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Abstract. In this paper we apply Galois methods to certain fundamental geometric 
optimization problems whose exact computational complexity has been an open 
problem for a long time. In particular we show that the classic Weber problem, 
along with the line-restricted Weber problem and its three-dimensional version are 
in general not solvable by radicals over the field of rationals. One direct consequence 
of these results is that for these geometric optimization problems there exists no 
exact algorithm under models of computation where the root of an algebraic equation 
is obtained using arithmetic operations and the extraction of kth roots. This leaves 
only numerical or symbolic approximations to the solutions, where the complexity 
of the approximations ia shown to be primarily a function of the algebraic degree 
of the optimum solution point. 

1. Introduction 

Geometric optimization problems are inherently not pure combinatorial problems 
since the optimal solution often belongs to an infinite feasible set, the entire real 
Euclidean space. Such problems frequently arise in computer-aided design and 
robotics. It has thus become increasingly important to devise appropriate  methods 
to analyze the complexity of  problems where combinatorial analysis methods 
seem to fail. Here we take a step in this direction by applying Galois algebraic 
methods to certain fundamental  geometric optimization problems. These problems 
are noncombinatorial  and have no known polynomial time solutions. Neither 
have these problems shown to be intractable (NP-hard,  etc.). In fact, the recogni- 
tion versions of  these optimization problems are not even known to be in the 
class NP [10]. 

The use of  algebraic methods for analyzing the complexity of  geometric 
problems has been popular  since the time of Descartes, Gauss, Abel, and Galois. 
The complexity of  straight-edge and compass constructions has been known to 
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be equivalent to the geometric solution being expressible in terms of (+, - ,  * , / ,  x/) 
over Q, the field of  rationals [6], [25]. In this paper  we show that certain geometric 
optimization problems are not solvable by r a d i c a l s  ~ over Q, (i.e., not expressible 
in terms of (+, - ,  * , / ,  kx/) over Q). 

We show how necessary and sufficient conditions for the existence of minima 
in these optimization problems are tied to the question of solvability of  an 
algebraic equation over Q. We illustrate a method of generating the minimal 
polynomial,  whose root over the field of rational numbers is the solution of the 
geometric optimization problem in real Euclidean space. Having shown the 
derived polynomial to be minimal by proving it irreducible over Q we use Galois 
theory to answer questions about the impossibility of  expressing the optimizing 
solution by radicals. 

For the geometric optimization problems whose minimal algebraic polynomials 
we show to be n o t  solvable by radicals, there are a number of  immediate 
consequences. First, for these problems there exists n o  e x a c t  algorithm under 
models of  computation where the root of an algebraic equation is obtained using 
arithmetic operations and the extraction of kth roots. Second, this leaves only 
numerical or symbolic approximation to the opt imum solution. In order to use 
numerical or symbolic approximation techniques one first needs to compute a 
sequence of disjoint intervals with rational endpoints, each containing exactly 
one real root of  the minimal polynomial and together containing all the real roots 
(root isolation). Given an isolating interval with rational endpoints one can use 
symbolic bisection and sign calculation methods [5] or Newton's  iterations [16] 
to approximate the solution rapidly to any desired degree of accuracy. The 
complexity of  the algorithms which isolate the roots of  a polynomial P of  degree 
d with integer coefficients is bounded below by a power of  iog(1/sep(P))  where 
sep(P) is the minimum distance between distinct real roots of  P. A lower bound 
for sep(P)  given by [22], and corrected by [23], satisfies s e p ( P ) >  
1/(2ed(a+s)/2(lP[+ 1)d). Hence from the minimal polynomial of  the nonsolvable 
geometric optimization problem we in effect derive a complexity bound for 
approximations which primarily depends on the algebraic degree of  the opt imum 
solution point (the degree of the minimal polynomial).  

A similar complexity bound may also be derived for the order of  convergence 
of a sequence of  numerical approximations of  the opt imum solution point. Kung 
[14] relates the order of  convergence of approximations of  an algebraic number  
with the algebraic degree of the number, provided the approximation sequence 
is of  bounded order of  convergence. 

The main geometric optimization problem we consider is one of fundamental 
importance and has an equally long and interesting history in mathematical 
literature [13]. Simply stated one wishes to obtain the opt imum solution of a 
single s o u r c e  point in the real plane, so that the sum of the Euclidean distances 
to n fixed d e s t i n a t i o n  points is a minimum. 

1 A real number a is expressible in terms of radicals if there is a sequence of expressions/3~,...,/3,,, 
where fl~ e Q, and each/3~ is either a rational or the sum, difference, product, quotient, or the kth 
root of preceding B's and the last fl,, is t~. 
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Given n fixed destination points in the plane with integer coordinates 
determine the optimum location (x, y) of a single source point, that is 

(a~, b,), 

minimizex.rf(x, y)= ~ x/(x " al)2 +(y= bl) ~. (1) 
i =  1, . . . ,n 

Weber [26] was probably the first who formulated this problem in light of  the 
location of  a plant, with the objective of  minimizing the sum of transportation 
costs from the plant to sources of  raw materials and to market centers. Hence 
this problem for n points has also come to be known as the generalized Weber 
problem. In the recognition version of  this problem we ask if there exists (x, y) 
such that for given integer L, whether ~,=~ ...... x / ( x -  a~) 2 + ( y -  bi) 2-< L? This 
problem is not even known to be in NP. Since on guessing a solution one ' then 
attempts to verify whether Y.~=1 ...... v"~ ~ < L, in time polynomial in the number of  
bits needed to express certain rational numbers c l , . .  •, cn and L. However, no 
such polynomial time algorithm is known [9], [10], [20]. Baker [2] also explains 
some of the difficulty involved with the approximations to sums of square roots. 

