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A QUADRATIC TIME ALGORITHM FOR THE
MINMAX LENGTH TRIANGULATION*

HERBERT EDELSBRUNNER AND TIOW SENG TANt

Abstract. It is shown that a triangulation of a set ofn points in the plane that minimizes the maximum edge
length can be computed in time O(n2). The algorithm is reasonably easy to implement and is based on the
theorem that there is a triangulation with minmax edge length that contains the relative neighborhood graph
of the points as a subgraph. With minor modifications the algorithm works for arbitrary normed metrics.
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1. Introduction. A triangulation of a (finite) point set S in N2 is a maximal con-
nected straight-line plane graph whose vertices are the points of S. Maximality implies
that, with the exception of the unbounded face, each face of the graph is a triangle. The
number of different triangulations of S depends on n IS[ and on the relative location
of the points. As implied by a result in [ACNS82], 10ta’ is an upper bound on the num-
ber of triangulations of any set of n points in 2. Furthermore, if S is in convex position,
then it admits (4) > 2n-3 different triangulations. In order to choose an optimal
triangulation, under some criterion, it is thus not feasible to exhaustively search the set
of all triangulations.

Indeed, except for a handful of particular optimality criteria, the problem of finding
an optimal triangulation for a given point set is hard, that is, no polynomial-time algo-
rithms are known. Among these exceptions are the maxmin angle criterion [Sibs78],
the minmax angle criterion [ETW92], the minmax smallest enclosing circle criterion
[Raja91], and the minmax circumscribed circle criterion. The optimum under the first,
third, and fourth criteria is achieved by the Delaunay triangulation which can be con-
structed in time O(n log n) [De134], [PrSh85], [Ede187].

In this paper we study the complexity of minimizing the maximum edge length. A
triangulation that minimizes the length of its longest edge is called a minmax length trian-
gulation. It is related to the so-called minimum length (or minimum weight) triangulation
that minimizes the sum of the edge lengths. The latter problem has been studied by
Plaisted and Hong [PIHo87], Lingas [Ling87], and others. In spite of the lack of a proof
that the problem is NP-hard, no polynomial time algorithm for constructing a minimum
length triangulation is currently known. Even more annoying is the lack of a constant
approximation scheme, that is, an algorithm that in polynomial time constructs a triangu-
lation guaranteed to have total edge length of at most some constant times the optimum.
The current best approximation scheme, described in [P1Ho87], guarantees a factor of
O(log n).

In view of the apparent difficulty of computing minimum length triangulations, it
is somewhat surprising that we are able to provide a polynomial, in fact, a quadratic
time algorithm, for constructing a minrnax length triangulation. To our knowledge it is
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528 HERBERT EDELSBRUNNER AND TIOW SENG TAN

the first polynomial-time algorithm for this problem. Although there is evidence for the
potential usefulness of such a triangulation (see [BrZI70], [WGS90]), we consider the
additional insight into optimum triangulations under edge length criteria to be the main
contribution of this paper.

The reader might find it instructive to rule out seemingly promising approaches to
computing minmax length triangulations before diving into the occasionally involved
developments of the forthcoming sections. Note first that the Delaunay triangulation
does not minimize the maximum edge length (see also 2). Second, the incremental
greedy method, which repeatedly adds the shortest edge that does not intersect any pre-
viously added edge, also fails to minimize the maximum edge length. Third, let us take
a brief look at the decremental greedy method that throws away edges in the order of
decreasing length. It stops the deletion process if another deletion would render the
set of edges so that it does not contain any triangulating subset (see Wismath [Wism80,
p. 81]). The trouble with this approach is that it is not clear how to efficiently decide
whether the evolving edge set is still sufficient to triangulate the point set. Indeed, Lloyd
[Lloy77] proves that the general version of this problem (to decide whether a given edge
set contains a triangulation) is NP-complete. Finally, the iterative methods that use
the edge-flip [Laws77] or the more general edge-insertion operation [ETW92] can get
caught in local optima. The approach taken in this paper is entirely different from the
above paradigms.

The organization of this paper is as follows. Section 2 reviews a few results on rela-
tive neighborhood graphs and other subgraphs of the Del.aunay triangulation. Section 3
formulates the global algorithm; its straightforward implementation using dynamic pro-
gramming takes time O(na). The only intricate part of this algorithm is the proof of
correctness provided in 4. Sections 5 and 6 present a specialized polygon triangulation
algorithm that can be used to speed up the general algorithm to time O(n2). Whereas
2-6 assume that the Euclidean metric is used to measure length, 7 demonstrates that
all results extend to general normed metrics. Indeed, the arguments in 2-6 are ax-
iomatically derived from a few basic lemmas in order to minimize the number ofchanges
necessary to generalize the results. Finally, 8 briefly discusses the contributions of this
paper and states some related open problems.

2. Subgraphs of the Delaunay triangulation. Our approach to constructing a min-
max length triangulation first adds enough edges to decompose the plane into simple
polygonal regions and then (optimally) triangulates these regions. Both Plaisted and
Hong [P1Ho87] and Lingas [Ling87] used this approach to compute approximations of
the minimum length triangulation. In our case the initial set of edges is provided by the
(boundary of the) convex hull and the relative neighborhood graph of the point set S.
The remainder of this section formally introduces these graphs, along with the Delaunay
triangulation and the minimum spanning tree of S, and reviews some basic facts about
their relationships. If z, y, z are three points in 2, then zy denotes the relatively open
line segment with endpoints z and , Iz l denotes its length, and zlz denotes the open
triangle with vertices z, y, z.

