q j  
E N D  S T E P D O W N  

Fig. 4 
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Lemma 5. Procedure S T E P D O W N  correctly com- 
putes the intersection point corresponding to a bridge 
in O(n) time. 

Proof. The proof  follows essentially from the reali- 
zation that S T E P D O W N  is an implementation of  
the "ear-cutt ing" triangulation algorithm for sail 
polygons given in the previous section. Note that 
(Pl, ql ,  q2, - . - ,  qt, I, Ps, Ps- t  . . . .  , P2) would be a 
sail polygon if I were a vertex connected to Ps and 
qt. Thus the "ear-cut t ing" algorithm must eventu- 
ally arrive at Ps qt. Now in a true sail polygon 
the algorithm automatically stops here because 
Ps+I =qt+l.  However, in this situation this is not 
the case since ps+ 1 and 6+ 1 belong to different 
polygonal chains. The tests for left and right turns 
in the inner WHILE loops of  S T E P D O W N  not 
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only prevent the algorithm from continuing past 
ps and qt, but also determine an ordering for "ear- 
cutting", by invoking Lemma 4. Q.E.D. 

We now describe the algorithm for computing the 
intersection of two intersecting convex polygons 
P and Q. The portions of the boundaries of P 
and Q outside P n Q will be referred to as outer 
chains, those portions inside P u Q as inner chains. 

ALGORITHM INTERCONPOL 
Begin 

Step 1. Find the convex hull of the union of P and Q, 
CH(P~ Q). 
If CH(Pu Q)=P(or Q) 
then Exit with Q (or P) as 
the intersection; Else continue. 

Step 2. For each bridge of CH(Pu Q) call procedure 
STEPDOWN to compute the intersection points 
of Pc~Q. 

Merge the inner chains of P and Q determined 
by the intersection points found in step 2. 

Step 3. 

End 

Theorem. Algorithm INTERCONPOL correctly 
computes the intersection polygon of  two intersect- 
ing convex polygons P and Q in 0 (m + n) time. 

Concluding remarks 

As a final remark we mention that the "ear-cut- 
t ing" triangulation algorithm for sail polygons 
presented in section two can be applied to the 
problem of triangulating a set of  n points on the 
plane in O(n log n) time via divide-and-conquer. 
Here, if the points have been presorted, at each 
step we must merge two triangulations T1 and T2 
which are linearly separable triangulated convex 
polygons (Fig. 5). The merge step consists of  trian- 
gulating the hourglass polygon "in between" T1 
and T2. This region lies outside T1 and T2 but 
inside CH(T1u  T2). An hourglass polygon is a 
polygon consisting of two edges called the top 
(bridge Pi, P j) and the bottom (bridge Pk, Pt) such 
that Pl and Pz (as well as Pk, Pj) are joined by con- 
cave chains and (Pi,Pj,Pk,Pl) forms a convex 
quadrilateral. Now consider a critical line of  sup- 
port between Tt and T2 at p, and Pv- This line 
decomposes the hourglass polygon into two sail 
polygons Ps and P~ . Finding the bridges and the 
edge p, pv cain be dolce in linear time with the rotat- 
ing calipers [11]. Triangulating the sail polygons 
will thus solve the merge of T1 and T2 in linear 
time which is sufficient to obtain the overall O (n 
log n) performance. Note that the triangulation al- 
gorithms of  [13] and [3] cannot be used here since 
an hourglass polygon need be neither edge-visible 
nor monotone. Finally, we remark that this algo- 

Proof. The correctness of the algorithm follows 
from Lemmas I and 5. Thus we turn to its com- 
plexity. Finding the convex hull of two intersecting 
convex polygons in step 1 can be done in O (m + n) 
time with several algorithms [7], [10], [11]. The 
simplest of  all the algorithms is the "rotat ing cali- 
per"  method [11] which, unlike those of [7] and 
[10], does not involve backtracking and at the 
same time can answer the question of whether 
C H ( P u  Q)= P or Q. If there are k bridges on 
CH(P u Q) then STEPDOWN is called k times in 
step 2. Each call requires time linear in the number 
of vertices processed and the total number of these 

vertices is the sum total of  the vertices on all the 
outer chains of P and Q. Thus step 2 runs in O (m + 
n) time. Finally, if we leave pointers from the 
intersection points to the inner and outer chains 
in both directions, as we find them in step 2, then 
the merge step of the inner chains in step 3 can 
be done in linear time by a mere traversal of  the 
two lists for P and Q. Q.E.D. 
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rithm can be applied to the problem of computing 
distances between crossing convex polygons [12]. 
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