The solution to the generalized Weber problem is simple to obtain for the 
special cases when the n points lie on a straight line or from a regular n-gon. 
However, in general, straight-edge and compass constructions are only known 
for the cases of  n = 3 and n = 4. We show that for the case of  n = 5 points the 
solution is the root of  an irreducible polynomial of  high degree. Further, we 
prove that the Galois group associated with the irreducible polynomial is the 
symmetric permutation group. Hence we are able to show that the generalized 
Weber problem is not solvable by radicals over Q for n >- 5. For the line-restricted 
Weber problem, where the optimum solution is constrained to lie on a certain 
given line, a much stronger result holds. We show that the line-restricted Weber 
problem, in general, is not solvable by radicals over Q for n --- 3. A similar result 
is also shown to apply to the three-dimension version of  this problem, for n --- 4. 
A proof  of  the impossibility of  straight-edge and compass constructions for the 
generalized Weber problem (but not the line-restricted case) appears  in [18], 
however, nothing was known about the nonexpressibility of  the solution by 
radicals. 

2. The Weber Problem 

The Weber problem has a long and interesting history. The problem for the case 
of  n = 3 was first formulated and thrown out as a challenge by Fermat as early 
as the 1600s [13]. Cavalieri in 1647 considered the problem for this case, in 
particular, when the three points, say a, b, ~, form the vertices of  a triangle and 
showed that each side of  the triangle must make an angle of  120 ° with the given 
minimum point, s. Heinen in 1834 noted that in a triangle wflich has an angle of  
>-120 °, the vertex of  this angle itself is the minimum point (Fig. 1). 

Fagnano in 1775 showed that for the case n = 4 when the four client points, 
say a, b, c, d, form a convex quadrilateral the minimum solution point, s, is the 
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intersection of  the diagonals of  the quadrilateral. For a nonconvex quadrilateral 
the fourth point, c, which is inside the triangle formed by the three other points, 
is itself the minimum point (Fig. 2). 

Tedenat in 1810 found that for the case of  n points the necessary condition 
for the minimum solution point is that the sum of cosines of  the angles between 
any arbitrary line in the plane and the set of  lines connecting the n given points 
with the minimum point must be zero. Later, 1837, Steiner, proved that the 
necessary and sufficient conditions for the minimum solution are that the sum 
of the cosines and sines of the above-mentioned angles must be zero. 
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(a) Steiner point and (b) Simpson point. 
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The constructions for the solution points for the case of  three points is also 
worthy of note. The solution is variously obtained by the Steiner construction or 
the Simpson construction (Fig. 3). 

3. Algebraic Reduction 

The function f(x, y) specified in (1) of Section 1, can be shown to be strictly 
convex. A sufficient set of  conditions for the function f(x, y) to be convex is: 

(i) p=(d:f/dx2)x=~o>O, 
(ii) q = (d2f/dy2)y=yo> O, 

(iii) pq - r 2 > 0, where r = (d2f/dx dy) . . . . .  y=y0, 

and (Xo, Yo) is the solution of the equations df/dx = 0 and df/dy = 0. The above 
conditions are quite easily met for the function f(x, y) of (1). Hence there exists 
a unique minimum solution for which the necessary and sufficient conditions are 
df/dx = 0 and df! dy = 0. The corresponding equations are: 

df/dx= E (x-a,)/x/(x-a,)2+(Y-b,) 2=0, (2) 
t = l , . . . , r l  

df/dy= ~, (y-b,)/4(x-a32+(y-b32=O. (3) 
i =  1 , . . . , n  

Without loss of  generality, we make an assumption that the solution does not 
coincide with any of  the destination points and obtain the corresponding poly- 
homial equations f~(x, y ) =  0 and f2(x, y ) =  0 from (2) and (3), respectively. This 
is done by rationalizing and by the elimination of square roots. By a process of  
repeated squaring one can eliminate all the square roots from expressions (2) 
and (3) above. Starting with, say, a sum of n different square roots, sqrt(i), 
i = 1, . . . ,  n, equated to a constant, the technique is to take all terms of sqrt(i), 
for a certain i, to one side of  the equation and the remaining terms on the other 
side, squaring both sides and thereby eliminating sqrt(i). Repeating this process 
by again isolating one of the remaining square roots and squaring, one is able 
to eliminate all square roots from the original equation in a maximum of n steps. 
Note that by this step we do not change the root of  our original problem since 
repeated squaring preserves the root of the polynomial. 