The Delaunay angulation of S, denoted by dr(S), contains an edge ab, a, b E S, if
there is a circle through a and b so that all other points lie outside the circle. If the points
are in general position, then dt(S) is indeed a triangulation.

As mentioned in 1, the Delaunay triangulation does not minimize the length of the
longest edge. Take, for example, the points a (-2, 0), b (1, x/-), c (1,-v/-),
d (2 e, 0), with 0 < e < 1. They form a convex quadrilateral abdc, and the Delaunay
triangulation uses ad as the fifth edge. As e approaches 0 the length of ad approaches
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MINMAX LENGTH TRIANGULATION 529

2/x/ times the length of the longest edge in the alternative triangulation. Indeed, 2/x/
is the worst possible ratio, as can be shown by using the result of [Raja91] that the Delau-
nay triangulation minimizes the radius of the maximum smallest enclosing circle, where
the maximum is taken over all triangles. If the radius of this circle is 1, then the longest
edge of the Delaunay triangulation has length of at most 2. By the optimality result ev-
ery minmax length triangulation has a smallest enclosing circle of radius at least 1 and
therefore an edge of length at least (see also [WGS90]).

The convex hull of S is the smallest convex polygon that contains S. We define ch(S)
as the graph defined by the edges of this polygon. In the (degenerate) case in which three
or more collinear points lie on the boundary of this polygon we think of each such point
as a vertex of the polygon. Thus edges are taken only between adjacent collinear points.
Each convex hull edge is an edge of every triangulation of S and therefore also of every
minmax length triangulation.

An edge ab belongs to the relative neighborhood graph of S, denoted by rn9(S), if

labl _< rain max{lxl,

This definition goes back to Toussaint [TousS0], who modified a similar definition by
Lankford [Lank69] for use in pattern recognition. Alternatively, we can define the lune
of ab as the set (x e 2 max(ixal ixbl } < labl}, and then define rng(S) as the set of
edges ab whose lunes have empty intersection with S.

A minimum spanning tree of S, denoted by mst(S), is a spanning tree of S that
minimizes the total edge length; it also minimizes the maximum edge length.

All four graphs, dr(S), ch(S), rng(S), rest(S), are plane and connected, and, with
the exception of ch(S), they span S. Where convenient we will interpret these graphs
as edge sets. Plainly, ch(S) c_ dr(S), and, as observed by Toussaint [Tous80], we also
have mst(S) c_ rng(S) c_ dr(S). Obviously, ch(S) c_ mlt(S) for every minmax length
triangulation mlt(S), and we will show in 4 that there exists an mlt(S) so that rng(S) c_

3. The global algorithm. As mentioned above, there exists a minmax length trian-
gulation mlt(S) that contains all edges of ch(S) and rng(S). Because ch(S) tO rng(S)
is a connected graph, it decomposes the convex hull of S into simple polygonal regions,
which we define as open sets, that contain no points of S. It is thus natural to construct
mlt(S) by computing ch(S) t_J rng(S) and then (optimally) triangulating each polygonal
region.

Strictly speaking, however, the polygonal regions are not necessarily simple poly-
gons in the usual sense of the term, although their interiors are simply connected. The
difference is that the interior of the closure of a polygonal region is not necessarily the
same as the region itself; it may contain edges of the region, and it may be nonsimply
connected. The most effective way to deal computational!y with this minor difficulty
is to represent each edge by a pair of oppositely directed edges and to represent the
boundary of each region by the collection of directed edges for which the region lies on
their left-hand side. In effect, this means that we interpret each polygonal region as a
genuine simple polygon simply by pretending that its zero-width cracks are opened up a
tiny amount. In most cases this is a convenient interpretation, and the notation will be
adjusted accordingly. Only occasionally will the difference between a simple polygonal
region and a simple polygon be uncovered.

Let us now formally specify the algorithm and give a preliminary analysis.
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530 HERBERT EDELSBRUNNER AND TIOW SENG TAN

Input. A set S of n points in .
Output. A minmax length triangulation of S.

Algorithm. 1. Construct ch(S) and rng(S).
2. Determine the polygonal regions defined by ch(S) tA rng(S).
3. Find a minmax length triangulation for each such polygonal region.

Step 1 can be carried out in time O(n log n) by using results documented in [PrSh85]
and [Supo83] (see also [JKY90]). By using the standard quad-edge data structure of
[GuSt85] for storing the plane graph ch(S) tA rn#(S), step 2 can be accomplished in time
O(n). Finally, we can use dynamic programming to compute an optimal triangulation
for each polygon in time cubic and storage quadratic in the number of its vertices (see
[Klin80], [Gilb79]). This adds up to time O(n3) and storage O(n2). The correctness of
the algorithm will be established in 4. Sections 5 and 6 will show how to speed up the
algorithm to time O(n) by using a specialized polygon triangulation algorithm.

4. The Subgraph Theorem. The main result of this section is what we call the Sub-
graph Theorem, which was announced earlier. We begin with two elementary geometry
lemmas about distances between four points in convex and in nonconvex position.

t:]-LEMMA. For a convex quadrilateral abcd we have labl / led[ < laal / Ibdl.
Proof. Let x be the intersection point of the two diagonals ac and bd. Clearly, labl /

Icdl < (laxl / Ixbl)/ (Iczl / Ixdl) -lacl / Ibdl.
In words, the total length of the two diagonals of a convex quadrilateral always ex-

ceeds the total length of two opposite sides. This is true even if three of the four vertices
are collinear. It implies that if one diagonal is no longer than one of the edges, then the
other diagonal is longer than the opposite edge.

