A QUADRATIC TIME ALGORITHM FOR THE MINMAX LENGTH TRIANGULATION*

HERBERT EDELSBRUNNER ${ }^{\dagger}$ and TIOW SENG TAN ${ }^{\ddagger}$

Abstract

It is shown that a triangulation of a set of n points in the plane that minimizes the maximum edge length can be computed in time $O\left(n^{2}\right)$. The algorithm is reasonably easy to implement and is based on the theorem that there is a triangulation with minmax edge length that contains the relative neighborhood graph of the points as a subgraph. With minor modifications the algorithm works for arbitrary normed metrics.

Key words. computational geometry, point sets, triangulations, two dimensions, minmax edge length, normed metrics

AMS(MOS) subject classifications. 68Q25, 68U05, 65D05

1. Introduction. A triangulation of a (finite) point set S in \Re^{2} is a maximal connected straight-line plane graph whose vertices are the points of S. Maximality implies that, with the exception of the unbounded face, each face of the graph is a triangle. The number of different triangulations of S depends on $n=|S|$ and on the relative location of the points. As implied by a result in [ACNS82], $10^{13 n}$ is an upper bound on the number of triangulations of any set of n points in \Re^{2}. Furthermore, if S is in convex position, then it admits $\frac{1}{n-1}\binom{2 n-4}{n-2} \geq 2^{n-3}$ different triangulations. In order to choose an optimal triangulation, under some criterion, it is thus not feasible to exhaustively search the set of all triangulations.

Indeed, except for a handful of particular optimality criteria, the problem of finding an optimal triangulation for a given point set is hard, that is, no polynomial-time algorithms are known. Among these exceptions are the maxmin angle criterion [Sibs78], the minmax angle criterion [ETW92], the minmax smallest enclosing circle criterion [Raja91], and the minmax circumscribed circle criterion. The optimum under the first, third, and fourth criteria is achieved by the Delaunay triangulation which can be constructed in time $O(n \log n)$ [Del34], [PrSh85], [Edel87].

In this paper we study the complexity of minimizing the maximum edge length. A triangulation that minimizes the length of its longest edge is called a minmax length triangulation. It is related to the so-called minimum length (or minimum weight) triangulation that minimizes the sum of the edge lengths. The latter problem has been studied by Plaisted and Hong [PlHo87], Lingas [Ling87], and others. In spite of the lack of a proof that the problem is NP-hard, no polynomial time algorithm for constructing a minimum length triangulation is currently known. Even more annoying is the lack of a constant approximation scheme, that is, an algorithm that in polynomial time constructs a triangulation guaranteed to have total edge length of at most some constant times the optimum. The current best approximation scheme, described in [PIHo87], guarantees a factor of $O(\log n)$.

In view of the apparent difficulty of computing minimum length triangulations, it is somewhat surprising that we are able to provide a polynomial, in fact, a quadratic time algorithm, for constructing a minmax length triangulation. To our knowledge it is

[^0]the first polynomial-time algorithm for this problem. Although there is evidence for the potential usefulness of such a triangulation (see [BrZ170], [WGS90]), we consider the additional insight into optimum triangulations under edge length criteria to be the main contribution of this paper.

The reader might find it instructive to rule out seemingly promising approaches to computing minmax length triangulations before diving into the occasionally involved developments of the forthcoming sections. Note first that the Delaunay triangulation does not minimize the maximum edge length (see also §2). Second, the incremental greedy method, which repeatedly adds the shortest edge that does not intersect any previously added edge, also fails to minimize the maximum edge length. Third, let us take a brief look at the decremental greedy method that throws away edges in the order of decreasing length. It stops the deletion process if another deletion would render the set of edges so that it does not contain any triangulating subset (see Wismath [Wism80, p. 81]). The trouble with this approach is that it is not clear how to efficiently decide whether the evolving edge set is still sufficient to triangulate the point set. Indeed, Lloyd [Lloy77] proves that the general version of this problem (to decide whether a given edge set contains a triangulation) is NP-complete. Finally, the iterative methods that use the edge-flip [Laws77] or the more general edge-insertion operation [ETW92] can get caught in local optima. The approach taken in this paper is entirely different from the above paradigms.

The organization of this paper is as follows. Section 2 reviews a few results on relative neighborhood graphs and other subgraphs of the Delaunay triangulation. Section 3 formulates the global algorithm; its straightforward implementation using dynamic programming takes time $O\left(n^{3}\right)$. The only intricate part of this algorithm is the proof of correctness provided in $\S 4$. Sections 5 and 6 present a specialized polygon triangulation algorithm that can be used to speed up the general algorithm to time $O\left(n^{2}\right)$. Whereas $\S \S 2-6$ assume that the Euclidean metric is used to measure length, $\S 7$ demonstrates that all results extend to general normed metrics. Indeed, the arguments in $\S \S 2-6$ are axiomatically derived from a few basic lemmas in order to minimize the number of changes necessary to generalize the results. Finally, $\S 8$ briefly discusses the contributions of this paper and states some related open problems.
2. Subgraphs of the Delaunay triangulation. Our approach to constructing a minmax length triangulation first adds enough edges to decompose the plane into simple polygonal regions and then (optimally) triangulates these regions. Both Plaisted and Hong [PlHo87] and Lingas [Ling87] used this approach to compute approximations of the minimum length triangulation. In our case the initial set of edges is provided by the (boundary of the) convex hull and the relative neighborhood graph of the point set S. The remainder of this section formally introduces these graphs, along with the Delaunay triangulation and the minimum spanning tree of S, and reviews some basic facts about their relationships. If x, y, z are three points in \Re^{2}, then $x y$ denotes the relatively open line segment with endpoints x and $y,|x y|$ denotes its length, and $x y z$ denotes the open triangle with vertices x, y, z.

The Delaunay triangulation of S, denoted by $d t(S)$, contains an edge $a b, a, b \in S$, if there is a circle through a and b so that all other points lie outside the circle. If the points are in general position, then $d t(S)$ is indeed a triangulation.

As mentioned in $\S 1$, the Delaunay triangulation does not minimize the length of the longest edge. Take, for example, the points $a=(-2,0), b=(1, \sqrt{3}), c=(1,-\sqrt{3})$, $d=(2-\epsilon, 0)$, with $0<\epsilon<1$. They form a convex quadrilateral $a b d c$, and the Delaunay triangulation uses $a d$ as the fifth edge. As ϵ approaches 0 the length of $a d$ approaches
$2 / \sqrt{3}$ times the length of the longest edge in the alternative triangulation. Indeed, $2 / \sqrt{3}$ is the worst possible ratio, as can be shown by using the result of [Raja91] that the Delaunay triangulation minimizes the radius of the maximum smallest enclosing circle, where the maximum is taken over all triangles. If the radius of this circle is 1 , then the longest edge of the Delaunay triangulation has length of at most 2. By the optimality result every minmax length triangulation has a smallest enclosing circle of radius at least 1 and therefore an edge of length at least $\sqrt{3}$ (see also [WGS90]).

The convex hull of S is the smallest convex polygon that contains S. We define $\operatorname{ch}(S)$ as the graph defined by the edges of this polygon. In the (degenerate) case in which three or more collinear points lie on the boundary of this polygon we think of each such point as a vertex of the polygon. Thus edges are taken only between adjacent collinear points. Each convex hull edge is an edge of every triangulation of S and therefore also of every minmax length triangulation.

An edge $a b$ belongs to the relative neighborhood graph of S, denoted by $r n g(S)$, if

$$
|a b| \leq \min _{x \in S-\{a, b\}} \max \{|x a|,|x b|\}
$$

This definition goes back to Toussaint [Tous80], who modified a similar definition by Lankford [Lank69] for use in pattern recognition. Alternatively, we can define the lune of $a b$ as the set $\left\{x \in \Re^{2}: \max \{|x a|,|x b|\}<|a b|\right\}$, and then define $\operatorname{rng}(S)$ as the set of edges $a b$ whose lunes have empty intersection with S.

A minimum spanning tree of S, denoted by $m s t(S)$, is a spanning tree of S that minimizes the total edge length; it also minimizes the maximum edge length.

All four graphs, $d t(S), \operatorname{ch}(S), r n g(S), m s t(S)$, are plane and connected, and, with the exception of $c h(S)$, they span S. Where convenient we will interpret these graphs as edge sets. Plainly, $\operatorname{ch}(S) \subseteq d t(S)$, and, as observed by Toussaint [Tous80], we also have $m s t(S) \subseteq r n g(S) \subseteq d t(S)$. Obviously, $c h(S) \subseteq m l t(S)$ for every minmax length triangulation $m l t(S)$, and we will show in $\S 4$ that there exists an $m l t(S)$ so that $r n g(S) \subseteq$ $m l t(S)$.
3. The global algorithm. As mentioned above, there exists a minmax length triangulation $m l t(S)$ that contains all edges of $c h(S)$ and $r n g(S)$. Because $c h(S) \cup r n g(S)$ is a connected graph, it decomposes the convex hull of S into simple polygonal regions, which we define as open sets, that contain no points of S. It is thus natural to construct $m l t(S)$ by computing $\operatorname{ch}(S) \cup r n g(S)$ and then (optimally) triangulating each polygonal region.

Strictly speaking, however, the polygonal regions are not necessarily simple polygons in the usual sense of the term, although their interiors are simply connected. The difference is that the interior of the closure of a polygonal region is not necessarily the same as the region itself; it may contain edges of the region, and it may be nonsimply connected. The most effective way to deal computationally with this minor difficulty is to represent each edge by a pair of oppositely directed edges and to represent the boundary of each region by the collection of directed edges for which the region lies on their left-hand side. In effect, this means that we interpret each polygonal region as a genuine simple polygon simply by pretending that its zero-width cracks are opened up a tiny amount. In most cases this is a convenient interpretation, and the notation will be adjusted accordingly. Only occasionally will the difference between a simple polygonal region and a simple polygon be uncovered.

Let us now formally specify the algorithm and give a preliminary analysis.

Input. \quad A set S of n points in \Re^{2}.
Output. A minmax length triangulation of S.
Algorithm. 1. Construct $c h(S)$ and $r n g(S)$.
2. Determine the polygonal regions defined by $\operatorname{ch}(S) \cup r n g(S)$.
3. Find a minmax length triangulation for each such polygonal region.

Step 1 can be carried out in time $O(n \log n)$ by using results documented in [PrSh85] and [Supo83] (see also [JKY90]). By using the standard quad-edge data structure of [GuSt85] for storing the plane graph $\operatorname{ch}(S) \cup r n g(S)$, step 2 can be accomplished in time $O(n)$. Finally, we can use dynamic programming to compute an optimal triangulation for each polygon in time cubic and storage quadratic in the number of its vertices (see [Klin80], [Gilb79]). This adds up to time $O\left(n^{3}\right)$ and storage $O\left(n^{2}\right)$. The correctness of the algorithm will be established in $\S 4$. Sections 5 and 6 will show how to speed up the algorithm to time $O\left(n^{2}\right)$ by using a specialized polygon triangulation algorithm.
4. The Subgraph Theorem. The main result of this section is what we call the Subgraph Theorem, which was announced earlier. We begin with two elementary geometry lemmas about distances between four points in convex and in nonconvex position.
\square-Lemma. For a convex quadrilateral abcd we have $|a b|+|c d|<|a c|+|b d|$.
Proof. Let x be the intersection point of the two diagonals $a c$ and $b d$. Clearly, $|a b|+$ $|c d|<(|a x|+|x b|)+(|c x|+|x d|)=|a c|+|b d|$.