At this point we have a choice of two ways in which to proceed. The system 
of two polynomial equations f~(x, y) = 0 and f2(x, y) = 0 can be solved by elimina- 
tion techniques (using resultants) [25], leading to a single polynomial equation 
p(y) = 0 in a single variable. Alternatively, the resulting polynomial equation for 
the optimization problem can be taken to be p(x, y) =f~(x, y)Z+f2(x, y)Z = 0, since 
it simultaneously satisfies both of the above equations f~(x, y) = 0 and f2(x, y) = 0. 

Having obtained, say, the polynomial p(x, y) for the problem the first step is 
to prove it irreducible over Q. We show this by substituting for x, x = a, and 
showing that p(a, y) is irreducible. I f  p(x, y) is reducible then the corresponding 
p(a, y) is also reducible. Hence if p(a, y) is irreducible for some constant x = a 
it implies that p(x, y) is irreducible. However the fact that the minimal polynomial 
p(a, y) is irreducible is important to us only if the line determined by x = a passes 
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through the solution point  of  our  opt imizat ion problem.  Using a s imple trick, we 
choose  symmetr ic  configurat ions of  the points,  symmetr ic  abou t  a line x = a, for 
then we know that  the solution lies somewhere  on x = a. Then for a set o f  n 
points  dis t r ibuted equally and symmetr ica l ly  about  the chosen axis x = a (when 
n is odd,  one  point  lies on this axis), we obtain  the polynomia l  p(y) of  a single 
variable for  the problem.  Proving it to be irreducible over Q gives us the minimal  
po lynomia l  for  the opt imizat ion  problem.  

For  the p rob lem in hand  we now restrict ourselves to the case of  n -- 5 points. 
Let ( a l , b l ) = ( 3 , 0 ) ,  (a2, b 2 ) = ( 1 , 3 ) ,  (aa,b3)=(O,c), (a4, b 4 ) = ( - 1 , 3 ) ,  and 
(as ,  b s )=  ( - 3 ,  0) be the given points  with integer coordinates.  We choose the 
configurat ion of  five points  to be symmetr ic  about  the line x = 0. One of  the 
points  lies on the line and has coordinates  (0, c) on the x = 0 axis. The value of  
c changes the configurat ion of  points  in that  for c = 5, 1, and 4 we have the three 
possible  symmetr ic  configurat ions of  five points  (Fig. 4). 

We need to find the solution (0, y) satisfying the condi t ion for minimally ,  
df /dy  = 0 ,  giving us the following: 

m i n i m i z % f ( y )  = ly - cl + 2x/(y - 3) 2 + 1 + 2x/y 2 + 9, 

df/dy = + 1 + 2(y - 3)/x/(y - 3)z + 1 + 2y/x/y 2 + 9 = 0 

according as y > c or y < c. 2 

El iminat ing square  roots  by repeated squar ing we obtain the polynomia l  p(y) 

~(a3 ,  b3) 
/ / / ~ ' \  

/ \ 

(a~, bs) (a,,  b,) (a2, b,) (a, ,  b,) 

(a~, b~) (a3, b3) (a, ,  b,) 

(a4,  b4) /-  / ~..~ (a2,  b2) 
/ /  \ " -  

/ /  ",. 

(at, b~) (a,, b,) 
Fig. 4. Symmetric configurations of  five points. 

2 The case y = c occurs when the point (0, c), coincides with the intersection of the lines between 
(a l ,  b0,  (a4, b4) and (a2, b2), (as, bs), which is also the solution for the case of those four points 
(a,, b,), i = 1, 2, 4, and 5. 
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T a b l e  1. F a c t o r i z a t i o n s  o b t a i n e d  wi th  the  use  o f  M A C S Y M A  ( a c t u a l l y  V a x i m a  o n  Unix) .  

Q~ 

d i s c ( p ( y ) ) :  
M o d  19: 

M o d  31: 

M o d  37: 

p(y) = 15y s -  180y7 + 1 0 3 0 y 6 - 4 1 2 8 y S  + 11907y '* -  15876y 3 - 1 7 9 2 8 y 2 +  75816y  - 54756 

2~232~5s13~17213063 
p(y) = (y + 7) (y  2 - 9 y  - 4 ) (y  s + 9 y  4 + 8 y  3 + 7y  2 - 4 y  - 1 ) 

p(y) = ( y a _  1 2 y 7 _  1 4 y 6 +  1 0 y S _ 6 y 4 + 8 y 3 _  l l y  z - l l y - l l )  
p(y) = (y  + 5)(y7 - 17y 6 + 18y 5 - 10y 4 + 15y 3 - 16y 2 + 17y + 4) 

(Table 1), and note that this polynomial p(y) is the polynomial for each of the 
three configurations in Fig. 4. Equation df! dy = 0 is the same regardless of  c = 5, 
1, or4 .  

We now use algebraic methods to prove the properties of  interest. 

Lemma 1. The polynomial p(y) (Table 1) is irreducible over Q. 

