

Computational Geometry - Exercise Meeting \#2

December 8 ${ }^{\text {th }}, 2021$

Scissors congruence

Two simple polygons P and Q are called scissors congruent, if we can subdivide their area into sets of polygons $\left\{P_{1}, P_{2}, \ldots, P_{l}\right\}$ and $\left\{Q_{1}, Q_{2}, \ldots, Q_{l}\right\}$ such that each P_{i} is congruent to Q_{i} for each $i \in\{1,2, \ldots, l\}$.

P

Q

Scissors congruence

Two simple polygons P and Q are called scissors congruent, if we can subdivide their area into sets of polygons $\left\{P_{1}, P_{2}, \ldots, P_{l}\right\}$ and $\left\{Q_{1}, Q_{2}, \ldots, Q_{l}\right\}$ such that each P_{i} is congruent to Q_{i} for each $i \in\{1,2, \ldots, l\}$.

P

$P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$

$Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$

Q

Scissors congruence

Scissors congruence

Visualizing Scissors Congruence

Satyan L. Devadoss ${ }^{1}$, Ziv Epstein ${ }^{2}$, and Dmitriy Smirnov ${ }^{3}$
1 Mathematites Department, Willhmas College, Willams, USA
$2 \begin{gathered}\text { satyan. dovadoasovilli iama. odu } \\ \text { Conpputer Sclence Departuent, Pomona College, Claremont, USA }\end{gathered}$

3 Computer Sclence Departm

- Abstract

Consider two stimple polygons with equal aren. The Wallaco Bolyai Gerwien theorem states that these polygons are scisors congruent, that is, they can be diwexced into finitely many congruent
polygonal pieco. Wo presun an interactive application that vibulizes this contructive proof.

1998 ACM Subject Classification 1.35 (Computational Geometry and Object Modelling] Gco
${ }^{\text {metric Algorithmss, languges and systens, } \mathrm{K} .3 .1 \text { [Computer Uses in Education] Computer }}$
Keywords and phrases polygonal congruence, grometry, rigid transformations
Digital Object Identifier 10.4230/LIPlos.SoCG 2016.66
Category Multimedin Contribution
1 Introduction
At the dawn of the 19th century, William Wallace and John Lowry [1] posed the following: Is it possible in every case to divide each of two equal but dissimilar rectilinear figures
into the same number of triangles, such that those which constitute the one figure are respectively identical with those which constitute the other?
This sparked an active area of research, which culminated in the discovery of the following theorem, independently by Wallace-Lowry [1]. Wolfgang Bolyai [2] and Paul Gerwien [3]. - Theorem 1 (Wallace-Bolyai-Gerwien). Any two simple polygons of equal arca are scissors

http://dmsm.github.io/scissors-congruence/

David Hillert himself recognized the importance of this theorem, including it as "Theorem
David Hilbert himself recognized the importance of this theorem, including it as "Theorem
$30 "$ in his The Foundations of Geometry [4]. Furthermore, he posed a three-dimensional generalization of Wullace's question as number three of his famous 23 problems [5]: Given any two polyhedra of equal volume, can they be disected into finitely many congruent tetrabedra? This problem was solved by Hillbert's own student Max Dehn, who provided (unlike the 2 D case) a negative answer by constructing counterexamples [6].
algorithm for constructing the polygonal pieces. To gain a deeper appreciation for this result. we built an interactive application that visunlizes the algorithm in an intuitive and didactic manner. Instructors have taught the Wallace-Bolyai-Gerwien procedure using physical materials $[7]$, and this application provides a digital analog.

Scissors congruence - Notes and Open Problems

MATHEMATICAL NOTES

Edried ay David Deasin

Manwscripts for this Department showld be sent to David Drasin, Division of Mathematical Sciences, Purdwe Uniersity, Lefayelte, IN 47907.

on dividing a square into triangles

PaUt Mossky, Brandeis University and Kyoto University

Sometime ago in this Monthly, Fred Richman and John Thomas [1] asked the following puzzling question:

Can a square S be divided into an odd number of nonoverlapping triangles T_{6} all of the same area?