A-LEMMA. Let a, b, c, d be four distinct points so that the closure of the triangle abc
contains d. Then lad < max{labl, lacl).

Proof. If a, b, c, d are collinear, the result is obvious. Otherwise, let d’ be the inter-
section of the edge bc with the line passing through a and d, and note that lad <_ lad’[.
Of all points on bc only the endpoints can possibly maximize the distance to a. The as-
sertion follows because if d’ is an endpoint of bc, then d d’ and therefore ad is strictly
shorter than ad’. [3

Note that the length of the longest edge of any minimum spanning tree is no longer
than the longest edge of any triangulation of S. This follows trivially from the fact that
every triangulation contains a spanning tree. It is not very difficult to prove that the same
is true for the relative neighborhood graph of S. First we need some notation. The circle
with center x and radius p is denoted by (x, p), and the bisector of two points p and q is
the set of points equidistant to both.

LENGTH LEMMA. Every triangulation of S contains an edge that is at least as long as
the longest edge of rng(S).

Proof. Let pq be the longest edge of rng(S), and let t(S) be an arbitrary triangu-
lation of S. If pq E t(S), there is nothing to prove. Otherwise, pq intersects edges
rl Sl, rs,..., rksk of t(S), sorted from p to q, with all ri on one side of the line through
p and q and all si on the other. If pq is longer than all edges in t(S), then rl and sl are
both inside the circle Up (p, [pq[) because prl and psl are both edges of t(S). By the
definition ofrn(S), rx and s are thus outside or on the circle Cq (q, IPql). Therefore,
r and Sl lie in the half-plane of points closer to p than to q. Symmetrically, rk and s lie
inside C’q and outside or on C’p and therefore in the half-plane of points closer to q than
to p. For each 1 < i < k 1 we have either ri ri+l or si si+, which implies that
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MINMAX LENGTH TRIANGULATION 531

there is an index j so that r and 85 do not lie on the same side of the bisector ofpq. But
then the ra-Lemma implies that Irsl > IPq] because Ipql is no longer than each of two
opposite edges of the convex quadrilateral prqs, a contradiction.

The proof of the Subgraph Theorem is similar to that of the Length Lemma, al-
though it is considerably more involved. The basic idea is to assume an extremal coun-
terexample and to contradict its existence by retriangulating parts of it by using no long
edges. In the following we first develop three facts that show the possibilities of retrian-
gulations, and then we prove the theorem.

Let t(S) be a minmax length triangulation of S that does not contain some edge pq
of rng(S). Suppose pq intersects the triangles tl, t2,..., tk of t(S) sorted from p to q
(see Fig. 1 left).

P q P q ,q=c’

FG. 1. To the left are the triangles of t(S) that intersect pq. Ifwe remove the edges that intersect pq we get
a polygon whose boundary is oriented in a counterclockwise order. The prefix P and the sufftx Q defined for this
configuration are illustrated to the right. Although b and a are the samepoint, they refer to different angles ofthis
point.

The deletion of the edges that intersectpq would result in a simply connected region,
which can be interpreted (as in 3) as a polygonal region--we treat each edge in its
boundary as a pair of edges with opposite direction, and we trace the boundary of the
region by traversing all directed edges that have the region on their left side. Any two
consecutive (directed) edges define an angle (see Fig. 1 middle). Note that a vertex
can correspond to many angles, although the common situation is that it corresponds
only to one. We will therefore sometimes ignore the difference between vertices and
corresponding angles. Points p and q correspond to only one angle each. An angle is
convex if the two defining edges form a left turn. Call the sequence of edges from p to
q the lower chain, and the sequence from q to p the upper chain. Each chain contains at
least one convex angle different from p and q.

Aprefix is an initial subsequence of tl,t2,... ,tk, and a suffix is a terminal subse-
quence of tl,t,... ,t. We say that a prefix (suttLx) covers an angle of the polygon
if it contains all triangles incident to this angle. Let i be minimal so that the prefix
P tl, t2,..., t covers a convex angle other than p, and let j be maximal so that the
sufl Q re, re+x,..., tk covers a convex angle other than q. P and Q consist of at least
two triangles each. We let b be the convex angle (vertex) covered by P--it is incident to
both t and t_1--and we let d be the. other vertex common to t and t_1. Furthermore,
c is the third vertex of ti-1 and a is the third vertex of ti (see Fig. 1 right). Symmetri-
cally, define vertices b’, d’, c’, a’ of Q. We say that P (respectively, Q) is type 1 if the last
(respectively, first) two triangles of P (respectively, Q) are the only ones incident to b
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532 HERBERT EDELSBRUNNER AND TIOW SENG TAN

(respectively, b’), and we say that it is type 2 otherwise (see Fig. 2). If P is type 1, then
a, b, c belong to the same chain and d belongs to the other chain (this includes the case
that c p), and if P is type 2, then a, b belong to one chain and c, d belong to the other.

b d’

C a

P q

type 1 type 2

Fro. 2. The definitions prefix P with vertices a, b, c, d and the sufftx Q with vertices a’, b’, c’, d’ depend on
pq. P is type 1, and Q is type 2. For illustration purposes the constraint that all vertices must lie outside the lune of
pq has been ignored.