Proof Since p(y) is irreducible mod 31 and the prime 31 is not a divisor of 15, 
the leading coefficient of  the polynomial, it follows that p(y) is irreducible over 
Q and is our minimal polynomial. []  

The degree testing algorithm of  David Musser (see p. 434 of [12]) is a much 
more efficient means of  proving irreducibility than merely searching for a prime 
q for which p (y )  is irreducible rood q. By performing the factorization of the 
polynomial p(y) modulo several primes, and considering the possible degrees of  
the factors, one can obtain important information about the degree of the true 
factors. For good primes q relative to p(y) (primes q that are not divisors of  
disc(p(y)))  one computes the degree set dq =se t  of  degrees of  all factors of  
p(y) mod q. The degree set of  p(y) must be contained in dp, c~- • • r~ dp,,,, where 
p ~ , . . . ,  p,, are the primes tried. I f p ( y )  is irreducible over Q, often dpl c~ d R c~ . . . .  
(0, n) after only a few primes have been tried. 

As our next step we show the impossibility of  constructions with a straight-edge 
and compass,  but before that we need a few definitions. (Henceforth when we 
refer to constructions we mean constructions with a straight-edge and compass.) 
A field F is said to be an extension of Q if F contains Q and a simple extension 
if F = Q ( a )  for some a e F. Using the notation of [ 11 ], we denote [ F :  Q] = degree 
of  F over Q (the dimension of F as a vector space over Q). 

Consider all the points (x, y) in the real Euclidean plane, both of  whoso 
coordinates x, y are in Q. This set of  points is called the plane of  Q. A point is 
constructible from Q lit we can find a finite number of  real numbers a~ . . . .  , ctn 
such that (i) [ Q ( a l ) :  Q ] =  1 or 2 and (ii) [ Q ( a ~ , . . . ,  a i ) : Q ( a l , . . . ,  a~- l ) ]=  1 or 
2, and such that our point lies in the plane of Q ( a ~ , . . . ,  an). It follows that if 
a is constructible then a lies in some extension of Q, of  degree a power of 2. 
We know that a real number a is algebraic over Q iit Q(a) is a finite extension 
of  Q. Further a is said to be algebraic of degree n over Q if it satisfies a nonzero 
polynomial  of  degree n but no nonzero polynomial of  lower degree. Also if a is 
algebraic of  degree n over Q, then [ Q ( a  ) : Q] -- n. This together with our discussion 
of  constructibility above gives the following important criterion for nonconstructi- 
bility. 
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Lemma 2 [11]. I f  the real number c~ satisfies an irreducible polynomial over Q of 
degree n and if n is not a power of 2, then ct is not constructible. 

I f  p(y) ~ Q[y],  a finite extension E of Q is said to be a splitting field over Q 
for p(y) if, over E but not over any proper subfield of E, p(y) can be factored 
as a product of  linear factors. Alternatively, E is a splitting field of  p(y) over Q 
if E is a minimal extension of  Q in which p(y) has n roots, where n = degree of 
p(y).  Given a polynomial p(y) in Q[y], the polynomial ring in y over Q, we 
shall associate with p(y)  a group Gal (p(y) ) ,  the Galois group of p(y). The Galois 
group turns out to be a certain permutation group of the roots of  the polynomial. 
It is actually defined as a certain group of  automorphisms of  the splitting field 
of  p(y) over Q. From the duality, expressed in the fundamental theorem of Galois 
theory, between the subgroups of the Galois group and the subfields of  the 
splitting field one can derive a condition for the solvability by radicals of the 
roots of a polynomial in terms of the algebraic structure of  its Galois group. As 
a special case one can give a criterion for nonconstructibility by straight-edge 
and compass constructions similar to Lemma 2 above. 

Lemma 3. l f  E is the splitting field over Q of an irreducible polynomial p(y ), and 
if  the order of its Galois group, o[Gal(p(y))] = [E : Q], is not a power of 2, then 
the roots of  p(y) are not constructible. 

We now state a few additional theorems from Galois theory of use to us here. 
The following are welt known and proofs may be found in [8] and [11]. 

[,emma 4 [8]. For a finite field F, IFI = qn and p(y) ~ Fly]  factors over F into k 
different irreducible factors, and if  p(y) = q~(y) • • • qk(Y), where degree q~(y) = n~, 
then Gal (p (y ) )  is cyclic and is generated by a permutation containing k cycles 
with orders n z , . . . ,  nk. 

The shape of a permutation of  degree n is the partition of n induced by the 
lengths of  the disjoint cycles of  the permutation. The factorization of a polynomial 
modulo any prime q also induces a partition, namely, the partition of  the degree 
of p(y) formed by the degree of the factors. Lemma 4 above states that the degree 
partition of the  factors o fp (y )  modulo q is the shape of the generating permutation 
of the group, Gal (p(y) ) ,  which is, furthermore, cyclic. 

Lemma 5 [8]. Let p(y  ) ~ Z[y  ] and let p*(y ) ~ Zq[y ] be the polynomial p(y ) mod q 
where q is a good 3 prime for p(y).  Then Gai(p*(y) )  is isomorphic to a subgroup 
of Gal(p(y) ) .  

Theorem 6. The solution of the generalized Weber problem, in general, is not 
constructible by a straight-edge and compass for n >- 5. 