Monsky's Theorem (1970)

A square can never be divided into an odd number of nonoverlapping triangles of equal area.

https://en.wikipedia.org/wiki/Monsky\'s theorem
explorations on the wallace-bolyal-gerwien theorem

kan kavanagh

Asstracc. In this survey paper, we present a proof of the Walloce- Bolyai-Gerwien theorem, namely,
 congrevent trianglecs Several generalistions and closely related theorems will be considered, and an
original example will be explored.

In 1814, Wallace [WL.14] posed
Is it possible in every case to divide each of two equal but dissimilar rectilinear figures, into the same number of triangles, such, that those which constitute the one figure are
respectively identical with those which constitute the other?
https://rak.ac/files/papers/wallace-bolyai-gerwien.pdf

Open Question \#1

Can Monsky's Theorem be generalized for cubes of higher dimension?

Open Question \#2

Is it possible to bound from below the number of cuts required to show that two polygons have the same area?

Farthest Pairs

Let \mathcal{P} be a finite point set. Describe an $\mathcal{O}(n \log (n))$ algorithm which determines two points $p, q \in \mathcal{P}$ of maximal distance in \mathcal{P}.

Farthest Pairs

Let \mathcal{P} be a finite point set. Describe an $\mathcal{O}(n \log (n))$ algorithm which determines two points $\boldsymbol{p}, \boldsymbol{q} \in \mathcal{P}$ of maximal distance in \mathcal{P}.

Farthest Pairs

Let \mathcal{P} be a finite point set and let $p, q \in \mathcal{P}$ be two points, such that their Euclidean distance is maximum among all pairs of points of \mathcal{P}.

Show that p and q are points on the convex hull of \mathcal{P}.

Farthest Pairs

$\mathcal{O}(n \log (n))$

Farthest Pairs

Farthest Pairs

Farthest Pairs

Farthest Pairs

December 8th, 2021 | Computational Geometry - Exercise Meeting \#2 | Slide 16

Farthest Pairs

Farthest Pairs

Farthest Pairs

Farthest Pairs

Farthest Pairs

Farthest Pairs

Farthest Pairs

Farthest Pairs

Farthest Pairs

$$
\mathcal{O}(n \log (n)) \text { total }
$$

Rotating Calipers - Other Applications

Distances [edit]

- Diameter (maximum width) of a convex polygon ${ }^{[6][7]}$
- Width (minimum width) of a convex polygon ${ }^{\text {[8] }}$
- Maximum distance between two convex polygons ${ }^{[91 / 10}$
- Minimum distance between two convex polygons ${ }^{[11][12]}$
- Widest empty (or separating) strip between two convex polygons (a simplified low-dimensional variant of a problem arising in support vector machine based machine learning)
- Grenander distance between two convex polygons ${ }^{[13]}$
- Optimal strip separation (used in medical imaging and solid modeling) ${ }^{[14]}$

Bounding boxes [edit]

- Minimum area oriented bounding box
- Minimum perimeter oriented bounding box

Triangulations [edit]

- Onion triangulations
- Spiral triangulations
- Quadrangulation
- Nice triangulation
- Art gallery problem
- Wedge placement optimization problem ${ }^{[15]}$

Multi-polygon operations [edit]

- Union of two convex polygons
- Common tangents to two convex polygons
- Intersection of two convex polygons ${ }^{[16]}$
- Critical support lines of two convex polygons
- Vector sums (or Minkowski sum) of two convex polygons ${ }^{[17]}$
- Convex hull of two convex polygons

Traversals [edit]

- Shortest transversals ${ }^{[18][19]}$
- Thinnest-strip transversals ${ }^{[20]}$

Others [edit]

- Non parametric decision rules for machine learned classification ${ }^{[21]}$
- Aperture angle optimizations for visibility problems in computer vision ${ }^{[22]}$
- Finding longest cells in millions of biological cells ${ }^{[23]}$
- Comparing precision of two people at firing range
- Classify sections of brain from scan images