FACT 1. P tl, t2,. ti and Q tj, tj+x,..., tk share at most two triangles, that
is, i-l<_j.

Proof. We show that since the suffix R t_, t,..., tk covers at least one convex
anl other than q, Q cannot be bier than R. If P is type 1, then R covers b, which
is convex. Otherwise, R covers all angles between d and q, d included. Since all anles
between p and d, p and d excluded, are nonconvex, at least one anl between d and q
must be convex, and this angle is covered by R.

It should be clear that abcd and a’b’c’d’ are both convex quadrilaterals by the choice
of their vertices. The next two facts imply that either abcd or a’b’c’d’ or both have alter-
nate triangulations that use ac or a’c’ while the maximum edge length of t(S) is main-
tained. In other words, bd, or b’, or both can be switched. Formally, we call bd (re-
spectively, b’d’) switchable if ac (respectively, a’c’) is no longer than the longest edge of
t(S). Fact 2 shows strong locality constraints for a and d (respectively, a’ and d’) if bd
(respectively, b’d’) is not switchable. Define

A {x e =" Ipl > Ipql and Ixp[ > Iql} and

D {x e " Ipl IPql and Iql < Ipql},

with the understanding that A and a belong to one half-plane defined by the line passing
through p and q and that D and d belong to the other (see Fig. 3).

FACT 2. If bd is not switchable then a E A and d D.
Proof. Since bd is not switchable, ac must be longer than the other five edges defined

by a, b, c, d, and by the Length Lemma it must be longer than pq. We first show that
lacl < lap[ and then derive the four inequalities needed to establish the claim.

(1) lacl <_ Ipl. We can assume that c # p. Note that c is contained in the closure of
triangle bdp. Since the line passing through b and d separates a from p, the closures of
the two triangles abp and adp cover bdp completely, and therefore one of them contains
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MINMAX LENGTH TRIANGULATION 533

FIG. 3. Regions A and D as definedfor the case in which a is on the upper chain.

c. If c lies in the closure of abp, the claim follows from labl < lacl and the A-Lemma for
abp, and if c lies in adp, it follows from ladl < lacl and the A-Lemma for adp.

(2) lapl > Ipql. From the Length Lemma we get IPq[ < lacl, and from (1) we get
lacl <_ lapl.

(3) Idql < IPql. Assume Idql > IPql. The -Lemma for paqd implies ladl > lapl and
thus ladl > lacl because of (1), a contradiction.

(4) Idpl >_ Ipql. This is immediate from (3) because pq is an edge of rng(S).
(5) lapl > laql. Assume lapl <_ laql, and recall Idpl > Ipql from (4). By the t:l-Lemma

for paqd we get ladl > laql, which implies ladl > lapl by assumption and ladl > lacl by
(1), a contradiction.

The proof of Fact 2 is now complete because (2) and (5) are equivalent to a E A and
because (3) and (4) are equivalent to d E D. U

Symmetrically, we define regions A’ and D’, which are where a’ and d’ must lie if
b’d’ is not switchable. Using Facts 1 and 2, we can now show that there is always an edge
that can be switched.

FACT 3. It is notpossible that both bd and b’d’ are nonswitchable.
Proof. If bd and b’d’ are both nonswitchable, then ad lies on q’s side of the bisector

ofpq and a’d’ lies on p’s side by Fact 2. Because of Fact 1 and because ad is the last edge
of P and a’d’ is the first edge of Q, we have {a, d, a’, d’} {a, b, c, d} {a’, b’, c’, d’}.
Furthermore, the fact that bd and b’d’ are both edges of t(S) implies that they are the
same and thus that b d’, d b’, a c’, c a’ (see Fig. 4). It follows that the
polygonal region has the shape of a diamond, with p, b, q, d as the only convex angles.
This contradicts the locality constraints for a, b, c, d stated in Fact 2. In particular, the
chain from p to d D (as indicated by the dotted chain in Fig. 4) is concave or straight
and therefore enclosed by the circle (q, IPql). It follows that this chain is disjoint from
A’, which is where c a’, the predecessor of d in this chain, is supposed to lie. [-1

With the above results and notations we now choose an extremal counterexample
to prove the main result of this section.

SUBGRAPH THEOREM. Every finite point set S in has a minmax length tangula-
tion mlt(S) so that rng(S) c_ mlt(S).
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534 HERBERT EDELSBRUNNER AND TIOW SENG TAN

q

FIG. 4. Ifbd and b’d’ are both nonswitchable, then b and d are the only convex angles besides p and q.

Proof. We assume there is a set S so that no minmax length triangulation contains
rng(S). Let t(S) be a minmax length triangulation of S that satisfies the following ex-
tremal properties, where later properties are contingent on earlier ones.

(i) t(S) minimizes the number of edges that intersect pq.
(ii) t(S) minimizes the number of edges incident to b that intersect pq.
(iii) t(S) minimizes the number of edges incident to b’ that intersect pq.

It is conceivable that t(S) is not unique, but it will be sufficient to assume that t(S) is any
one of the remaining triangulations.

By Fact 3 either bd or b’d’, or both are switchable. If bd is switchable and P is type 1,
then the number of edges that intersect pq decreases when bd is switched. This contra-
dicts property (i). Thus P must be type 2 if bd is switchable, and, similarly, Q must be type
2 if b’d’ is switchable. When we switch bd, the degree of b decreases, which contradicts
property (ii). Thus it must be that bd is not switchable and that b’d’ is. But switching b’d’
decreases the degree of b’, which would contradict property (iii) unless the degree of b
increases at the same time. Remember that because (iii) is contingent on (ii), so if (ii) is
not satisfied any more, then we cannot draw any conclusion. Thus the configuration left
for analysis is as shown in Fig. 5.