3A good prime for a polynomial p(y) is one which does not divide the discriminant of the 
polynomial disc(p(y)). 
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Proof Restating the assertion, we have to show that the roots o f the  pol~cnomiat 
p(y)  of Table 1 are not constructible by a straight-edge and compass. We know 
that p(y)  is irreducible over Q from Lemma 1. Let p*(y) be the polynomial 
p(y)  mod q for a good prime q = 37 relative to p(y).  From Table 1 the irreducible 
factors of p*(y) have degrees 1 and 7. On application of Lemma 4 we know that 
for the finite field Z37, o[Gal (p(y ) ) ]=7 and, from Lemma 5, it is a divisor of 
o[Gal(p(y))],  which clearly is not a power of 2 and hence Lemma 3 proves our 
assertion. [] 

To prove the nonexpressibility of the roots of  p(y)  over Q by radicals we use 
the Cebotarev-Van der Waerden sampling method to determine the Galois group 
of p(y)  [17], [27]. From the density theorem of Cebotarev one obtains: 

Lemma 7. As s ~ oo , the proportion of  occurrences of  a partition ~r as the degree 
partition o f  the factorization of  p(y)  mod qi ( i =  1 . . . .  , s), tends to the proportion 
o f  permutations in Gal (p(y) )  whose shape is It. 

Then in order to apply this method of obtaining the group of the polynomial 
over Q one needs a table of  permutation groups of  the desired degree, along 
with a distribution of its permutations [4], [24]. The degree of concern for the 
polynomial p(y)  of Table 1 is 8. From [19] we know that there are exactly 200 
permutation groups of degree 8. However all is not lost. We also know that 
polynomial p ( y ) ~  Q is irreducible iff the Galois group Gal (p(y) )  is transitive* 
[25], and there are only 50 transitive groups of degree 8. 

Furthermore, if the Galois group of the polynomial p(y)  of degree n is the 
symmetric group S, (the group of all permutations of  [ 1 , . . . ,  hi),  we have: 

Lemma 8. I f  n = 0 (mod 2) and n > 2 then the occurrence of  an ( n - 1)-cycle and 
an n-cycle and a permutation of  the type 2 + ( n - 3 )  on factoring the polynomial 
p(y)  modulo "good" primes establishes that Gal (p(y) )  over Q is the symmetric 
group S,.  I f  n ~ 1 (mod 2) then an ( n - 1) cycle and an n cycle and a permutation 
o f  the type 2 + ( n - 2 )  is enough. 

Proof Since for n - = 0 ( m o d 2 ) ,  n - 3  is odd, the permutation type 2 + ( n - 3 )  
when raised to a power ( n - 3) yields a 2-cycle. This, together with the (n - 1 ) -cycle 
and the n-cycle, generates the symmetric group S, as follows. Let ( 1 2 , . . . ,  n - 1) 
be the ( n -  1)-cycle. By virtue of  transitivty, the 2-cycle (/j) can be transformed 
into (kn),  where k is one of  the digits between 1 and ( n -  1). The transformation 
of (kn) by ( 1 2 , . . . , n - l )  and its powers yield all cycles ( l n ) ( 2 n ) . . .  ( n - I n )  
and these cycles together generate the symmetric group S, [25]. For n -= 1 (mod 2), 
again as n - 2  is odd, the permutation type 2 + ( n - 2 )  when raised to a power 
( n - 2 )  yields a 2-cycle, which together with the ( n -  1)-cycle and the n-cycle 
generates the symmetric group as above. [] 

4A permutation group on 1,..., n is called transitive if for any k, 1 <-k- < n, it contains a 
permutation ~r which sends 1 to k. 
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Zassenhaus [27] observes that using the Cebotarev-Van der Waerden method 
for the symmetric S, group, sampling about n +  1 good primes are sufficient. 
Usually the decision that Ga l (p (y ) )=  S, is reached even after much less than 
n + 1 trials as a consequence of the evolving pattern of permutations occurring 
in Gal(p(y))  and the application of known theorems of permutation groups. 

We are now ready to prove our main theorem, but first let us indulge (for the 
last time) in some definitions. A polynomial p(y) e Q[y] is called solvable over 
Q if there is a finite sequence of fields Q = F0< F, < .  • • < Fk (where F~_~ < Fi 
implies that F~_~ is a subfield of F~) and a finite sequence of integers no, . . . ,  nk-~ 
such that F~+I = F~(ct~) with t~, e F~ and if all the roots of  p(y) lie in Fk, that is, 
E c_ Fk, where E is the splitting field of p(y).  Fk is called a radical extension of 
Q. Furthermore, we know from Galois theory that: 

Lemma 9 [11]. p(y)e Q[y] is solvable by radicals over Q iff the Galois group 
over Q of  p(y) ,  Gal(p(y)) ,  is a solvable group. 

Lemmn 10 [ 11 ]. The symmetric group S, is not solvable for n > 5. 

Theorem 11. The generalized Weber problem, in general, is not solvable by radicals 
over Q for n >- 5. 