In words, the total length of the two diagonals of a convex quadrilateral always exceeds the total length of two opposite sides. This is true even if three of the four vertices are collinear. It implies that if one diagonal is no longer than one of the edges, then the other diagonal is longer than the opposite edge.
Δ-LEMMA. Let a, b, c, d be four distinct points so that the closure of the triangle abc contains d. Then $|a d|<\max \{|a b|,|a c|\}$.

Proof. If a, b, c, d are collinear, the result is obvious. Otherwise, let d^{\prime} be the intersection of the edge $b c$ with the line passing through a and d, and note that $|a d| \leq\left|a d^{\prime}\right|$. Of all points on $b c$ only the endpoints can possibly maximize the distance to a. The assertion follows because if d^{\prime} is an endpoint of $b c$, then $d \neq d^{\prime}$ and therefore $a d$ is strictly shorter than $a d^{\prime}$.

Note that the length of the longest edge of any minimum spanning tree is no longer than the longest edge of any triangulation of S. This follows trivially from the fact that every triangulation contains a spanning tree. It is not very difficult to prove that the same is true for the relative neighborhood graph of S. First we need some notation. The circle with center x and radius ρ is denoted by (x, ρ), and the bisector of two points p and q is the set of points equidistant to both.

LengTh Lemma. Every triangulation of S contains an edge that is at least as long as the longest edge of $r n g(S)$.

Proof. Let $p q$ be the longest edge of $r n g(S)$, and let $t(S)$ be an arbitrary triangulation of S. If $p q \in t(S)$, there is nothing to prove. Otherwise, $p q$ intersects edges $r_{1} s_{1}, r_{2} s_{2}, \ldots, r_{k} s_{k}$ of $t(S)$, sorted from p to q, with all r_{i} on one side of the line through p and q and all s_{i} on the other. If $p q$ is longer than all edges in $t(S)$, then r_{1} and s_{1} are both inside the circle $C_{p}=(p,|p q|)$ because $p r_{1}$ and $p s_{1}$ are both edges of $t(S)$. By the definition of $r n g(S), r_{1}$ and s_{1} are thus outside or on the circle $C_{q}=(q,|p q|)$. Therefore, r_{1} and s_{1} lie in the half-plane of points closer to p than to q. Symmetrically, r_{k} and s_{k} lie inside C_{q} and outside or on C_{p} and therefore in the half-plane of points closer to q than to p. For each $1 \leq i \leq k-1$ we have either $r_{i}=r_{i+1}$ or $s_{i}=s_{i+1}$, which implies that
there is an index j so that r_{j} and s_{j} do not lie on the same side of the bisector of $p q$. But then the \square-Lemma implies that $\left|r_{j} s_{j}\right|>|p q|$ because $|p q|$ is no longer than each of two opposite edges of the convex quadrilateral $p r_{j} q s_{j}$, a contradiction.

The proof of the Subgraph Theorem is similar to that of the Length Lemma, although it is considerably more involved. The basic idea is to assume an extremal counterexample and to contradict its existence by retriangulating parts of it by using no long edges. In the following we first develop three facts that show the possibilities of retriangulations, and then we prove the theorem.

Let $t(S)$ be a minmax length triangulation of S that does not contain some edge $p q$ of $r n g(S)$. Suppose $p q$ intersects the triangles $t_{1}, t_{2}, \ldots, t_{k}$ of $t(S)$ sorted from p to q (see Fig. 1 left).

Fig. 1. To the left are the triangles of $t(S)$ that intersect $p q$. If we remove the edges that intersect $p q$ we get a polygon whose boundary is oriented in a counterclockwise order. The prefix P and the suffix Q defined for this configuration are illustrated to the right. Although b and a^{\prime} are the same point, they refer to different angles of this point.

The deletion of the edges that intersect $p q$ would result in a simply connected region, which can be interpreted (as in §3) as a polygonal region-we treat each edge in its boundary as a pair of edges with opposite direction, and we trace the boundary of the region by traversing all directed edges that have the region on their left side. Any two consecutive (directed) edges define an angle (see Fig. 1 middle). Note that a vertex can correspond to many angles, although the common situation is that it corresponds only to one. We will therefore sometimes ignore the difference between vertices and corresponding angles. Points p and q correspond to only one angle each. An angle is convex if the two defining edges form a left turn. Call the sequence of edges from p to q the lower chain, and the sequence from q to p the upper chain. Each chain contains at least one convex angle different from p and q.

A prefix is an initial subsequence of $t_{1}, t_{2}, \ldots, t_{k}$, and a suffix is a terminal subsequence of $t_{1}, t_{2}, \ldots, t_{k}$. We say that a prefix (suffix) covers an angle of the polygon if it contains all triangles incident to this angle. Let i be minimal so that the prefix $P=t_{1}, t_{2}, \ldots, t_{i}$ covers a convex angle other than p, and let j be maximal so that the suffix $Q=t_{j}, t_{j+1}, \ldots, t_{k}$ covers a convex angle other than $q . P$ and Q consist of at least two triangles each. We let b be the convex angle (vertex) covered by P-it is incident to both t_{i} and t_{i-1}-and we let d be the other vertex common to t_{i} and t_{i-1}. Furthermore, c is the third vertex of t_{i-1} and a is the third vertex of t_{i} (see Fig. 1 right). Symmetrically, define vertices $b^{\prime}, d^{\prime}, c^{\prime}, a^{\prime}$ of Q. We say that P (respectively, Q) is type 1 if the last (respectively, first) two triangles of P (respectively, Q) are the only ones incident to b
(respectively, b^{\prime}), and we say that it is type 2 otherwise (see Fig. 2). If P is type 1, then a, b, c belong to the same chain and d belongs to the other chain (this includes the case that $c=p$), and if P is type 2 , then a, b belong to one chain and c, d belong to the other.

Fig. 2. The definitions prefix P with vertices a, b, c, d and the suffix Q with vertices $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ depend on $p q$. P is type 1 , and Q is type 2 . For illustration purposes the constraint that all vertices must lie outside the lune of $p q$ has been ignored.

FACT 1. $P=t_{1}, t_{2}, \ldots, t_{i}$ and $Q=t_{j}, t_{j+1}, \ldots, t_{k}$ share at most two triangles, that $i s, i-1 \leq j$.

Proof. We show that since the suffix $R=t_{i-1}, t_{i}, \ldots, t_{k}$ covers at least one convex angle other than q, Q cannot be bigger than R. If P is type 1 , then R covers b, which is convex. Otherwise, R covers all angles between d and q, d included. Since all angles between p and d, p and d excluded, are nonconvex, at least one angle between d and q must be convex, and this angle is covered by R.

It should be clear that $a b c d$ and $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ are both convex quadrilaterals by the choice of their vertices. The next two facts imply that either $a b c d$ or $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ or both have alternate triangulations that use $a c$ or $a^{\prime} c^{\prime}$ while the maximum edge length of $t(S)$ is maintained. In other words, $b d$, or $b^{\prime} d^{\prime}$, or both can be switched. Formally, we call $b d$ (respectively, $b^{\prime} d^{\prime}$) switchable if $a c$ (respectively, $a^{\prime} c^{\prime}$) is no longer than the longest edge of $t(S)$. Fact 2 shows strong locality constraints for a and d (respectively, a^{\prime} and d^{\prime}) if $b d$ (respectively, $b^{\prime} d^{\prime}$) is not switchable. Define

$$
\begin{aligned}
& A=\left\{x \in \Re^{2}:|x p|>|p q| \text { and }|x p|>|x q|\right\} \text { and } \\
& D=\left\{x \in \Re^{2}:|x p| \geq|p q| \text { and }|x q|<|p q|\right\},
\end{aligned}
$$

with the understanding that A and a belong to one half-plane defined by the line passing through p and q and that D and d belong to the other (see Fig. 3).

FACT 2. If bd is not switchable then $a \in A$ and $d \in D$.
Proof. Since $b d$ is not switchable, $a c$ must be longer than the other five edges defined by a, b, c, d, and by the Length Lemma it must be longer than $p q$. We first show that $|a c| \leq|a p|$ and then derive the four inequalities needed to establish the claim.
(1) $|a c| \leq|a p|$. We can assume that $c \neq p$. Note that c is contained in the closure of triangle $b d p$. Since the line passing through b and d separates a from p, the closures of the two triangles $a b p$ and $a d p$ cover $b d p$ completely, and therefore one of them contains

Fig. 3. Regions A and D as defined for the case in which a is on the upper chain.
c. If c lies in the closure of $a b p$, the claim follows from $|a b|<|a c|$ and the Δ-Lemma for $a b p$, and if c lies in $a d p$, it follows from $|a d|<|a c|$ and the Δ-Lemma for $a d p$.
(2) $|a p|>|p q|$. From the Length Lemma we get $|p q|<|a c|$, and from (1) we get $|a c| \leq|a p|$.
(3) $|d q|<|p q|$. Assume $|d q| \geq|p q|$. The \square-Lemma for $p a q d$ implies $|a d|>|a p|$ and thus $|a d|>|a c|$ because of (1), a contradiction.
(4) $|d p| \geq|p q|$. This is immediate from (3) because $p q$ is an edge of $r n g(S)$.
(5) $|a p|>|a q|$. Assume $|a p| \leq|a q|$, and recall $|d p| \geq|p q|$ from (4). By the \square-Lemma for paqd we get $|a d|>|a q|$, which implies $|a d|>|a p|$ by assumption and $|a d|>|a c|$ by (1), a contradiction.

The proof of Fact 2 is now complete because (2) and (5) are equivalent to $a \in A$ and because (3) and (4) are equivalent to $d \in D$.

Symmetrically, we define regions A^{\prime} and D^{\prime}, which are where a^{\prime} and d^{\prime} must lie if $b^{\prime} d^{\prime}$ is not switchable. Using Facts 1 and 2, we can now show that there is always an edge that can be switched.