//

-...[. ,td=d,

FIG. 5. In the final configuration, because bd is nonswitchable, a E A and d D, and because btd’ is
switchable, so Q is type 2. Furthermore, because switching Ud to a c increases the degree of b, so a b, and
therefore P and Q overlap in exactly one triangle. The figure ignores the fact that by rights all points should lie
outside the lune ofpq.

To reach the final contradiction we switch b’d’ and redefine Q on the basis of the
new configuration. Since all angles from (the old) d’ to q are nonconvex, the new points
b’ and a’ are the same as before and the new d’ is the old c’. Thus we can again switch
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MINMAX LENGTH TRIANGULATION 535

b’d’, and so on, until Q is type 1 or c’ q, at which point the next switch decreases the
number of edges intersecting pq. This finally contradicts property (i).

Remari A natural extension of minimizing the length of the longest edge in a tri-
angulation is to also minimize the length of the second-longest edge, and so on. Let
mvt(S) be a triangulation that minimizes the entire vector of edge lengths in this fash-
ion. If the points of S are in general position, then tort(S) is unique. Curiously, it is not
always true that (there is an) mv(S) (that) contains rng(S) as a subgraph. The smallest
example that illustrates this observation consists of four points a, b, c, d so that c and d
lie fairly close to b, ab and cd intersect, and c and d both lie outside the circle (a, labl).

5. Triangulating rng-polygons. The goal of this section and 6 is to improve the
cubic-time algorithm of 3 to quadratic time. This is done by using a specialized polygon
triangulation algorithm. The main part of the algorithm and the structural properties of
minmax length triangulations that guarantee its correctness are developed in this section.

Recall that the first two steps of the algorithm in 3 decompose the convex hull of
S into polygonal regions by drawing all edges of ch(S) and me(S); these steps remain
unaltered. Each region is represented by a cyclic chain of directed edges that trace its
boundary in a counterclockwise order around the region. Because rng(S) is a connected
graph that spans S, any polygonal region is bounded by at most one edge not in rn(S);
this edge is in ch(S) rng(S). We call a polygonal region a complete rag-polygon if all
its edges belong to me(S), and we call it an incomplete rag-polygon otherwise.

Obviously, me-polygons are not as general as arbitrary polygonal regions because
for each edge ab, except possibly for one, the lune of ab, ’ab {Z E
< lab }, is free of points of S. We call pq a diagonal of a polygonal region if it lies entirely
in the region. For each diagonal pq of an rng-polygon it must be that A,q contains at least
one point of S. We further distinguish between the cases for which Apq contains points
of S on both sides of pq and those for which it does not.

For a directed edge q let hq be the set of points to the left of or on the directed
line that passes through p and q in this order. Define the half-lune ofq as

V]q Apq CI hq.

By definition, q q, andwe have pq rng(S) if and only ifr/S r]@S
0. We call pq a 2-edge if both half-luncs contain points of S, and we call it a 1-edge if only
one half-lun contains points of S. For a 1-d pq we say that the side where the half-
lun contains points of S is beyond pq and that the other side is beneath pq. Note, for
example, that if pq is a 1-d boundin an incomplete rng-polygon R, then pq
and therefore R is beyond pq. We will s lat that 1-ds arc useful in trianulatin
rng-polyons.

The first lcmma of this section shows that when we triangulate an rng-polygon R,
whether complete o incomplete, we can inor all points outside R. More specifically,
it shows that the type of any diaonal ord ofR remains unchanged when we
all points of S that a not vertices of R.

REDUCTION LEMMA. Let pq be a diagonal or edge ofan rng-polygon TL If rlr con-
tainspoints of S, then it also contains vertices of TL

Proof. If we assume r/ contains points of S but no vertices of R, then it must in-
tersect edges of R without containing their endpoints. Let yy’ be the edge closest to
p and q, and let x be a point in r/p f S. Since x is not a vertex of R, it must lie on
the other side of yy’ as seen from p and q. So yy’ rng(S) ch(S), and therefore
max{Izl, Iz’l} _> Iy’l. Assume without loss of generality that Izyl _> lyy’l. If y’ lies
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536 HERBERT EDELSBRUNNER AND TIOW SENG TAN

outside or on the circle (p, IPql), we consider the convex quadrilateral pyxy’. Otherwise,
y’ lies outside or on (q, IPq]), in which case we consider the convex quadrilateral qyxy’.
But now we have Ixyl >_ lyy’l and either Ip’l > Ipxl or Iqy’l > Iqxl, a contradiction to
the -Lemma in both cases. [3

Using the Reduction Lemma, we now address vertices visible from both endpoints
of an edge. We need some notation. TWo points z, inside or on the boundary of a
polygonal region are visible from each other if my is contained in the region. The distance
of a point z to an edge pq is defined as the infimum, over all points z E pq, of Izzl. If
IPq] > max{lpx], Iqzl}, then this distance is referred to as the height of the triangle pqz.

VISIBILITY LEMMA. Let pq be a diagonal or edge ofan rng-polygon R, and let z be a
vertex ofR that lies in and minimizes the distancefrom pq. Then z is visiblefrom p and
alsofrom q.