Proof. Restating the assertion, we need to show that the polynomial p(y)  of 
Table 1 is not solvable by radicals over Q. We note from Table 1 that for the 
"good"  primes q = 19, 31, and 37, the degrees of the irreducible factors of 
p(y)  mod q gives us a 2+5  permutation, an 8-cycle, and a 7-cycle, which is 
enough to establish, from Lemma 8 for n = 8, that Gal(p(y))  = Ss, the symmetric 
group of degree 8. Lemma 10 tells us that this is not a solvable group and hence 
our assertion follows from Lemma 9. [] 

4. The Line-Restricted Weber Problem 

Given n fixed destination points as before in the real plane with coordinates 
(ai, b~), we need to determine the location (x, y) of  a single source point, 
restricted to lie on a certain given line, such that the sum of the Euclidean 
distances from this source to each of the destinations is minimized. 

We consider two different positions (and orientations) of this line, since the 
algebraic degree of the solution point varies with the relative positions of the 
line and the fixed destination points. 

For the nontrivial case of three destination points consider the solution 
restricted to a line passing through one of  the points and either not intersecting 
the convex-hull (of the destination points) (Fig. 5(a)) or passing through the 
convex-hull (Fig. 5(b)). 

Lemma 12. For the cases of  Fig. 5(a) and (b), the minimal polynomial p(y ) ( Table 
2) of  degree 8 is irreducible over Q. Furthermore, this polynomial is not solvable by 
radicals over Q. 
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Proof. Since p ( y )  is i r reduc ib le  mod  7, for  a " g o o d "  pr ime 7, it fol lows that  
p ( y )  is i r reduc ib le  over  Q. To show nonso lvab i l i ty  by radicals  we app ly  Lemma 
8 for  n = 8 and  note f rom Table 2 that  for  the " g o o d "  pr imes  q = 7, 11, and 29 
the degrees  o f  the i r reducib le  factors of  p ( y )  mod q give us an 8-cycle, a 7-cycle, 
and  a 2 + 5 pe rmuta t ion  which is enough to es tabl ish  that  G a l ( p ( y ) )  = Ss. Again,  
L e m m a  10 tells  us that  this  is not  a solvable  g roup  and hence  our  asser t ion fol lows 
f rom L e m m a  9. [ ]  

As before ,  for  the case o f  n = 3  des t ina t ion  poin ts  cons ider  the solut ion 
rest r ic ted to a line, however ,  not  pass ing th rough  any of  the three poin ts  and  
either not intersect ing the convex-hul l  (of  the des t ina t ion  points)  (Fig.  6(a))  or 
pass ing  th rough  the convex-hul l  (Fig. 6(b)) .  

Lemma 13. For the cases o f  Fig. 6(a) and (b),  the m in ima lpo lynomia lp (y )  ( Table 
3) o f  degree 12 is irreducible over Q. Furthermore, this polynomial is not solvable 
by radicals over Q. 

Proof. Since p ( y )  is i r reducib le  rood 7, for  a " g o o d "  pr ime 7, it fol lows that  
p ( y )  is i r reduc ib le  over  Q. One notes that  the  imposs ib i l i ty  o f  s t ra ight -edge  and  
compass  cons t ruc t ions  fo l lows immedia te ly  f rom L e m m a  2, s ince the degree  o f  
p ( y )  is 12 which  is not  a power  o f  2. To show the nonsolvabi l i ty  by  radica ls ,  we 
again  a p p l y  L e m m a  8 for  n = 8 and  note f rom Table  2 that  for the " g o o d "  pr imes 

Table 2 

Q; 

disc(p(y)): 
Mod 7: 
Mod 11: 
Mod 29: 

minimize, f(y) = 3 - y +,/~'  -3)~+ 1 +.jy2 + ~ 

df/ dy = - 1 + (y - 3)/x/(y - 3) 2 + i'+ y/x/y = + 9 = 0 

p(y) = 3y 8 - 36y "I + 202y 6 - 780y 5 + 2277y 4 - 4212y 3 + 3402y = - 81 = 0 
23s3235~i3319687 
p(y) = (yS + 2y7 + 2y6 _ y5 + 3y4 + 3y3 + I ) = 0 
p(y) = (y - 5) (y  7 + 4y 6 + 3y 5 - 354 - 4y 3 - 5y 2 - 2y + 1) = 0 
p(y)= (y+13)(y2+Sy-ll)(yS-y4+ 12y3+l ly2+2y+l)=0 
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q = 7, 19, and 61 the degrees of the irreducible factors of p(y) mod q give us a 
12-cycle, an l l-cycle and a 2 + 9  permutation which is enough to establish that 
Ga l (p (y ) )  = $12, the symmetric group of degree 12. Lemma 10 tells us that this 
is not a solvable group and hence our assertion follows from Lemma 9. [] 

Theorem 14. The line-restricted Weber problem, in general, is not solvable by 
radicals over Q for n >- 3. 

Proof. Follows from Lemmas 12 and 13. 

For the case of  the line passing through two of the three given destination 
points, the solution to the line-restricted Weber problem coincides with projection 
of the 3rd point onto that line and so is constructible. Furthermore, the case of  
n = 5 for the symmetric generalized Weber problem is equivalent to the (weighted) 
case, n = 3, of  the line-restricted Weber problem, where the line is the axis of  
symmetry, which passes through one of the destination points (and hence the 
algebraic degree of the solutions are the same). On the other hand the above 
case of n = 3 of  the line-restricted Weber problem where the line does not pass 
through any of the destination points is equivalent to the case of n = 6 for the 
symmetric generalized Weber problem (the line becoming the axis of  symmetry 
as before). The solutions of  these cases are, as expected, of  higher algebraic degree. 