FACT 3. It is not possible that both bd and $b^{\prime} d^{\prime}$ are nonswitchable.
Proof. If $b d$ and $b^{\prime} d^{\prime}$ are both nonswitchable, then $a d$ lies on q 's side of the bisector of $p q$ and $a^{\prime} d^{\prime}$ lies on p 's side by Fact 2. Because of Fact 1 and because $a d$ is the last edge of P and $a^{\prime} d^{\prime}$ is the first edge of Q, we have $\left\{a, d, a^{\prime}, d^{\prime}\right\}=\{a, b, c, d\}=\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\}$. Furthermore, the fact that $b d$ and $b^{\prime} d^{\prime}$ are both edges of $t(S)$ implies that they are the same and thus that $b=d^{\prime}, d=b^{\prime}, a=c^{\prime}, c=a^{\prime}$ (see Fig. 4). It follows that the polygonal region has the shape of a diamond, with p, b, q, d as the only convex angles. This contradicts the locality constraints for a, b, c, d stated in Fact 2 . In particular, the chain from p to $d \in D$ (as indicated by the dotted chain in Fig. 4) is concave or straight and therefore enclosed by the circle $(q,|p q|)$. It follows that this chain is disjoint from A^{\prime}, which is where $c=a^{\prime}$, the predecessor of d in this chain, is supposed to lie.

With the above results and notations we now choose an extremal counterexample to prove the main result of this section.

SUBGRAPH THEOREM. Every finite point set S in \Re^{2} has a minmax length triangulation $m l t(S)$ so that $r n g(S) \subseteq m l t(S)$.

FIg. 4. If bd and $b^{\prime} d^{\prime}$ are both nonswitchable, then b and d are the only convex angles besides p and q.
Proof. We assume there is a set S so that no minmax length triangulation contains $r n g(S)$. Let $t(S)$ be a minmax length triangulation of S that satisfies the following extremal properties, where later properties are contingent on earlier ones.
(i) $t(S)$ minimizes the number of edges that intersect $p q$.
(ii) $t(S)$ minimizes the number of edges incident to b that intersect $p q$.
(iii) $t(S)$ minimizes the number of edges incident to b^{\prime} that intersect $p q$.

It is conceivable that $t(S)$ is not unique, but it will be sufficient to assume that $t(S)$ is any one of the remaining triangulations.

By Fact 3 either $b d$ or $b^{\prime} d^{\prime}$, or both are switchable. If $b d$ is switchable and P is type 1 , then the number of edges that intersect $p q$ decreases when $b d$ is switched. This contradicts property (i). Thus P must be type 2 if $b d$ is switchable, and, similarly, Q must be type 2 if $b^{\prime} d^{\prime}$ is switchable. When we switch $b d$, the degree of b decreases, which contradicts property (ii). Thus it must be that $b d$ is not switchable and that $b^{\prime} d^{\prime}$ is. But switching $b^{\prime} d^{\prime}$ decreases the degree of b^{\prime}, which would contradict property (iii) unless the degree of b increases at the same time. Remember that because (iii) is contingent on (ii), so if (ii) is not satisfied any more, then we cannot draw any conclusion. Thus the configuration left for analysis is as shown in Fig. 5.

Fig. 5. In the final configuration, because bd is nonswitchable, $a \in A$ and $d \in D$, and because $b^{\prime} d^{\prime}$ is switchable, so Q is type 2. Furthermore, because switching $b^{\prime} d^{\prime}$ to $a^{\prime} c^{\prime}$ increases the degree of b, so $a^{\prime}=b$, and therefore P and Q overlap in exactly one triangle. The figure ignores the fact that by rights all points should lie outside the lune of $p q$.

To reach the final contradiction we switch $b^{\prime} d^{\prime}$ and redefine Q on the basis of the new configuration. Since all angles from (the old) d^{\prime} to q are nonconvex, the new points b^{\prime} and a^{\prime} are the same as before and the new d^{\prime} is the old c^{\prime}. Thus we can again switch
$b^{\prime} d^{\prime}$, and so on, until Q is type 1 or $c^{\prime}=q$, at which point the next switch decreases the number of edges intersecting $p q$. This finally contradicts property (i).

Remark. A natural extension of minimizing the length of the longest edge in a triangulation is to also minimize the length of the second-longest edge, and so on. Let $m v t(S)$ be a triangulation that minimizes the entire vector of edge lengths in this fashion. If the points of S are in general position, then $\operatorname{mvt}(S)$ is unique. Curiously, it is not always true that (there is an) $m v t(S)$ (that) contains $r n g(S)$ as a subgraph. The smallest example that illustrates this observation consists of four points a, b, c, d so that c and d lie fairly close to $b, a b$ and $c d$ intersect, and c and d both lie outside the circle ($a,|a b|$).
5. Triangulating rng-polygons. The goal of this section and $\S 6$ is to improve the cubic-time algorithm of $\S 3$ to quadratic time. This is done by using a specialized polygon triangulation algorithm. The main part of the algorithm and the structural properties of minmax length triangulations that guarantee its correctness are developed in this section.

Recall that the first two steps of the algorithm in $\S 3$ decompose the convex hull of S into polygonal regions by drawing all edges of $\operatorname{ch}(S)$ and $r n g(S)$; these steps remain unaltered. Each region is represented by a cyclic chain of directed edges that trace its boundary in a counterclockwise order around the region. Because $r n g(S)$ is a connected graph that spans S, any polygonal region is bounded by at most one edge not in $r n g(S)$; this edge is in $\operatorname{ch}(S)-r n g(S)$. We call a polygonal region a complete rng-polygon if all its edges belong to $r n g(S)$, and we call it an incomplete rng-polygon otherwise.

Obviously, rng-polygons are not as general as arbitrary polygonal regions because for each edge $a b$, except possibly for one, the lune of $a b, \lambda_{a b}=\left\{x \in \Re^{2}: \max \{|a x|,|b x|\}\right.$ $<|a b|\}$, is free of points of S. We call $p q$ a diagonal of a polygonal region if it lies entirely in the region. For each diagonal $p q$ of an $r n g$-polygon it must be that $\lambda_{p q}$ contains at least one point of S. We further distinguish between the cases for which $\lambda_{p q}$ contains points of S on both sides of $p q$ and those for which it does not.

For a directed edge $\overrightarrow{p q}$ let $h_{\overrightarrow{p q}}$ be the set of points to the left of or on the directed line that passes through p and q in this order. Define the half-lune of $\overrightarrow{p q}$ as

$$
\eta_{\overrightarrow{p q}}=\lambda_{p q} \cap h_{\overrightarrow{p q}} .
$$

By definition, $\lambda_{p q}=\eta_{\overrightarrow{p q}} \cup \eta_{q \vec{q}}$, and we have $p q \in r n g(S)$ if and only if $\eta_{\overrightarrow{p q}} \cap S=\eta_{q \vec{p}} \cap S=$ \emptyset. We call $p q$ a 2-edge if both half-lunes contain points of S, and we call it a 1-edge if only one half-lune contains points of S. For a 1-edge $p q$ we say that the side where the halflune contains points of S is beyond $p q$ and that the other side is beneath $p q$. Note, for example, that if $p q$ is a 1 -edge bounding an incomplete $r n g$-polygon R, then $p q \in \operatorname{ch}(S)$ and therefore R is beyond $p q$. We will see later that 1 -edges are useful in triangulating $r n g$-polygons.

The first lemma of this section shows that when we triangulate an $r n g$-polygon R, whether complete or incomplete, we can ignore all points outside R. More specifically, it shows that the type of any diagonal or edge of R remains unchanged when we remove all points of S that are not vertices of R.

REDUCTION LEMMA. Let pq be a diagonal or edge of an rng-polygon R. If $\eta_{\overrightarrow{p q}}$ contains points of S, then it also contains vertices of R.

Proof. If we assume $\eta_{\overrightarrow{p q}}$ contains points of S but no vertices of R, then it must intersect edges of R without containing their endpoints. Let $y y^{\prime}$ be the edge closest to p and q, and let x be a point in $\eta_{\overrightarrow{p q}} \cap S$. Since x is not a vertex of R, it must lie on the other side of $y y^{\prime}$ as seen from p and q. So $y y^{\prime} \in \operatorname{rng}(S)-c h(S)$, and therefore $\max \left\{|x y|,\left|x y^{\prime}\right|\right\} \geq\left|y y^{\prime}\right|$. Assume without loss of generality that $|x y| \geq\left|y y^{\prime}\right|$. If y^{\prime} lies
outside or on the circle ($p,|p q|$), we consider the convex quadrilateral $p y x y^{\prime}$. Otherwise, y^{\prime} lies outside or on ($q,|p q|$), in which case we consider the convex quadrilateral $q y x y^{\prime}$. But now we have $|x y| \geq\left|y y^{\prime}\right|$ and either $\left|p y^{\prime}\right|>|p x|$ or $\left|q y^{\prime}\right|>|q x|$, a contradiction to the \square-Lemma in both cases.

Using the Reduction Lemma, we now address vertices visible from both endpoints of an edge. We need some notation. Two points x, y inside or on the boundary of a polygonal region are visible from each other if $x y$ is contained in the region. The distance of a point x to an edge $p q$ is defined as the infimum, over all points $z \in p q$, of $|x z|$. If $|p q|>\max \{|p x|,|q x|\}$, then this distance is referred to as the height of the triangle $p q x$.

Visibility Lemma. Let pq be a diagonal or edge of an rng-polygon R, and let x be a $v e r t e x ~ o f ~ R ~ t h a t ~ l i e s ~ i n ~ \eta_{\vec{p} q}$ and minimizes the distance from $p q$. Then x is visible from p and also from q.

Proof. Consider the triangle $p q x$, let $x^{\prime} \in p q$ be the point with minimum distance from x, and assume without loss of generality that x is not visible from q. Let $y y^{\prime}$ be an edge of R that intersects $q x$. The proof of the Reduction Lemma implies that at least one endpoint of $y y^{\prime}$ lies in $\eta_{\vec{p} q}$, say, $y \in \eta_{\vec{p} q}$. In addition, y and y^{\prime} lie outside the triangle $p q x$ because x is closest to $p q$ (see Fig. 6). Hence $y y^{\prime}$ intersects $x p, x q$, and all edges

Fig. 6. Quadrilateral $x y x^{\prime} y^{\prime}$ is convex because $x^{\prime} \in p q$ and $y, y^{\prime} \notin p q x$.
$x z$ with $z \in p q$. Thus $x y x^{\prime} y^{\prime}$ is a convex quadrilateral, and because of $\left|y x^{\prime}\right| \geq\left|x x^{\prime}\right|$ by the choice of x, we have $\left|y y^{\prime}\right|>\left|y^{\prime} x\right|$ from the \square-Lemma. By symmetry, if y^{\prime} lies in $\eta_{\overrightarrow{p q}}$, we have $\left|y y^{\prime}\right|>|x y|$, which implies $y y^{\prime} \notin r n g(S)$. This is a contradiction because $y y^{\prime} \notin c h(S)$. Thus y^{\prime} must lie outside $\eta_{\overrightarrow{p q}}$. If y^{\prime} lies outside or on the circle $(p,|p q|)$, then $\left|p y^{\prime}\right|>|p x|$ and therefore $|x y|<\left|y y^{\prime}\right|$ by the \square-Lemma for $p y^{\prime} x y$. Symmetrically, we get $|x y|<\left|y y^{\prime}\right|$ from the \square-Lemma for $q y^{\prime} x y$ if y^{\prime} lies outside or on the circle ($q,|p q|$). Together with $\left|x y^{\prime}\right|<\left|y y^{\prime}\right|$ this contradicts $y y^{\prime} \in r n g(S)$.

