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Planar Point Location — Motivation

Given a position p = (p., p,)
in a map, determine in which
country p lies.

-

more precisely:

Find a data structure for
efficiently answering such
point location queries.

e
oA | P
™ ftéw &~ The map is modeled as a

F‘)\ui subdivision of the plane into
& q\\ disjoint polygons.
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Trapezoidal Maps — Intuition
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Trapezoidal Maps — Intuition
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Trapezoidal Maps — Intuition
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Trapezoidal Maps — Intuition

o"’”f’*ee
2% Technische ] . . .
! %5 Universitat February 2nd, 2022 | Computational Geometry — Exercise Meeting #4 | Slide 6

o -
4| %7¢  Braunschweig
sc¥



Trapezoidal Maps — Intuition

P1
B A q1
S1_—e491
pl./ 51 q?
D E G

P2o~—_22 | B P2 52 G

A ~—e > —
C F C 52
D F

Lemma 6.2 The trapezoidal map T(S) of a set S of n line segments in general
position contains at most 6n 4 vertices and at most 3n + 1 trapezoids.
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Trapezoidal Maps — Update complexity
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Trapezoidal Maps — Update complexity
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Trapezoidal Maps — Motion Planning
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Motion Planning — Circle among points
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Motion Planning — Circle among points
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Art Gallery Problem — Simple polygons

Simple polygon:
= No intersection of edges
= No holes

Guard and guard cover:

» Represented by points

= Placed on vertices of the polygon

= Cover contains all points that are visible from the guard
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Art Gallery Problem — How to approach simple polygons?



Art Gallery Problem — Lower bound (necessity)
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Art Gallery Problem — “Every 3rd”-approach does not work
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Art Gallery Problem — Edge cover
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Art Gallery Problem — Upper bound (sufficiency)

= Consider the dual graph of the triangulation

= Select any vertex of the dual graph and color the triangle
vertices in three different colors

= Perform BFS on dual graph, color uncolored vertices in
remaining color (graph is a tree)
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Art Gallery Problem — Upper bound (sufficiency)

= Consider the dual graph of the triangulation

= Select any vertex of the dual graph and color the triangle
vertices in three different colors

= Perform BFS on dual graph, color uncolored vertices in
remaining color (graph is a tree)
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Art Gallery Problem — Upper bound (sufficiency)

= Consider the dual graph of the triangulation

= Select any vertex of the dual graph and color the triangle
vertices in three different colors

= Perform BFS on dual graph, color uncolored vertices in
remaining color (graph is a tree)
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Art Gallery Problem — Upper bound (sufficiency)

= Consider the dual graph of the triangulation

= Select any vertex of the dual graph and color the triangle
vertices in three different colors

= Perform BFS on dual graph, color uncolored vertices in
remaining color (graph is a tree)
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Consider the dual graph of the triangulation

Select any vertex of the dual graph and color the triangle
vertices in three different colors

Perform BFS on dual graph, color uncolored vertices in
remaining color (graph is a tree)
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Art Gallery Problem — Upper bound (sufficiency)

= Consider the dual graph of the triangulation

= Select any vertex of the dual graph and color the triangle
vertices in three different colors

= Perform BFS on dual graph, color uncolored vertices in
remaining color (graph is a tree)
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Art Gallery Problem — Orthogonal polygons
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Art Gallery Problem — Orthogonal polygons
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Art Gallery Problem — Orthogonal polygons
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Art Gallery Problem — NP-hardness

Example. F= (x; Vx>, Vx3) A(x; Vo Vas)
C1

Clauses

Y

BK%\?S\}\)\% Variables
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Art Gallery Problem — NP-hardness

F= (x;Vx, VX3) A(x; VX, VXs3)
Satisfying interpretation:

x1 true, x; true, x3 false

0%

\\

Proof ,<": Consider a satisfying assignment of F
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Art Gallery Problem — NP-hardness

NN /

— Proof ,=": The polygon is covered with at most 3m + n + 1 guards
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Art Gallery Problem — Irrational guards

Indeed, Sandor Fekete posed at MIT in 2010 and at Dagstuhl in 2011 an open problem, asking whether
there are polygons requiring irrational coordinates in an optimal guard set |1} 17]. The question has been
raised again by Giinter Rote at EuroCG 2011 [26]. It has also been mentioned by Rezende et al. [13]: “it
remains an open question whether there are polygons given by rational coordinates that require optimal
guard positions with irrational coordinates”. A similar question has been raised by Friedrichs et al. [19]:
“l...] it is a long-standing open problem for the more general Art Gallery Problem (AGP): For the AGP
it is not known whether the coordinates of an optimal guard cover can be represented with a polynomial
number of bits”.

Our results. We answer the open question of Sandor Fekete, by proving the following main result of our
paper. Recall that a polygon P is called monotone if there exists a line [ such that every line orthogonal
to [ intersects P at most twice.

Theorem 1. There is a simple monotone polygon P with integer coordinates of the vertices such that

(i) P can be guarded by 3 guards placed at points with irrational coordinates, and

(i) an optimal guard set of P with guards at points with rational coordinates has size 4.
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Irrational Guards are Sometimes Needed*

Mikkel Abrahamsen!, Anna Adamaszek?, and Tillmann Miltzow?