Proof. Consider the triangle pqz, let z’ pq be the point with minimum distance
from z, and assume without loss of generality that z is not visible from q.. Let ’ be an
edge of R that intersects qz. The proof of the Reduction Lemma implies that at least
one endpoint of yy’ lies in, say, y E r/.. In addition, and y’ lie outside the triangle
pqz because z is closest to pq (see Fig. 6). Hence ’ intersects zp, zq, and all edges

FIG. 6. Quadrilateral xyxy is convex because x pq and y, y . pqx.

xz with z pq. Thus xyx’y’ is a convex quadrilateral, and because of lyx’l >_ Ixx’l by
the choice of x, we have ly ’l > I ’zl from the t2-Lemma. By symmetry, if y’ lies in
Opt, we have > Ixyl, which implies yy’ t[ rng(S). This is a contradiction because
yy’

_
ch(S). Thus y’ must lie outside r/. If y’ lies outside or on the circle (p, Ipql), then

Ipy’[ > Ipzl and therefore Izyl < lyy’l by the ra-Lemma for py’xy. Symmetrically, we
get Ixyl < lyy’l from the ra-Lemma for qy’xy if y’ lies outside or on the circle (q, IPql).
Together with Izy’l < ly’l this contradicts yy’ rng(S). [

We need one more elementary lemma.
CONTAINMENT LEMMA. Ifz rl, then rlp c_ Apq.
Proof. Take a point z -p and consider the four points p, q, z, z. If z pq, there is

nothing to prove. Otherwise, pzqz or pqzz is a convex quadrilateral (possibly with three
of the four vertices collinear) or z pqz. In each case Iqzl < IPql can be shown by using
the r-Lemma or the A-Lemma. This implies that z pq.

The following lemma is of fundamental importance to the quadratic-time triangu-
lation algorithm.

1-EDGE LEMMA. Let pq be a 1-edge ofan rng-polygon R, and let x be a vertex ofR
that lies in r and minimizes the distance from pq. Then px is either an edge of R or a
1-edge with pqx beneath px, and the same is truefor qx.
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MINMAX LENGTH TRIANGULATION 537

Proof. We have x c_ Apq by the Containment Lemma. The part of r/x in O(p
contains no point of S because Oq- fq S 0 by assumption. Also, the part of r/ in
contains no point of S because a point V E r/p tq 0p would be closer to pq than z is,
as can be shown using the rn-Lemma for pz’vz (see Fig. 7). So pz is an edge of R if

# contains no point of S either, and it is a 1-edge with triangle pqz on its beneath side
otherwise. The argument for qz is symmetric. [:]

X

FIG. 7. Vertex x is visiblefrom p andfrom q, so pqx is empty. Itfollows that ify l,.’p q then pqyx is a
convex quadrilateral.

5.1. Incomplete rng-polygons. The above lemmas are sufficient for efficiently tri-
angulating an incomplete rng-polygon. As defined earlier, all edges of an incomplete
rng-polygon R are rng-edges, except for one 1-edge, pq ch(S) rng(S), which has R
on its beyond side. The algorithm below can triangulate more general incomplete rng-
polygons, that is, it is not necessary that pq ch(S), but it must be that pq is a 1-edge
and R lies beyond pq.

Input. An incomplete rng-polygon R that lies beyond its 1-edge pq.

Output. A minmax length triangulation of R.

Algorithm. 1. Find a vertex x in Apq that minimizes the distance from pq.
2. Draw edges px and qx. This decomposes R into the triangle pqx

and two possibly empty incomplete rng-polygons R1 and Re.
3. Recursively triangulate R1 and

The correctness of this algorithm follows from the 1-Edge Lemma. Indeed, it implies
that if R1 is nonempty, then it lies beyond px, which is the only 1-edge of R. Similarly,
Re lies beyond its 1-edge qx, provided that Re is nonempty. Thus the input invariant is
maintained all the way through the recursion. This implies that the algorithm success-
fully triangulates. By the choice of point x, the edges px and qx are both shorter than
pq. It follows that the diagonals are monotonically decreasing in length down a single
branch of the recursion, and therefore all diagonals constructed by the algorithm are
shorter than pq. A straightforward implementation of the algorithm takes time that is
quadratic in the number of vertices of R.

Remark. Instead of choosing a vertex x that minimizes the distance to pq, step 1
of the algorithm could also choose other vertices as long as they are visible from p and
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538 HERBERT EDELSBRUNNERAND TIOW SENG TAN

q and lie in their lune. An interesting choice among these vertices is the vertex y that
minimizes max(lp], Iql}- As long as is unique, which is the nondegenerate case, this
choice leads to a triangulation of the polygon R that lexicographically minimizes the
sorted vector of edge lengths. Another possible choice is the vertex z that minimizes
Izpl / Izql. This vertex is automatically visible from p and from q and might be useful
in actual implementations because it is often considerably less expensive to compute the
distance between two points than between a point and a line segment.

5.2. Lemma on polygon retriangulation. This subsection presents a technical lemma
on retriangulating a polygonal region. It will find application in 5.3 and 6 and is also of
independent interest. In order to conveniently distinguish between boundary and non-
boundary edges of a triangulation, we call a nonboundary edge a diagonal. Let X be a
polygonal region, let t(X) be a triangulation of X, and let zz’ be a diagonal of X that
is not in t(X). We say that zz’ generates t(X) if it intersects every diagonal of t(X).
We give an algorithmic description of a particular triangulation of X, called thefan-out
triangulation fx (X) with (fan-out) center z. The triangulation is illustrated in Fig. 8.