Table 3 

Q: 

disc(p(y)):  
Mod 7: 

Mod 19: 
Mod 61: 

minimize~ f ( y )  = , f ~ '  - 3)2+ 4 + , / ( v -  3) 2 + 1 +./y2+ 1 
df/ dy = (y -3) /x / (y -3)z  +4+(y -3)~if(y-3)2+ 1 + y/,/y2 + 1 = 0  

p(y) = 3yn _ 72yl i + 780ylO _ 4002y9 + 20772y8 _ 58500y7 + 113610y 6 
- 155448y ~ + 156912y 4-119040y 3 + 51786y 2 + 972y - 729 = 0 

2"3~5c13dp 
p(y) = (y12_ 3yl~ + ytO + 2yg + y8 + 2yT_ 2yS + 3y3 + 2y2 + 2y + 2) = 0  
p(y) = (y--6)(yH + yt° + 8yS-- yT + Ty6 + 7 yS + y4 + 3y3--9y2 + 5y-- 7) =O 
p(y) = ( y +  13)(3 ' 2 - 3 y +  10)(yg+27yS+ 19y6--7yS+y 4-  10y 3 - 2 5 y  2 - 2 1 y + 2 3 )  = 0  
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5. Euclidean Three-Dimension Space 

The Weber problems that we have considered can also be generalized to the case 
of  noncoplanar points in real Euclidean three-dimension space. The simplest 
case here corresponds to four noncoplanar points forming a tetrahedron. The 
solution point which minimizes the sum of the Euclidean distances from these 
four points clearly lies inside the tetrahedron, however, for no point within the 
tetrahedron does there exist a regular configuration analogous to the correspond- 
ing planar Weber problem of Fig. 1 (namely, pairs of lines subtending equal 
angles at the solution point). The problem in three dimensions thus appears more 
difficult and as we suspect, in general, not solvable by radicals over Q. We show 
this to be true for the case of  four noncoplanar points with the solution restricted 
to a line passing through one of  the given points, as illustrated by Fig. 7. 

Theorem 15. The three-dimension version of the line-restricted Weber problem, 
in general, is not solvable by radicals over Q for n >-4. 

Proof. This case of four noncoplanar points corresponds to a case of  four planar 
points of  the planar line-restricted Weber problem with two of  the points being 
symmetrical about the given line. Our proof thus follows from Theorem 14. 
Alternatively, and more directly, we derive the corresponding polynomial via the 
algebraic reduction, and prove our result similar to the proof  of Theorem 11. 
The polynomials P1(Y) and P2(Y) of  Table 4 correspond, respectively, to the point 
configurations (a) and (b) of Fig. 7. For p~(y) of degree 6, we note from Table 
4 that for the "good" primes q = 17, 19, and 29, degrees of the irreducible factors 
of p~(y) mod q give us a 5-cycle, a 6-cycle and a 2+3  permutation, which is 
enough to establish our assertion (from Lemmas 8, 9, and 10). Similarly, for 
p2(y) of degree 10, we note from Table 4 that for the "good"  primes q = 19, 31, 
and 37, the degrees of the irreducible factors of P2(Y) mod q give us a 10-cycle, 
a 9-cycle, and a 2+7  permutation, which is again enough to establish our 
assertion. [] 

(0, 3, 0) 

x=0,  z=0  

(a) 

(3,0,0) 

(0,3,0) (1,3,0) 

(2,0, 1) 
(b) 

x=2 ,  z=0  

(3, O, O) 

Fig. 7 
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Table 4 

Q~ 
Mod 17: 
Mod 19: 
Mod 29: 

Q: 

Mod 19: 
Mod 31: 
Mod 37: 

Pt (Y) = 56y 6-  768y 5 + 4257y 4-15228y 3 + 42768y 2 - 75816y 7 + 54756 = 0 
a 5-cycle 
a 6-cycle 
a 2+3 permutation 

P2(Y) = 8yt° _ 112y 9 + 507y s + 492y7 - 14448y 6 + 64932y ~ - 143326y 4 + 160772y 3 
-71112y2- 324y+243 =0 