1  University of Copenhagen, Copenhagen, Denmark
miab@di . lku.dk
2 University of Copenhagen, Copenhagen, Denmark
anad@di .keu.dk
3 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
t.miltzowlgmail . com

—— Abstract

In this paper we study the art gallery problem, which is one of the fundamental problems in

computational geometry. The objective is to place a minimum number of guards inside a simple
polygon so that the guards together can see the whole polygon. We say that a guard at position
2 sees a point y if the line segment ry s contained in the polygon.

Despite an extensive study of the art gallery problem, it remained an open question whether
there are polygons given by integer coordinates that require guard positions with irrational
coordinates in any optimal solution. We give a positive answer to this question by construeting
a monotone polygon with imteger coordinates that can be guarded by three guards only when
we allow to place the guards at points with irrational coordinates. Otherwise, four puards are
needed. By extending this example, we show that for every n, there is a polygon which can
be guarded by 3n guards with irrational coordinates but needs 4n guards if the coordinates
have to be rational. Subsequently, we show that there are rectilinear polygons given by integer

coordinates that require guards with irrational coordinates in any optimal solution.
1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases art gallery problem, computational geometry, irrational numbers

Digital Object Identifier 10.4230,/LIPles.SoCG.2017.3
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Art Gallery Problem — 3IR-completeness
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The Art Gallery Problem is AR-complete

MIKKEL ABRAHAMSEN and ANNA ADAMASZEK, University of Copenhagen
TILLMANN MILTZOW, Utrecht University

The Art Gallery Problem (AGP) is a classic problem in computational geometry, introduced in 1973 by Victor
Klee. Given a simple polygon # and an integer k, the goal is to decide if there exists a set G of k guards within
P such that every point p € # is seen by at least one guard g € G. Each guard corresponds to a point in the
polygon #, and we say that a guard g sees a point p if the line segment pg is contained in P.

We prove that the AGP is AR-complete, implying that (1) any system of polynomial equations over the
real numbers can be encoded as an instance of the AGP, and (2) the AGP is not in the complexity class NP
unless NP = JR. As a corollary of our construction, we prove that for any real algebraic number «, there is
an instance of the AGP where one of the coordinates of the guards equals « in any guard set of minimum
cardinality. That rules out many natural geometric approaches to the problem, as it shows that any approach
based on constructing a finite set of candidate points for placing guards has to include points with coordinates
being roots of polynomials with arbitrary degree. As an illustration of our techniques, we show that for every
compact semi-algebraic set S C [0, 1]%, there exists a polygon with corners at rational coordinates such that
for every p € [0, 1]?, there is a set of guards of minimum cardinality containing p if and only if p € S.

In the dR-hardness proof for the AGP, we introduce a new JR-complete problem ETR-INV. We believe
that this problem is of independent interest, as it has already been used to obtain JR-hardness proofs for
other problems.

CCS Concepts: « Theory of computation — Computational geometry; Problems, reductions and com-
pleteness; Complexity classes;

Additional Key Words and Phrases: Art gallery problem, existential theory of the reals

ACM Reference format:

Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. 2021. The Art Gallery Problem is 3R-complete.
J. ACM 69, 1, Article 4 (December 2021), 70 pages.

https://doi.org/10.1145/3486220

https://doi.org/10.1145/3486220

Other complete problems for the existential theory of the reals include:

« the art gallery problem of finding the smallest number of points from which all points of a given polygon are visible.[22]

« the packing problem of deciding whether a given set of polygons can fitin a given square container.[23]

« recognition of unit distance graphs, and testing whether the dimension or Euclidean dimension of a graph is at most a given value.[®]

« stretchability of pseudolines (that is, given a family of curves in the plane, determining whether they are homeomorphic to a line arrangement);[41241(25]

« both weak and strong satisfiability of geometric quantum logic in any fixed dimension >2;[261

« Model checking interval Markov chains with respect to unambiguous automatal27]

« the algorithmic Steinitz problem (given a lattice, determine whether it is the face lattice of a convex polytope), even when restricted to 4-dimensional
polytopes;[28129]

« realization spaces of arrangements of certain convex bodies!3%l

« various properties of Nash equilibria of multi-player games(311[321133]

« embedding a given abstract complex of triangles and quadrilaterals into three-dimensional Euclidean space:['7]

« embedding multiple graphs on a shared vertex set into the plane so that all the graphs are drawn without crossings;!'7]

« recognizing the visibility graphs of planar point sets:[17]

» (projective or non-trivial affine) satisfiability of an equation between two terms over the cross product;[34l

« determining the minimum slope number of a non-crossing drawing of a planar graph;/[®%

« recognizing graphs that can be drawn with all crossings at right angles; 38l

« the partial evaluation problem for the MATLANG+eigen matrix query language.*7]

o the low-rank matrix completion problem.[38]
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Order-types and Order-type realizability
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collinear leftturn rightturn
* Order-type of points p4, ..., pn: Mapping of each triple of points to its orientation
* Order-type Realizability: Given an order-type for a set of abstract points,

are there coordinates fulfilling the given order-type(s)?

https://arxiv.org/abs/1406.2636
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Order-types and Order-type realizability

= Example: Given abstract points p;, p,, p; and p,
» Given order-type
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