1. Connect z to all vertices ofX that are visible from z. Call these vertices and also
the two vertices connected to :r by edges of X neighbors of z.

2. Two neighbors of z are said to be adjacent if they are consecutive in the angular
order around z. Connect any two adjacent neighbors z, v of z unless zv is an edge of X.

3. Every edge ztv created in step 2 decomposes X into two parts, and the part that
does not contain z is called the pocket Xv of zw. Assume that u is the endpoint of uv
so that the other incident edge of the pocket zw is partially visible from z. Recursively
construct the fan-out triangulation of X,, with center v.

FIG. 8. Polygonal region X is triangulated byfanning outfrom x, connecting adjacent neighbors of x, and
recursing in the thus createdpockets. The illustration ofthisprocess is schematic and ignores some ofthe inherent
shape constraintsfor X.

We introduce some terminology. Among the diagonals of fx(X) we distinguish be-
tweenfan-out edges constructed in step 1 and cut-off edges constructed in step 2 of the
above algorithm. Each call of the algorithm triangulates part of a pocket and recurses
in each component (pocket) of the remainder. We call a pocket V a child of another
pocket Z if V c Z and V is maximal. The original polygonal region X is also called a
pocket and forms the root of the tree defined by the child relation. This tree is exactly
the recursion tree of the algorithm. Each pocket Z is associated with a fan-out center z.
The maximum distance between z and any other vertex of Z is called the width of Z.
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MINMAX LENGTH TRIANGULATION 539

The lengths of the diagonals of f(X) are constrained by the length of the longest
edge of X, the length of the longest diagonal of t(X), and the width of X. More specif-
ically, we prove the following result.

FAN-OUT LEMMA. Let X be a polygonal region, with 61 the length ofits longest edge,
let t(X) be a triangulation ofX, with 6 the length of its longest diagonal, let zc’ be a gen-
erator of t(X), and let 6a exceed the maximum distance of from any vertex of X. Then
Ibl < max{,, a}for every diagonal ab of fz(X).

Proof. Note that the assertion follows if we prove that max{6,6z,6a} exceeds the
width of every pocket Z created during the algorithm. To see this notice that the width
of Z is an upper bound on the length of any fan-out edge emanating from the center
of Z. Each cut-off edge zw that creates a child pocket V of Z is incident to the fan-out
center of V, which implies that the width of V is an upper bound on its length.

The proof of the upper bound on the widths of all pockets proceeds inductively from
the top to the bottom of the tree. The width ofX is less than 6a by assumption, and it is
therefore also less than max{6, 6, 6a}. For the inductive step consider a pocket Z and
a child V of Z. We show that the bound on the width of Z is inherited by V, with some
environmental influence from X and t(X). Let z be the fan-out center of Z, let 6 be the
width of Z, let v be the fan-out center of V, let zv be the cut-off edge that creates V, and
let w be the other vertex of V adjacent to

First, we prove Ivl < max{6, 6}. By the definition of a fan-out center, v lies in-
side the triangle uwz. The A-Lemma thus implies that Ivl < max{lwl, Izl}, and
we obtain the claimed inequality because I ,wl _< 61 and [uz[ < 6. Second, we show
that max{6z, 6} exceeds the maximum distance between v and any vertex of V other
than u. Let # v, z be such a vertex, and let ’ be a diagonal of t(X) that inter-
sects zz. Such a diagonal exists because zz’ generates t(X). It follows that ’ inter-
sects uv and that therefore v lies inside the triangle /’z. Using the A-Lemma we get
[yvl < max{lyy’l, [yzl} _< max{62, 6} because lyy’l -< 2 and lyzl <_ . The two bounds
together imply that the width of V is less than max{6x, 6z, 6}, and induction shows that
it is less than max{6, 6, 6a }.

In 6 we will need a result as given in the Fan-Out Lemma but restricted to the
fan-out triangulation on one side of the generator. More specifically, we will need the
following corollary whose proof is almost the same as the one of the Fan-Out Lemma.

FAN-OUT COROLLARY. Suppose that W is apolygonal region, t(W) is a triangulation
of W, xx’ is a generator of t(W), and X is the part ofW on one side of xx’. Let 1 be the
length ofthe longest edge of X, let 2 be the length ofthe longest diagonal oft(W), and let
63 exceed the maximum distance of x from any vertex of X. Then labl < max{6, 62, 63}
for every diagonal ab of f,(X).

Remark. The Fan-Out Lemma can also be formulated without the assumption of
an initial triangulation. The condition on the diagonal xx’ is now that each vertex of X
must be visible from some point of xx’. The parameter 6z needs to be redefined as the
maximum, over all vertices y of X, of the infimum, over all points a of xx’ visible from
y, of the distance between y and a.