We need one more elementary lemma.
CONTAINMENT LEMMA. If $x \in \eta_{\overrightarrow{p q}}$, then $\eta_{\overrightarrow{x p}} \subseteq \lambda_{p q}$.
Proof. Take a point $z \in \eta_{\overrightarrow{x p}}$ and consider the four points p, q, x, z. If $z \in p q$, there is nothing to prove. Otherwise, $p z q x$ or $p q z x$ is a convex quadrilateral (possibly with three of the four vertices collinear) or $z \in p q x$. In each case $|q z|<|p q|$ can be shown by using the \square-Lemma or the Δ-Lemma. This implies that $z \in \lambda_{p q}$.

The following lemma is of fundamental importance to the quadratic-time triangulation algorithm.

1-Edge Lemma. Let pq be a 1-edge of an rng-polygon R, and let x be a vertex of R that lies in $\eta_{\overrightarrow{p q}}$ and minimizes the distance from $p q$. Then $p x$ is either an edge of R or a 1 -edge with $p q x$ beneath $p x$, and the same is true for $q x$.

Proof. We have $\eta_{\vec{x} \vec{p}} \subseteq \lambda_{p q}$ by the Containment Lemma. The part of $\eta_{\overrightarrow{x p}}$ in $\eta_{q \vec{p}}$ contains no point of S because $\eta_{q \vec{p}} \cap S=\emptyset$ by assumption. Also, the part of $\eta_{\overrightarrow{x p}}$ in $\eta_{\vec{p} q}$ contains no point of S because a point $y \in \eta_{\vec{x} p} \cap \eta_{\overrightarrow{p q}}$ would be closer to $p q$ than x is, as can be shown using the \square-Lemma for $p x^{\prime} y x$ (see Fig. 7). So $p x$ is an edge of R if $\eta_{p \vec{x}}$ contains no point of S either, and it is a 1-edge with triangle $p q x$ on its beneath side otherwise. The argument for $q x$ is symmetric.

Fig. 7. Vertex x is visible from p and from q, so $p q x$ is empty. It follows that if $y \in \eta_{\overrightarrow{x p}} \cap \eta_{\overrightarrow{p q}}$ then $p q y x$ is a convex quadrilateral.
5.1. Incomplete $r n g$-polygons. The above lemmas are sufficient for efficiently triangulating an incomplete $r n g$-polygon. As defined earlier, all edges of an incomplete $r n g$-polygon R are $r n g$-edges, except for one 1-edge, $p q \in \operatorname{ch}(S)-r n g(S)$, which has R on its beyond side. The algorithm below can triangulate more general incomplete $r n g$ polygons, that is, it is not necessary that $p q \in \operatorname{ch}(S)$, but it must be that $p q$ is a 1-edge and R lies beyond $p q$.

Input. An incomplete $r n g$-polygon R that lies beyond its 1-edge $p q$.
Output. A minmax length triangulation of R.
Algorithm. 1. Find a vertex x in $\lambda_{p q}$ that minimizes the distance from $p q$.
2. Draw edges $p x$ and $q x$. This decomposes R into the triangle $p q x$ and two possibly empty incomplete $r n g$-polygons R_{1} and R_{2}.
3. Recursively triangulate R_{1} and R_{2}.

The correctness of this algorithm follows from the 1-Edge Lemma. Indeed, it implies that if R_{1} is nonempty, then it lies beyond $p x$, which is the only 1-edge of R_{1}. Similarly, R_{2} lies beyond its 1 -edge $q x$, provided that R_{2} is nonempty. Thus the input invariant is maintained all the way through the recursion. This implies that the algorithm successfully triangulates. By the choice of point x, the edges $p x$ and $q x$ are both shorter than $p q$. It follows that the diagonals are monotonically decreasing in length down a single branch of the recursion, and therefore all diagonals constructed by the algorithm are shorter than $p q$. A straightforward implementation of the algorithm takes time that is quadratic in the number of vertices of R.

Remark. Instead of choosing a vertex x that minimizes the distance to $p q$, step 1 of the algorithm could also choose other vertices as long as they are visible from p and
q and lie in their lune. An interesting choice among these vertices is the vertex y that minimizes $\max \{|y p|,|y q|\}$. As long as y is unique, which is the nondegenerate case, this choice leads to a triangulation of the polygon R that lexicographically minimizes the sorted vector of edge lengths. Another possible choice is the vertex z that minimizes $|z p|+|z q|$. This vertex is automatically visible from p and from q and might be useful in actual implementations because it is often considerably less expensive to compute the distance between two points than between a point and a line segment.
5.2. Lemma on polygon retriangulation. This subsection presents a technical lemma on retriangulating a polygonal region. It will find application in $\S \S 5.3$ and 6 and is also of independent interest. In order to conveniently distinguish between boundary and nonboundary edges of a triangulation, we call a nonboundary edge a diagonal. Let X be a polygonal region, let $t(X)$ be a triangulation of X, and let $x x^{\prime}$ be a diagonal of X that is not in $t(X)$. We say that $x x^{\prime}$ generates $t(X)$ if it intersects every diagonal of $t(X)$. We give an algorithmic description of a particular triangulation of X, called the fan-out triangulation $f_{x}(X)$ with (fan-out) center x. The triangulation is illustrated in Fig. 8.

1. Connect x to all vertices of X that are visible from x. Call these vertices and also the two vertices connected to x by edges of X neighbors of x.
2. Two neighbors of x are said to be adjacent if they are consecutive in the angular order around x. Connect any two adjacent neighbors u, v of x unless $u v$ is an edge of X.
3. Every edge $u v$ created in step 2 decomposes X into two parts, and the part that does not contain x is called the pocket $X_{u v}$ of $u v$. Assume that u is the endpoint of $u v$ so that the other incident edge of the pocket $u w$ is partially visible from x. Recursively construct the fan-out triangulation of $X_{u v}$ with center v.

Fig. 8. Polygonal region X is triangulated by fanning out from x, connecting adjacent neighbors of x, and recursing in the thus created pockets. The illustration of this process is schematic and ignores some of the inherent shape constraints for X.

We introduce some terminology. Among the diagonals of $f_{x}(X)$ we distinguish between fan-out edges constructed in step 1 and cut-off edges constructed in step 2 of the above algorithm. Each call of the algorithm triangulates part of a pocket and recurses in each component (pocket) of the remainder. We call a pocket V a child of another pocket Z if $V \subset Z$ and V is maximal. The original polygonal region X is also called a pocket and forms the root of the tree defined by the child relation. This tree is exactly the recursion tree of the algorithm. Each pocket Z is associated with a fan-out center z. The maximum distance between z and any other vertex of Z is called the width of Z.

The lengths of the diagonals of $f_{x}(X)$ are constrained by the length of the longest edge of X, the length of the longest diagonal of $t(X)$, and the width of X. More specifically, we prove the following result.

Fan-Out Lemma. Let X be a polygonal region, with δ_{1} the length of its longest edge, let $t(X)$ be a triangulation of X, with δ_{2} the length of its longest diagonal, let $x x^{\prime}$ be a generator of $t(X)$, and let δ_{3} exceed the maximum distance of x from any vertex of X. Then $|a b|<\max \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ for every diagonal ab of $f_{x}(X)$.

Proof. Note that the assertion follows if we prove that $\max \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ exceeds the width of every pocket Z created during the algorithm. To see this notice that the width of Z is an upper bound on the length of any fan-out edge emanating from the center of Z. Each cut-off edge $u v$ that creates a child pocket V of Z is incident to the fan-out center of V, which implies that the width of V is an upper bound on its length.

The proof of the upper bound on the widths of all pockets proceeds inductively from the top to the bottom of the tree. The width of X is less than δ_{3} by assumption, and it is therefore also less than $\max \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. For the inductive step consider a pocket Z and a child V of Z. We show that the bound on the width of Z is inherited by V, with some environmental influence from X and $t(X)$. Let z be the fan-out center of Z, let δ be the width of Z, let v be the fan-out center of V, let $u v$ be the cut-off edge that creates V, and let w be the other vertex of V adjacent to u.

First, we prove $|u v|<\max \left\{\delta_{1}, \delta\right\}$. By the definition of a fan-out center, v lies inside the triangle $u w z$. The Δ-Lemma thus implies that $|u v|<\max \{|u w|,|u z|\}$, and we obtain the claimed inequality because $|u w| \leq \delta_{1}$ and $|u z| \leq \delta$. Second, we show that $\max \left\{\delta_{2}, \delta\right\}$ exceeds the maximum distance between v and any vertex of V other than u. Let $y \neq v, u$ be such a vertex, and let $y y^{\prime}$ be a diagonal of $t(X)$ that intersects $x x^{\prime}$. Such a diagonal exists because $x x^{\prime}$ generates $t(X)$. It follows that $y y^{\prime}$ intersects $u v$ and that therefore v lies inside the triangle $y y^{\prime} z$. Using the Δ-Lemma we get $|y v|<\max \left\{\left|y y^{\prime}\right|,|y z|\right\} \leq \max \left\{\delta_{2}, \delta\right\}$ because $\left|y y^{\prime}\right| \leq \delta_{2}$ and $|y z| \leq \delta$. The two bounds together imply that the width of V is less than $\max \left\{\delta_{1}, \delta_{2}, \delta\right\}$, and induction shows that it is less than $\max \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$.

In $\S 6$ we will need a result as given in the Fan-Out Lemma but restricted to the fan-out triangulation on one side of the generator. More specifically, we will need the following corollary whose proof is almost the same as the one of the Fan-Out Lemma.

Fan-Out Corollary. Suppose that W is a polygonal region, $t(W)$ is a triangulation of $W, x x^{\prime}$ is a generator of $t(W)$, and X is the part of W on one side of $x x^{\prime}$. Let δ_{1} be the length of the longest edge of X, let δ_{2} be the length of the longest diagonal of $t(W)$, and let δ_{3} exceed the maximum distance of x from any vertex of X. Then $|a b|<\max \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ for every diagonal ab of $f_{x}(X)$.

Remark. The Fan-Out Lemma can also be formulated without the assumption of an initial triangulation. The condition on the diagonal $x x^{\prime}$ is now that each vertex of X must be visible from some point of $x x^{\prime}$. The parameter δ_{2} needs to be redefined as the maximum, over all vertices y of X, of the infimum, over all points a of $x x^{\prime}$ visible from y, of the distance between y and a.
5.3. Complete $r n g$-polygons. It will be convenient to assume that no two diagonals and edges of the $r n g$-polygon R are equally long. With this assumption we can show that every triangulation of R, and therefore also every minmax length triangulation, contains a 2-edge. To see this take the longest edge $p q$ of a triangulation. It is not an edge of R because the third vertex of the incident triangle lies in its lune $\lambda_{p q}$. It is therefore a diagonal with incident triangles $p q r$ and $p q s$, and we have $r, s \in \lambda_{p q}$ by maximality of $p q$. Since r and s lie on different sides of $p q$ it follows that $p q$ is a 2-edge.