a 10-cycle 
a 9-cycle 
a 2 + 7 permutation 

6. Discussion and Further Research 

We have ou t l i ned  above  a me thod  o f  ob t a in ing  the min ima l  po lynomia l ,  whose  
roo t  over  the  field o f  ra t iona l  numbers  is the  so lu t ion  o f  the geomet r ic  op t imiza t ion  
p rob l em on the real  (Euc l idean)  plane.  This m a y  be a pp l i e d  to a number  o f  o ther  
op t imiza t ion  p rob l ems  as well. Other  me thods  o f  comput ing  min imal  po lynomia l s  
cou ld  also be  used  [21]. Having  o b t a i n e d  the min ima l  po lynomia l  one  can app ly  
Ga lo i s  theore t i c  me thods  to check for  solv~tbility as ske tched above.  Al ternat ive ly ,  
one  can use the  compu ta t i ona l  p rocedure  o f  [ 15]. F rom the min ima l  po lynomia l  
o f  the nonso lvab le  op t imiza t ion  p rob lems  one  can der ive  a complex i ty  b o u n d  
for  a p p r o x i m a t i o n s  which pr imar i ly  d e p e n d s  on the a lgebra ic  degree o f  the 
o p t i m u m  so lu t ion  po in t  ( the degree o f  the min ima l  po lynomia l ) .  For  the  case 
when  the p o l y n o m i a l  is so lvable ,  c o m p u t a t i o n a l  lower  b o u n d s  for  ob t a in ing  the 
so lu t ion  b a s e d  on the o r d e r  of  the so lvable  Ga lo i s  g roup  may  be der ived  using 
me thods  o f  logic [7]. It seems that  the d o m a i n  o f  re la t ions be tween  the a lgebra ic  
degree,  the  o rde r  o f  the  Ga lo i s  g roup  o f  the  minimal  po lynomia l s ,  a n d  the 
complex i ty  o f  ob ta in ing  the  solut ion po in t  o f  op t imiza t ion  p r o b l e m s  is an exci t ing 
a rea  to explore .  

Acknowledgments 

Sincere thanks  to John  Hopc ro f t  for  his sugges t ions  in the use o f  a lgebra ic  
methods  and  to Wal te r  Schnyder  for his exp lana t ions  on the intr icacies  o f  logic. 

References 

1. C. Bajaj, Geometric Optimization and Computational Complexity, Computer Science Technical 
Report TR84-629, Ph.D. thesis, Cornell University, Ithaca, NY, 1984. 

2. A. Baker, Transcendental Number Theory, Cambridge University Press, Cambridge, 1975. 
3. J. Burns, Abstract definition of groups of degree eight, Amer. J. Math. 37 (t915), 195-214. 
4. C. Butler and J. McKay, The transitive groups of degree up to 11, Comm. Algebra i l  (1983), 

863-911. 



The Algebraic Degree of Geometric Optimization Problems 191 

5. G. E. Collins and R. Loos, Real zeros of polynomials, in Computing Supplementum, vol. 4 (B. 
Buchberger et al., eds.), 84-94, Springer-Verlag, Wien, New York, 1982. 

6. R. Courant and H. Robbins, What is Mathematics?, Oxford University Press, Oxford, 1941. 
7. E. Engeler, Lower bounds by Galois theory, Ast~risque 38-39 (1976), 45-52. 
8. L. Gaal, Classical Galois Theory with Examples, Markham, 1971. 
9. M. R. Garey, R. L. Graham, and D. S. Johnson, Some NP-complete geometric problems, 

Proceedings of the Eighth Symposium on the Theory of Computing, 10-22, 1976. 
10. R. L. Graham, Unsolved problem P73, problems and solutions, Bull. EATCS (1984), 205-206. 
11. I. N. Herstein, Topics in Algebra, 2nd ed., Wiley, New York, 1975. 
12. D. E. Knuth, The Art of Computer Programming, vol. 2, 2nd edn., Addison-Wesley, Reading, 

MA, 1981. 
13. H. W. Kuhn, On a pair of dual non-linear programs, in Non-Linear Programming (J. Abadie, 

ed.), 37-54, North-Holland, Amsterdam, 1967. 
14. H. T. Kung, The computational complexity of algebraic numbers, SIAM J. Numer. Anal. 12 

(1975), 89-96. 
15. S. Landau and G. L. Miller, Solvability by radicals in polynomial time, Proceedings of the 15th 

Annual Symposium on the Theory of Computing, 140-151, 1983. 
16. J. D. Lipson, Newton's method: a great algebraic algorithm, Proceedings of  the 1976 ACM 

Symposium on Symbolic and Algebraic Computation ( SYMSAC),  260-270, 1976. 
17. J. McKay, Some remarks on computing Galois groups, SIAM J. Comput. 8 (1979), 344-347. 
18. Z. A. Melzak, Companion to Concrete Mathematics, Wiley, New York, 1973. 
19. G. A. Miller, Memoir on the substitution groups whose degree does not exceed eight, Amer. J. 

Math. 21 (1899), 287-337. 
20. A. M. Odlyzko, Personal Communication, May 1985. 
21. B. R. Peskin and D. R. Richman, A method to compute minimal polynomials, SIAM J. Algebraic 

Discrete Methods 6 (1985), 292-299. 
22. S. M. Rump, Polynomial minimum root separation, Math. Comp. 33 (1979), 327-336. 
23. J.T. Schwartz, Polynomial Minimum Root Separation (Note to a Paper of S. M. Rump), Robotics 

Research Technical Report No. 39, New York University, 1985. 
24. R. P. Stauduhar, The determination of Galois groups, Math. Comp. 27 (1973), 981-996. 
25. B. L. Van der Waerden, Modern Algebra, vol. 1, Ungar, New York, 1953. 
26. A. Weber, Theory of  the Location of Industries (translated by Carl J. Friedrich), The University 

of Chicago Press, Chicago, 1937. 
27. H. Zassenhaus, On the group of an equation, Computers in Algebra and Number Theory, SIAM 

and AMS  Proceedings, 69-88, 1971. 

Received May 13, 1986, and in revised form October 3, 1986. 