We prove below that there is a minmax length triangulation $m l t(R)$ of R that contains only one 2-edge $p q$. By the argument above $p q$ is the longest edge of $m l t(R)$. We call $p q$ expandable if there are vertices r and s in $\lambda_{p q}$, on different sides of $p q$ and both visible from p and q, so that $E=\{p r, q r, p s, q s\}$ is a set of $r n g$ - and 1-edges and the quadrilateral $p r q s$ lies beneath the 1-edges in E. It should be clear that once we draw an expandable 2-edge, we can complete the triangulation by using the algorithm for incomplete $r n g$-polygons (§5.1). The resulting triangulation uses no 2 -edge other than $p q$, which is thus the longest edge of the triangulation.

We first present the algorithm, and then we prove its correctness by showing that every complete $r n g$-polygon R has a minmax length triangulation that contains an expandable 2-edge. This, however, assumes that no two diagonals or edges of R have equal length. If this nondegeneracy constraint is not satisfied it is necessary to run the algorithm with a simulation of nondegeneracy; see [EdMü90]. The side effects of this simulation and how they can be undone will be discussed in §5.4.

Input. A complete $r n g$-polygon R.
Output. A minmax length triangulation of R.
Algorithm. 1. Find the shortest expandable 2-edge $p q$, together with corresponding $r n g$ - and 1 -edges $p r, q r, p s, q s$.
2. Triangulate the incomplete $r n g$-polygons defined by $p r, q r, p s, q s$.

As mentioned in $\S 5.1$, step 2 takes time that is only quadratic in the number of vertices of R. In $\S 6$ we will see how step 1 can be implemented so that it runs in quadratic time too. We now formulate and prove the lemma that implies the correctness of the algorithm.

2-Edge Lemma. Let R be a complete rng-polygon with no two diagonals or edges of the same length. Then there exists a minmax length triangulation $m l t(R)$ of R that contains an expandable 2 -edge.

Proof. We assume that there is no minmax length triangulation of R that contains an expandable 2-edge. A contradiction to this assumption will be derived by using a minmax length triangulation $t(R)$ that is defined as follows. Let $p q$ be the longest edge of $t(R)$, and let $p q r$ and $p q s$ be the incident triangles. By the nondegeneracy assumption $p q$ is the longest edge of every minmax length triangulation of R. Choose $t(R)$ so that the sum of heights of $p q r$ and $p q s$ (that is, the distance of r from $p q$ plus the distance of s from $p q$) is a minimum. We will prove below that $p q$ is expandable and that r and s are witnesses thereof, that is, that the quadrilateral $p r q s$ lies beneath every 1-edge in $E=\{p r, q r, p s, q s\}$.

Case 1. Assume that prqs lies beyond at least one 1-edge in E, say, beyond $p r$. Then we can retriangulate R on this side of $p r$ by using the algorithm for incomplete $r n g$ polygons. This algorithm removes edge $p q$, among others, and all new edges are shorter than $p r$, which itself is shorter than $p q$. This contradicts the assumption that $t(R)$ is a minmax length triangulation.

Case 2. Assume that one of the edges of E, say, $p r$, is a 2-edge, and assume without loss of generality that $r \in \eta_{\overrightarrow{p q}}$. Thus there is a nonempty set of vertices z of R contained in the half-lune $\eta_{r \vec{p}}$. By the Containment Lemma these vertices z lie in $\lambda_{p q}$, and by the Visibility Lemma a nonempty subset S^{\prime} of the z are visible from both p and r.

If a vertex z is in S^{\prime}, then either $p z \cap r q \neq \emptyset$ or $r z \cap p q \neq \emptyset$; see Fig. 9. Let S_{p}^{\prime} be the subset of vertices z of the first kind, and let S_{r}^{\prime} be the subset of vertices of the second kind. If $S_{p}^{\prime} \neq \emptyset$, choose $x \in S_{p}^{\prime}$ so that the number of edges of $t(R)$ that intersect $p x$,
is a minimum. Next, remove all edges from $t(R)$ that intersect $p x$, and denote by X the polygonal region thus generated. If, on the other hand, $S_{p}^{\prime}=\emptyset$, then choose $x \in S_{r}^{\prime} \neq \emptyset$ so that the number of edges in $t(R)$ that intersect $r x$ is a minimum, again remove all edges from $t(R)$ that intersect $r x$, and denote the resulting polygonal region by X. For convenient reference we set $x^{\prime}=p$ in the first case and $x^{\prime}=r$ in the second. In either case we construct a retriangulation $f_{x}(X)$ of X by fanning out from x, as described in §5.2.

Fig. 9. Points z lie in the interior of $\eta_{r_{\vec{p}}}-p q r$, which consists of one or two connected components, depending on whether or not the angle at r in triangle $p q r$ is nonacute.

We will show below that the new triangulation of R has properties that contradict the assumptions of case 2. Most important, the Fan-Out Lemma of §5.2, together with a few claims that we are about to prove, imply that the edges of $f_{x}(X)$ do not exceed $p q$ in length.

CLAIm 1. Except for x, all vertices of X lie outside the half-lune $\eta_{r \vec{p}}$.
Proof of Claim 1. Let $y_{1} y_{2}, y_{3} y_{4}, \ldots, y_{m-1} y_{m}$ be the edges, sorted from x^{\prime} to x, that are removed from $t(R)$ when X is constructed. Suppose that the claim is not true. Then there is a smallest index $j, 3 \leq j \leq m-1$, so that one endpoint of $y_{j} y_{j+1}$, say, y_{j+1}, is in $\eta_{r \vec{p}}$. Consider the polygonal region X_{j} of $t(R)$ that is created by removing the edges $y_{1} y_{2}, y_{3} y_{4}, \ldots, y_{j-2} y_{j-1}$ from $t(R)$. Since y_{j+1} is the only vertex of X_{j} that lies in $\eta_{\vec{r} \vec{p}}$, it is visible from p and from r, inside X_{j}. But this means that $y_{j+1} x^{\prime}$ intersects fewer edges of $t(R)$ than does $x x^{\prime}$. This contradicts the choice of x and completes the proof of Claim 1.

CLAim 2. For each vertex y of X we have $|x y|<|p q|$.
Proof of Claim 2. Clearly, both $p x$ and $r x$ are shorter than $p q$. So let y be any vertex different from p, r, x, and let $y y^{\prime}$ be an edge of $t(R)$ that intersects $x^{\prime} x$. Because of Claim 1, x is visible within X from p and also from r, so $p y x y^{\prime}$ and $r y x y^{\prime}$ are convex quadrilaterals. Since y^{\prime} lies outside $\eta_{\overrightarrow{r \boldsymbol{p}}}$ it cannot lie inside both of the circles $(p,|p r|)$ and $(r,|p r|)$. If y^{\prime} lies inside $(r,|p r|)$, then $\left|p y^{\prime}\right|>|p x|$ which implies $\left|y y^{\prime}\right|>|x y|$ by the \square-Lemma for $p y x y^{\prime}$. Otherwise, we have $\left|r y^{\prime}\right|>|r x|$ which implies $\left|y y^{\prime}\right|>|x y|$ by the \square-Lemma for $r y x y^{\prime}$. This concludes the proof of Claim 2 because $y y^{\prime}$ is an edge of $t(R)$ and is therefore no longer than $p q$.

Claim 2 and the Fan-Out Lemma imply that all diagonals of $f_{x}(X)$ are shorter than $p q$. In the case for which $p q \cap r x \neq \emptyset$ we now have a contradiction because the retriangulating process of X eliminates $p q$ and all edges of the resulting new triangulation of R are shorter than $p q$. In the case for which $r q \cap p x \neq \emptyset$ the new triangulation still includes $p q$. We will show below that the height of the new triangle incident to $p q$ is smaller than the height of $p q r$ and thus arrive at a contradiction.

So assume $r q \cap p x \neq \emptyset$; in this case $p q$ is an edge of the boundary of X and p is visible from x. If q is also visible from x, then the new triangle incident to $p q$ is $p q x$ with height $\left|x x^{\prime}\right|$, where $x^{\prime} \in p q$ minimizes the distance to x. Analogously, define $r^{\prime} \in p q$ that minimizes the distance to r. Since $|p r|>|p x|$, we have $\left|r r^{\prime}\right|>\left|x r^{\prime}\right|$ by the \square-Lemma for $p r x r^{\prime}$. Together with $\left|x r^{\prime}\right| \geq\left|x x^{\prime}\right|$, this implies $\left|r r^{\prime}\right|>\left|x x^{\prime}\right|$. If q is not visible from x, then $p q$ belongs to the pocket $X_{u v}$ defined by a cut-off edge $u v$. We have $u=p, w=q$, and the center v of $X_{u v}$ lies inside $p q x$. So again, either $p q v$ is a triangle, and its height is less than that of $p q x$ and therefore that of $p q r$, or q is not visible from v, in which case the argument can be repeated. Eventually, we arrive at a triangle incident to $p q$ whose height is less than that of $p q r$.

Remark. Recall that the assertion of the 2-Edge Lemma is made under the condition that no two diagonals or edges of the complete $r n g$-polygon R are equally long. Indeed, the assertion is false without this condition. Take, for example, two equilateral triangles $a b c$ and $a b d$ and move d slightly towards the common edge $a b$. For $S=\{a, b, c, d\}$ we have that $\operatorname{rng}(S)=\{a c, c b, b d, d a\}, a b$ is a 1-edge, and $c d$ is a 2-edge. So $a c b d$ is a complete $r n g$-polygon. There is only one minmax length triangulation of $a c b d$, namely, the one obtained by drawing the diagonal $a b$. But $a b$ is not a 2-edge.
5.4. Undoing the simulated perturbation. For every finite point set S in \Re^{2} there is an arbitrarily small perturbation S^{\prime} so that S^{\prime} satisfies convenient nondegeneracy assumptions (see [EdMü90]). For a point $p \in S$ we denote its perturbed version by p^{\prime}. In the case of relative neighborhood graphs and minmax length triangulations this means that no two pairs of points in S^{\prime} define the same distance. Because the perturbation is arbitrarily small, the nondegenerate properties of S are maintained, that is, for four not necessarily distinct points $p, q, r, s \in S$ with $|p q|<|r s|$ we have $\left|p^{\prime} q^{\prime}\right|<\left|r^{\prime} s^{\prime}\right|$.

Let us consider the effect of the perturbation on the computation of a minmax length triangulation. Clearly, if $p^{\prime} q^{\prime} \in r n g\left(S^{\prime}\right)$, then $p q \in r n g(S)$, but not vice versa. The fact that in the perturbed setting the relative neighborhood graph has potentially fewer edges than in the unperturbed setting does not adversely influence the triangulation algorithm since $r n g\left(S^{\prime}\right)$ is still connected and spans S^{\prime}. When the edges of $\operatorname{ch}\left(S^{\prime}\right)$ are added and the polygonal regions defined by $\operatorname{ch}\left(S^{\prime}\right) \cup r n g\left(S^{\prime}\right)$ are triangulated, it can happen that triangles $a^{\prime} b^{\prime} c^{\prime}$ are constructed whose unperturbed counterparts $a b c$ are flat, that is, a, b, c are collinear. Although this is not a problem for the algorithm, it is somewhat distressing when this triangulation is interpreted as a triangulation of S. The remainder of this section shows how to remedy this deficiency.

Let $t\left(S^{\prime}\right)$ be a minmax length triangulation of S^{\prime}, and consider its unperturbed version $t(S)$, that is, $p q \in t(S)$ if and only if $p^{\prime} q^{\prime} \in t\left(S^{\prime}\right)$. A longest edge of $t(S)$ is no longer than a longest edge of any minmax length triangulation $m l t(S)$ of S since $m l t\left(S^{\prime}\right)$, the perturbed version of $m l t(S)$, is a valid triangulation of S^{\prime} and would otherwise contradict that $t\left(S^{\prime}\right)$ is a minmax length triangulation of S^{\prime}. The reverse is also true, namely, that a longest edge of $t(S)$ is no shorter than a longest edge of $m l t(S)$. We show this by converting $t(S)$ into a minmax length triangulation of S.

Consider the dual graph $t^{*}\left(S^{\prime}\right)$ of $t\left(S^{\prime}\right)$, and call a node $a^{\prime} b^{\prime} c^{\prime}$ flat if a, b, c, are collinear. Determine the connected components of the subgraph of $t^{*}\left(S^{\prime}\right)$ induced by the set of all flat nodes. Each component corresponds to a collection of collinear points in S interconnected by flat triangles; see Fig. 10. Carry out the following steps for one component at a time. Remove all edges of the flat triangles of the component, sort the corresponding points along the supporting line, and add edges connecting points that are adjacent in the sorted order. This produces regions bounded by more than three edges, as shown in Fig. 10. All vertices x of such a region are collinear, except for one
vertex y that is connected to the first and last of the vertices x. Triangulate this region by connecting y to all other vertices x. By the Δ-Lemma the newly introduced edges are

Fig. 10. The five points in the middle of the left triangulation are the perturbed versions of five collinear points in the right triangulation.
6. Finding the shortest expandable 2-edge. This section shows how the first step of the algorithm for triangulating a complete $r n g$-polygon R can be made to run in time $O\left(n^{2}\right)$, where n is the number of vertices of R. As in $\S 5.3$, we assume that no two diagonals or edges of R are equally long; so the shortest expandable 2-edge is unique. For convenience we also assume that no three vertices of R are collinear.

Input. A complete $r n g$-polygon R.
Output. \quad The shortest expandable 2-edge of R.
Algorithm. 1. Determine the type of each diagonal $p q$ of R.
2. For each 2-edge $p q$ find vertices $p^{\prime}, p^{\prime \prime}, q^{\prime}, q^{\prime \prime}$ that minimize the counterclockwise angles $\angle p^{\prime} p q, \angle q p p^{\prime \prime}, \angle q^{\prime} q p, \angle p q q^{\prime \prime}$ contingent on $p p^{\prime}, p p^{\prime \prime}, q q^{\prime}, q q^{\prime \prime}$ being $r n g$-edges or 1-edges with $p q$ on their beneath sides (see Fig. 11).
3. Return the shortest 2-edge $p q$ for which $p p^{\prime}, q q^{\prime}, p p^{\prime \prime}, q q^{\prime \prime}$ are such that $p^{\prime}=q^{\prime \prime}$ or $p p^{\prime} \cap q q^{\prime \prime} \neq \emptyset$ and that $p^{\prime \prime}=q^{\prime}$ or $p p^{\prime \prime} \cap q q^{\prime} \neq \emptyset$.

Fig. 11. By the choice of p^{\prime} the counterclockwise angle $\angle p^{\prime} p q$ contains no 1-edge with $p q$ on its beneath side. Symmetric statements hold for $p^{\prime \prime}, q^{\prime}$, and $q^{\prime \prime}$.

Below we give the algorithmic details of the above steps.

Step 1. Classifying diagonals. For each vertex p of R we compute all incident diagonals $p q$ and their angular order around p. Furthermore, we determine whether or not the half-lune $\eta_{\overrightarrow{p q}}$ contains any vertex of R. Recall that by the Visibility Lemma $\eta_{\overrightarrow{p q}}$ contains a vertex visible from p if it contains a vertex of R at all. We can thus base the decision of whether or not $\eta_{\vec{p} q}$ is empty of vertices solely on the vertices visible from p. As defined earlier, $p q$ is a 2-edge if both half-lunes of $p q$ contain vertices of R. Otherwise, $p q$ is a 1 -edge and its beyond side is where the half-lune contains vertices of R. We now show that the computation for p can be done in time $O(n)$. It follows that $O\left(n^{2}\right)$ time suffices for Step 1.

Computing the sorted sequence of diagonals $p p_{1}, p p_{2}, \ldots, p p_{m}$ incident to p is a standard operation for simple polygons and can be done in time $O(n)$; see, e.g., [ElAv81], [JoSi87], [Lee83]. Let $p p_{0}$ and $p p_{m+1}$ be the two edges of R incident to p, and assume that $p_{0}, p_{1}, p_{2}, \ldots, p_{m}, p_{m+1}$ is in a counterclockwise order around p. To determine whether there is a vertex of R in the half-lune $\eta_{p \vec{p}_{i}}$ for $1 \leq i \leq m$, we scan the list $p_{0}, p_{1}, \ldots, p_{m+1}$ once, from smallest index to largest. During the scan we maintain a stack of diagonals $p p_{l}$ whose half-lunes $\eta_{p \vec{p}_{l}}$ are not yet found to contain any vertex of R. Before pushing $p p_{i}$ onto the stack, we remove all diagonals $p p_{l}$ whose half-lunes contain p_{i}. Using a straightforward extension of the Containment Lemma, we can show that the order of processing implies that the edges whose half-lunes contain p_{i} lie on top of the ones whose half-lunes do not contain p_{i}. Thus the former can be removed by simply repeatedly popping the topmost diagonal. When the scan is complete, the stack contains exactly all diagonals $p p_{l}$ whose half-lunes contain no vertex of R. Since a diagonal can be pushed and popped only once each, the entire process takes constant time per diagonal.

Step 2. Finding rng- and 1-edges. For each vertex p we scan $p p_{1}, p p_{2}, \ldots, p p_{m}$ in this order. In the process we keep track of the most recent $r n g$-edge or 1-edge $p \bar{p}$ whose beneath side is in the direction of the scan. Initially, $p \bar{p}=p p_{0}$. When a 2-edge $p q$ is encountered, then $p \bar{p}$ is the edge $p p^{\prime}$ that belongs to $p q$. A symmetric scan is carried out to find the edge $p p^{\prime \prime}$ that belongs to $p q$. The total time for all vertices p of R is clearly $O\left(n^{2}\right)$.

Step 3. Returning the solution. Step 3 is computationally trivial. It takes time $O\left(n^{2}\right)$ since constant time suffices to test whether or not $p p^{\prime}, p p^{\prime \prime}, q q^{\prime}, q q^{\prime \prime}$ satisfy the conditions of Step 3. However, it is not trivial to see that the edge $p q$ returned in Step 3 is also the shortest expandable 2-edge. First, note that the shortest expandable 2-edge is no shorter than $p q$. This is because all 2-edges shorter than $p q$ fail the test of Step 3. The following straightforward topological lemma implies that these 2-edges are not expandable.

CRossing Lemma. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the sequence of vertices of a simple polygon, and let $v_{1} v_{i}$ and $v_{j} v_{n}$ be two diagonals. Then $v_{1} v_{i} \cap v_{j} v_{n} \neq \emptyset$ if and only if $j<i$.

Proof. The edge $v_{j} v_{n}$ decomposes the polygon into two disjoint polygons with vertex sequences $v_{1}, v_{2}, \ldots, v_{j}, v_{n}$ and $v_{j}, v_{j+1}, \ldots, v_{n}$. If $j<i$, then neither of the two polygons has v_{1} and v_{i} on its boundary. It follows that $v_{1} v_{i}$ crosses from one polygon into the other, and because $v_{1} v_{i}$ is a diagonal, this is only possible by crossing $v_{j} v_{n}$. To prove the other direction we assume $v_{1} v_{i} \cap v_{j} v_{n} \neq \emptyset$ and observe that v_{1} and v_{i} belong to different polygons because there is no way that $v_{1} v_{i}$ can enter the second polygon and leave it again. Thus $j<i$.

So it remains to show that the edge $p q$ computed in Step 3 is indeed expandable.
EXPANDABILITY LEMMA. The shortest 2-edge pq of R that satisfies the conditions of Step 3 is also expandable.

Proof. We show below that R can be triangulated on both sides of $p q$ by using only edges shorter than $p q$. If we now assume that $p q$ is not expandable, we get a contradic-
tion to the 2-Edge Lemma because $p q$ is the longest edge of the triangulation and all expandable 2-edges are longer than $p q$.

We describe how to triangulate the part of R to the right of $\overrightarrow{p q}$; the other part is symmetric.

Case 1. $p^{\prime}=q^{\prime \prime}$. Assume that $\left|q q^{\prime \prime}\right|>\left|p p^{\prime}\right|$. Then $\left|q q^{\prime \prime}\right|<|p q|$, for otherwise $p \in \eta_{q^{\prime \prime} q}$ and $q q^{\prime \prime}$ would be neither an $r n g$-edge nor a 1-edge with $p q$ on its beneath side. If we apply the triangulation algorithm for incomplete $r n g$-polygons (§5.1), once for $p p^{\prime}$ and once for $q q^{\prime \prime}$, we obtain a triangulation with the desired properties.

Case 2. $p p^{\prime} \cap q q^{\prime \prime} \neq \emptyset$. In this case $p p^{\prime}$ and $q q^{\prime \prime}$ are 1-edges. Because $p p^{\prime}$ and $q q^{\prime \prime}$ intersect, it must be that p^{\prime} is closer to q than to p or that $q^{\prime \prime}$ is closer to p than to q. Assume without loss of generality that $\left|q^{\prime \prime} p\right|<\left|q^{\prime \prime} q\right|$. As in Case 1 , we also have $\left|q^{\prime \prime} q\right|<|p q|$, but note that we do not necessarily have $\left|p p^{\prime}\right|<|p q|$.

We now describe the triangulation process. It takes three steps, illustrated in Figs. 12 and 13.

1. Construct the triangulation $t_{q q^{\prime \prime}}$ of R beyond $q q^{\prime \prime}$ by using the algorithm for incomplete rng-polygons (see Fig. 12).
2. Find the subset V of vertices of R that lie inside the triangle $p q q^{\prime \prime}$, and compute the convex hull C of $V \cup\left\{p, q^{\prime \prime}\right\}$. Add the edges of C that are diagonals of R to the triangulation, and connect q to all vertices of C (see Fig. 12).
3. Step 2 creates untriangulated pockets $Y_{u v}$, one for each edge $u v$ of C that is a diagonal of R. Assume that u precedes v on the clockwise path from p to $q^{\prime \prime}$ on the boundary of C. The pocket $Y_{u v}$ is triangulated as follows.
3.1 Set $u_{L}:=v$ if $u v$ is a 1-edge and $p q$ lies on the beneath side of $u v$. Otherwise, find a vertex u_{L} so that $\left|u u_{L}\right|<|p q|, u u_{L}$ is a 1-edge, $p q$ lies beneath $u u_{L}$, and $u u_{L}$ does not intersect C. (The existence of such a vertex u_{L} will be established shortly.)
3.2 Construct the triangulation $t_{u u_{L}}$ of R beyond $u u_{L}$, again using the algorithm for incomplete rng-polygons, but retain only the triangles that lie completely inside the pocket $Y_{u v}$. Let $X_{u v}$ denote the untriangulated part of $Y_{u v}$.
3.3 Construct the fan-out triangulation $f_{v}\left(X_{u v}\right)$.

Fig. 12. The shaded portion represents the triangulation beyond $q q^{\prime \prime} ;$ it forms part of the final triangulation.
The remainder of the proof establishes that all diagonals of the thus constructed triangulation are shorter than $p q$. This is indeed obvious for $t_{q q^{\prime \prime}}$ as constructed in step 1. We now prove an easy extension of the Δ-Lemma that implies that all edges created in step 2 are shorter than $p q$.

Fig. 13. The shaded portion of the pocket $Y_{u v}$ represents the part of the triangulation $t_{u u_{L}}$ beyond $u u_{L}$ that is retained for the final triangulation. The remaining portion is triangulated by fanning out from v.

Claim 1. Let abc be a triangle, and let d,e be two points inside abc. Then $|d e|<$ $\max \{|a b|,|a c|,|b c|\}$.

Proof of Claim 1. Assume without loss of generality that e lies inside $a b d$. The Δ Lemma for $a b d$ implies that $|d e|<\max \{|a d|,|b d|\}$, and the same lemma for $a b c$ implies that $\max \{|a d|,|b d|\}<\max \{|a b|,|a c|,|b c|\}$. This completes the proof of Claim 1.

If $u u_{L}=u v$, then $\left|u u_{L}\right|<|p q|$ which implies that all edges of $t_{u u_{L}}$, as constructed in step 3.2, are shorter than $p q$. In this case the proof is complete since $X_{u v}=\emptyset$ and no edges are added to $Y_{u v}$ in step 3.3. For the remainder of the proof we thus assume that $u_{L} \neq v$, which is the case only if $\eta_{\vec{v} v}$ contains at least one vertex of R. We show that a vertex u_{L} satisfying the conditions of step 3.1 indeed exists, and that all edges of the fan-out triangulation $f_{v}\left(X_{u v}\right)$ are shorter than $p q$. Assume that the sequence of vertices of the part of R beyond $p p^{\prime}$ is $p=u_{1}, u_{2}, \ldots, q^{\prime \prime}=u_{K}, \ldots, u_{m}=p^{\prime}$ (see Fig. 13).

Claim 2. There exists a 1-edge $u u_{L}$ that satisfies the conditions of step 3.1.
Proof of Claim 2. Construct a triangulation $t_{p p^{\prime}}$ of R beyond $p p^{\prime}$ by using the algorithm for incomplete $r n g$-polygons. This triangulation contains at least one edge $u u_{l}$ disjoint from C. The main invariant of the algorithm (described in §5.1) implies that $u u_{l}$ is a 1-edge and that $p q$ lies on its beneath side. If $\left|u u_{l}\right|<|p q|$, then u_{l} satisfies the conditions for u_{L} and we are done.

So assume that $\left|u u_{l}\right|>|p q|$. As we showed for the Containment Lemma, we can show that the part of $\eta_{\vec{u} v}$ to the left of $u \vec{u}_{l}$ is contained in $\eta_{u \vec{u}_{l}}$ and thus contains no vertex of R. It follows that the vertices in $\eta_{\overrightarrow{u v}}$ must be among $u_{K+1}, u_{K+2}, \ldots, u_{l-1}$. By the Visibility Lemma at least one of these vertices is visible from u. Let U be the subset of vertices that are visible from u (including the ones outside $\eta_{u \vec{v}}$), and let $u_{L} \in U$ minimize the distance to u. We have $\left|u u_{L}\right|<|u v|<\left|u u_{l}\right|$ and, as above, the part of $\eta_{u \vec{u}_{L}}$ to the left of $u \vec{u}_{l}$ is contained in $\eta_{u \vec{u}_{l}}$. Therefore, this part contains no vertex of R. The part of $\eta_{u \vec{u}_{L}}$ to the right of $u \vec{u}_{l}$ contains no vertex of R by the choice of u_{L}. It follows that $u u_{L}$ is a diagonal that satisfies the conditions of step 3.1, which completes the proof of Claim 2.

We now show two easy facts about $t_{u u_{L}}$ before examining the edges constructed by step 3.3.

CLAim 3. If $u_{i} u_{j} u_{k}$, with $i<j<k$, is a triangle of $t_{u u_{L}}$, then $u_{i} u_{k}$ is its longest edge.
Proof of Claim 3. The first triangle constructed is $u_{I} u_{l} u_{L}$, for some $I<l<L$, and its longest edge is $u_{I} u_{L}$ because $u_{l} \in \lambda_{u_{I} u_{L}}$. The general assertion follows by induction, which completes the proof of Claim 3.

CLAIM 4. The edges of $t_{u u_{L}}$ that intersect $u v$, sorted from u to v, are monotonically decreasing in length.

Proof of Claim 4. If $u_{i} u_{j} u_{k}$, with $i<j<k$, intersects $u v, u=u_{I}$ and $v=u_{J}$, then either $I \leq i<j=i+1 \leq J<k$ or $I<i<J \leq j<k$ (see Fig. 13). In both cases $u_{i} u_{k}$ intersects $u v$ closer to u than the other intersecting edge, $u_{j} u_{k}$ or $u_{i} u_{j}$. By Claim 3 , $u_{i} u_{k}$ is longer than both, which implies the assertion.

Note that if we delete edges from $t_{u u_{L}}$ that intersect $u v$, then we get a polygonal region, say, $W_{u v}$, of which $X_{u v}$ is the part on one side of $u v$. We can thus interpret $u v$ as a generator of $t_{u u_{L}}$ restricted to $W_{u v}$. Since the edges of $X_{u v}$ and $t_{u u_{L}}$ are shorter than $|p q|$, we need to show only that all vertices of $X_{u v}$ are closer to v than $|p q|$, and the rest follows from the Fan-Out Corollary. Indeed, we prove a stronger bound on the maximum distance from v to a vertex of $X_{u v}$.

Claim 5. For each vertex x of $X_{u v}$ we have that $|v x| \leq|v u|$.
Proof of Claim 5. Consider the vertices of $X_{u v}$ in turn from $u=u_{I}$ to $v=u_{J}$, and assume inductively that $\left|v u_{i}\right| \leq|v u|$ for all $I \leq i<j$. Consider u_{j} and the triangle $u_{j-1} u_{j} u_{k}$ in $t_{u u_{L}}$. By Claim 4, we have that $\left|u_{j-1} u_{k}\right|>\left|u_{j} u_{k}\right|$. If $u_{j-1} u_{j} v u_{k}$ is a convex quadrilateral, then the \square-Lemma implies that $\left|v u_{j-1}\right|>\left|v u_{j}\right|$, as desired. Otherwise, u_{j} is contained in $v u_{k} u_{j-1}$ and therefore also in $v u u_{j-1}$. The Δ-Lemma implies $\left|v u_{j}\right|<$ $\max \left\{|v u|,\left|v u_{j-1}\right|\right\}$, which completes the proof of Claim 5 .

This also completes the proof of the lemma.
The following theorem summarizes the algorithmic implications of all of this.
MinMax Length Theorem. A minmax length triangulation of a set of n points in \Re^{2} can be constructed in time $O\left(n^{2}\right)$.

The algorithm that constructs a minmax length triangulation in the claimed amount of time is a combination of the algorithms given in $\S \S 3,5.1,5.3$, and 6 . Its correctness has been demonstrated in $\S \S 4,5.3$, and 6 .
7. Arbitrary normed metrics. An open convex region $D \subseteq \Re^{2}$ that is symmetric with respect to the origin can be used to impose a norm on \Re^{2} : for a point $x \in \Re^{2}$ define $\|x\|=\|x\|_{D}=\alpha$ if x lies on the boundary of $\alpha D=\left\{\alpha y \in \Re^{2}: y \in D\right\}$. The norm can then be used to impose a (normed) metric on \Re^{2} : for two points $x, y \in \Re^{2}$ define $|x y|=|x y|_{D}=\|y-x\|_{D} . D$ is the unit disk of the metric and the boundary of D is its unit circle. Notice that the three requirements for a metric are indeed satisfied. First, $|a b|=0$ if and only if $a=b$ because $\|x\|=0$ if and only if x is the origin. Second, $|a b|=|b a|$ because D is centrally symmetric and therefore $\|x\|=\|-x\|$. Third, the triangle inequality $|a c| \leq|a b|+|b c|$ follows from the convexity of D. Examples of normed metrics are the l_{p}-metrics, for $1 \leq p \leq \infty$, and the so-called A-metric discussed in [WWW85] for its applications to VLSI.

In this section we assume that the triangle inequality is strict unless a, b, c lie on a line in this order. This is the case if and only if the defining convex region D is strictly convex, that is, no line intersects the boundary of D in more than two points. This assumption is convenient and, in fact, without loss of generality since every convex but not strictly convex region D^{\prime} can be approximated arbitrarily closely by a strictly convex region D. Computationally, this approximation can be simulated by defining

$$
\|x\|_{D}=\|x\|_{D^{\prime}}+\epsilon\|x\|_{2},
$$

where $\|x\|_{2}$ is the Euclidean or l_{2}-norm and ϵ is an arbitrarily small but positive real number. Clearly, if ϵ is sufficiently small then a minmax length triangulation under D is also a minmax length triangulation under D^{\prime}.

In the remainder of this section we point out where the developments in $\S \S 2-6$ need to be adjusted when the Euclidean metric is replaced by an arbitrary normed metric. Most important, the graphs defined in $\S 2$ can be extended in a natural way. More specifically, the definition of $\operatorname{ch}(S)$ remains unchanged since it makes no reference to any distance notion. If we now stipulate that "circle" means a homothetic copy of the unit circle as defined above and " $|a b|$ " means the distance under the normed metric defined by D, then the definitions of $m l t(S), d t(S), r n g(S)$, and $m s t(S)$ can be taken verbatim. The minimum spanning tree $m s t(S)$ is connected and spans S, and the Delaunay triangulation $d t(S)$ is plane because any two circles intersect in at most two points. Since we still have $m s t(S) \subseteq r n g(S) \subseteq d t(S)$, we conclude that all three graphs are connected and plane and that they span S. We remark that these three graphs are not necessarily plane if D is not strictly convex.

As mentioned in §1, the developments in §2-6 are all based on a small number of basic facts, namely, the distance relations expressed by the \square-Lemma and the \triangle-Lemma, the convexity of the lune of an edge, and the straightness of the bisector of two points. The \square-Lemma and the \triangle-Lemma are direct consequences of the triangle inequality and hold in the stated form (with strict inequality) for arbitrary normed metrics as long as D is strictly convex. The lune of two points is clearly convex since it is the intersection of two homothetic copies of D. Unfortunately, the bisector of two points $p \neq q, \ell_{p q}=$ $\{x:|x p|=|x q|\}$, is not necessarily straight. Nevertheless, $\ell_{p q}$ is still a simple curve that divides \Re^{2} into two unbounded regions, called half-planes, one containing p and the other containing q. The two half-planes are star-shaped with respect to p and q, that is, any line through p or q intersects $\ell_{p q}$ in at most one point. In addition, $\ell_{p q}$ is symmetric with respect to $\frac{p+q}{2}$ because D is centrally symmetric.

There is only one place where the straightness of the bisector is used in a substantial way, and that is in the proof of Fact 3 in $\S 4$. We restate this fact and show how to prove it without using the straightness of the bisector. We suggest that the reader go back to $\S 4$ and review Facts 1 and 2. Recall, in particular, that $b d$ (respectively, $b^{\prime} d^{\prime}$) is said to be switchable if $a c$ (respectively, $a^{\prime} c^{\prime}$) is no longer than the longest edge of the triangulation $t(S)$.

FACT 3. It is not possible that both bd and $b^{\prime} d^{\prime}$ are nonswitchable.

Proof. As established in Fact 2, if $b d$ is nonswitchable, then a and d are contained in the open half-plane defined by $\ell_{p q}$ that contains q. Symmetrically, if $b^{\prime} d^{\prime}$ is nonswitchable, then, a^{\prime} and d^{\prime} are contained in the other open half-plane. Unlike in the Euclidean case, it is possible that $a d$ and $a^{\prime} d^{\prime}$ intersect $\ell_{p q}$. It is thus also possible that $a d$ precedes $a^{\prime} d^{\prime}$ in the order of edges sorted from p to q by their intersections with $p q$ (see Fig. 14). Below we will argue that if this is the case, then $a d$ (and symmetrically $a^{\prime} d^{\prime}$) is switchable. In particular, we show that $|a d|>|a p|$, which, together with $|a p| \geq|a c|$ from Fact 2, implies that $a d$ is switchable.

One characteristic of the described situation is that $a d$ intersects $\ell_{p q}$ in at least one point inside the lune of $p q$. Let x be such an intersection point closest to a. If $p q \cap d x \neq \emptyset$ then $p d q x$ is a convex quadrilateral with $|p d| \geq|p q|$ by construction. The \square-Lemma thus implies that $|d x|>|q x|=|p x|$. It follows that $|a d|=|a x|+|d x|>|a x|+|p x|>|a p|$. On the other hand, if $p q \cap d x=\emptyset$ then consider the point $y=a d \cap p q$ and note that $|p y| \leq|q y|$. We derive $|d y|>|p y|$ from $|p y|+|d y|>|p d| \geq|p q| \geq 2|p y|$. Therefore, $|a d|=|a y|+|d y|>|a y|+|p y|>|a p|$, as desired.

All other steps of the proof of the Subgraph Theorem go through unchanged for arbitrary normed metrics. We thus obtain the following generalization.

Fig. 14. Although a and d lie on q's side of the bisector and a^{\prime} and d^{\prime} lie on p 's side, ad intersects $p q$ closer to p than $a^{\prime} d^{\prime}$ does. This is not possible if the bisector is a line, as for the Euclidean metric, see Fig. 4.

General Subgraph Theorem. Let S be a finite point set in \Re^{2} equipped with a normed metric with strictly convex unit disk. Then S has a minmax length triangulation $m l t(S)$ so that $r n g(S) \subseteq m l t(S)$.

So the algorithm for computing a minmax length triangulation is clear-it is the same as for the Euclidean metric, only the length of edges is now measured in terms of a normed metric that is possibly different from the Euclidean metric. We assume that the length of an edge in this metric can be computed in constant time. A careful reexamination of $\S \S 5$ and 6 shows that the specialized polygon triangulation algorithm works also in the context of arbitrary normed metrics. We remark, however, that it includes the distance computation between a point and a line segment. Although it is certainly reasonable to assume that this can also be done in constant time, the observation in the remark at the end of $\S 5.1$ can be used to avoid this computation. We thus have the following algorithmic result, which generalizes the MinMax Length Theorem of $\S 6$.

General MinMax Length Theorem. Let S be a set of n points in \Re^{2} equipped with a normed metric with strictly convex unit disk. Given the relative neighborhood graph, a minmax length triangulation of S can be constructed in time $O\left(n^{2}\right)$.

The algorithmic result extends to arbitrary normed metrics. As mentioned above, a norm with nonstrictly convex unit disk can be simulated by one with strictly convex unit disk. It follows that the quadratic-time bound also holds for arbitrary normed metrics. The result stated in the General MinMax Length Theorem raises the question of how fast $r n g(S)$ can be constructed. The trivial algorithm tests all $\binom{n}{2}$ edges, each in time $O(n)$, and therefore takes time $O\left(n^{3}\right)$. Faster algorithms are known for the l_{p}-metrics for which $O(n \log n)$ time suffices (see [JKY90] and [Lee85]).
8. Discussion. The main contribution of this paper is the first polynomial-time algorithm for computing a minmax length triangulation of a set S of n points in \Re^{2}. Given the relative neighborhood graph of S, the algorithm takes time $O\left(n^{2}\right)$. The algorithm works for arbitrary normed metrics. The polynomial time bound follows because the
relative neighborhood graph of S can be found in polynomial time. The question of whether or not a minmax length triangulation can be computed in less than quadratic time remains.

The results of this paper are an outgrowth of our general efforts to understand triangulations that optimize length criteria. There are, however, still many related problems whose complexities remain open. These include the problem of minimizing the entire vector of edge lengths, the minimum length triangulation problem, and the maxmin length triangulation problem.

Acknowledgment. The authors thank an anonymous referee for suggestions on the organization of this paper.

REFERENCES

[ACNS82] M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi, Crossing-free subgraphs, Ann. Discrete Math., 12 (1982), pp. 9-12.
[BrZ170] J. Bramble and M. Zlának, Triangular elements in the finite element method, Math. Comput., 24 (1970), pp. 809-820.
[Del34] B. Delaunay, Sur la sphère vide, Izv. Akad. Nauk SSSR, Otdel. Mat. Estest. Nauk, 7 (1934), pp. 793-800.
[Edel87] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[EdMü90] H. Edelsbrunner and E. P. Mücke, Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graphics, 9 (1990), pp. 66-104.
[ETW92] H. Edelsbrunner, T. S. TAN, and R. Waupotitsch, An $O\left(n^{2} \log n\right)$ time algorithm for the minmax angle triangulation, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 994-1008.
[EIAv81] H. ElGindy and D. Avis, A linear algorithm for computing the visibility polygon from a point, J. Algorithms, 2 (1981), pp. 186-197.
[Gilb79] P. D. Gilbert, New results in planar triangulations, M. Sc. thesis, Department of Computer Science, University of Illinois, Urbana, IL, 1979.
[GuSt85] L. J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams, ACM Trans. Graphics, 4 (1985), pp. 74-123.
[JKY90] J. W. JAROMCZYK, M. Kowaluk, and F. F. Yao, An optimal algorithm for constructing β-skeletons in L_{p} metric, SIAM J. Comput., submitted.
[JoSi87] B. Joe and R. B. Simpson, Corrections to Lee's visibility polygon algorithm, BIT, 27 (1987), pp. 458-473.
[Klin80] G. T. Klincsek, Minimal triangulations of polygonal domains, Ann. Discrete Math., 9 (1980), pp. 121-123.
[Lank69] P. M. LANKFORD, Regionalization: Theory and alternative algorithms, Geographical Anal., 1 (1969), pp. 196-212.
[Laws77] C. L. Lawson, Software for C^{1} surface interpolation, in Mathematical Software III, J. R. Rice, ed., Academic Press, San Diego, CA, 1977, pp. 161-194.
[Lee83] D. T. Lee, Visibility of a simple polygon, Comput. Vision, Graphics, and Image Process., 22 (1983), pp. 207-221.
[Lee85] , Relative neighborhood graphs in the L_{1}-metric, Pattern Recognition, 18 (1985), pp. 327332.
[Ling87] A. Lingas, A new heuristic for minimum weight triangulation, SIAM J. Algebraic Discrete Meth., 8 (1987), pp. 646-658.
[Lloy77] E. L. Lloyd, On triangulations of a set of points in the plane, in Proc. 18th Annual IEEE Symposium on Foundations of Computer Science, 1977, pp. 228-240.
[PIHo87] D. A. Plaisted and J. Hong, A heuristic triangulation algorithm, J. Algorithms, 8 (1987), pp. 405-437.
[PrSh85] F. P. Preparata and M. I. Shamos, Computational Geometry - An Introduction, Springer-Verlag, New York, 1985.
[Raja91] V. T. Rajan, Optimality of the Delaunay triangulation in \Re^{d}, in Proc. 7th Annual ACM Symposium on Computational Geometry, 1991, pp. 357-363.
[Sibs78]
R. Sibson, Locally equiangular triangulations, Comput. J., 21 (1978), pp. 243-245.
[Supo83] K. J. SUPOWIT, The relative neighborhood graph, with an application to minimum spanning trees, J. Assoc. Comput. Mach., 30 (1983), pp. 428-448.
[Tous80] G. T. Toussaint, The relative neighbourhood graph of a finite planar set, Pattern Recognition, 12 (1980), pp. 261-268.
[WGS90] F. W. Wilson, R. K. Goodrich, and W. Spratte, Lawson's triangulation is nearly optimal for controlling error bounds, SIAM J. Numer. Anal., 27 (1990), pp. 190-197.
[Wism80] S. K. Wismath, Triangulations: An algorithmic study, Tech. Report 80-106, M. Sc. thesis, Department of Computer Science, Queen's University, Kingston, Ontario, Canada, 1980.
[WWW85] P. WIDMAYER, Y. F. WU, AND C. K. WONG, Distance problems in computational geometry with fixed orientation, in Proc. 1st Annual ACM Symposium on Computational Geometry, 1985, pp. 186-195.

[^0]: *Received by the editors March 20, 1991; accepted for publication (in revised form) March 4, 1992.
 ${ }^{\dagger}$ Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. The work of this author was supported by the National Science Foundation grants CCR-8921421.
 \ddagger Department of Information Systems and Computer Science, National University of Singapore, Republic of Singapore. The work of this author was done during his study leave at the University of Illinois at UrbanaChampaign.