5.3. Complete rng-polygons. It will be convenient to assume that no two diagonals
and edges of the rng-polygon R are equally long. With this assumption we can show that
every triangulation of R, and therefore also every minmax length triangulation, contains
a 2-edge. To see this take the longest edge pq of a triangulation. It is not an edge of
R because the third vertex of the incident triangle lies in its lune )pq. It is therefore a
diagonal with incident triangles pqr and pqs, and we have r, s pq by maximality ofpq.
Since r and s lie on different sides of pq it follows that pq is a 2-edge.
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540 HERBERT EDELSBRUNNER AND TIOW SENG TAN

We prove below that there is a minmax length triangulation mlt(R) of R that con-
tains only one 2-edge pq. By the argument above pq is the longest edge of mlt(R). We
call pq expandable if there are vertices r and s in Apq, on different sides of pq and both
visible from p and q, so that E {pr, qr, ps, qs} is a set of rng- and 1-edges and the
quadrilateral prqs lies beneath the 1-edges in E. It should be clear that once we draw
an expandable 2-edge, we can complete the triangulation by using the algorithm for in-
complete rng-polygons (5.1). The resulting triangulation uses no 2-edge other than pq,
which is thus the longest edge of the triangulation.

We first present the algorithm, and then we prove its correctness by showing that
every complete rng-polygon R has a minmax length triangulation that contains an ex-
pandable 2-edge. This, however, assumes that no two diagonals or edges of R have
equal length. If this nondegeneracy constraint is not satisfied it is necessary to run the
algorithm with a simulation of nondegeneracy; see [EdMii90]. The side effects of this
simulation and how they can be undone will be discussed in 5.4.
Input. A complete rng-polygon R.

Output. A minmax length triangulation of R.

Algorithm. 1. Find the shortest expandable 2-edge pq, together with
corresponding rng- and 1-edges pr, qr, ps, qs.

2. Triangulate the incomplete rng-polygons defined by pr, qr, ps, qs.

As mentioned in 5.1, step 2 takes time that is only quadratic in the number ofvertices of
R. In 6 we will see how step 1 can be implemented so that it runs in quadratic time too.
We now formulate and prove the lemma that implies the correctness of the algorithm.

2-EDGE LEMMA. Let R be a complete rng-polygon with no two diagonals or edges of
the same length. Then there exists a minmax length triangulation mlt(R) ofR that contains
an expandable 2-edge.

Proof We assume that there is no minmax length triangulation of R that contains
an expandable 2-edge. A contradiction to this assumption will be derived by using a
minmax length triangulation t(R) that is defined as follows. Let pq be the longest edge
of t(R), and let pqr and pqs be the incident triangles. By the nondegeneracy assumption
pq is the longest edge of every minmax length triangulation of R. Choose t(R) so that
the sum of heights of pqr and pqs (that is, the distance of r from pq plus the distance
of s from pq) is a minimum. We will prove below that pq is expandable and that r and
s are witnesses thereof, that is, that the quadrilateral prqs lies beneath every 1-edge in
E {pr, qr, ps, qs}.

Case 1. Assume that prqs lies beyond at least one 1-edge in E, say, beyond pr. Then
we can retriangulate R on this side of pr by using the algorithm for incomplete rng-
polygons. This algorithm removes edge pq, among others, and all new edges are shorter
than pr, which itself is shorter than pq. This contradicts the assumption that t(R) is a
minmax length triangulation.

Case 2. Assume that one of the edges of E, say, pr, is a 2-edge, and assume without
loss of generality that r . Thus there is a nonempty set of vertices z of R contained
in the half-lune y. By the Containment Lemma these vertices z lie in Apq, and by the
Visibility Lemma a nonempty subset S’ of the z are visible from both p and r.

If a vertex z is in S’, then either pz rq or rz fq pq ; see Fig. 9. Let S be
the subset of vertices z of the first kind, and let S’ be the subset of vertices of the second
kind. If S 0, choose z S so that the number of edges of t(R) that intersect pz,
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MINMAX LENGTH TRIANGULATION 541

is a minimum. Next, remove all edges from t(R) that intersect pz, and denote by X the
polygonal region thus generated. If, on the other hand, S 0, then choose z S’ 0
so that the number of edges in t(R) that intersect rz is a minimum, again remove all
edges from t(R) that intersect rz, and denote the resulting polygonal region by X. For
convenient reference we set z’ p in the first case and z’ r in the second. In either
case we construct a retriangulation f(X) of X by fanning out from z, as described in
5.2.

q

FIG. 9. Points z lie in the interiorofrlr?b -pqr, which consists ofone ortwo connected components, depending
on whether or not the angle at r in triangle pqr is nonacute.

We will show below that the new triangulation of R has properties that contradict
the assumptions of case 2. Most important, the Fan-Out Lemma of 5.2, together with
a few claims that we are about to prove, imply that the edges of f(X) do not exceed pq
in length.

CLAIM 1. Exceptfor x, all vertices ofX lie outside the half-lune rlrp.

ProofofClaim 1. Let yxy2, y3y4,..., y,-xy, be the edges, sorted from x’ to x, that
are removed from t(R) when X is constructed. Suppose that the claim is not true. Then
there is a smallest index j, 3 < j < m 1, so that one endpoint of yjyj+x, say, yj+x, is
in r/-v. Consider the polygonal region X of t(R) that is created by removing the edges
yy, yay4,..., y-y- from t(R). Since y+ is the only vertex of X that lies in
it is visible from p and from r, inside X. But this means that y+x’ intersects fewer
edges of t(R) than does xx’. This contradicts the choice of x and completes the proof of
Claim 1.

CLAIM 2. For each vertex y ofX we have Ixyl < [Pql.
ProofofClaim 2. Clearly, both px and rx are shorter than pq. So let y be any vertex

different from p, r, x, and let yy’ be an edge of t(R) that intersects x’x. Because of
Claim 1, x is visible within X from p and also from r, so pyxy’ and ryxy’ are convex
quadrilaterals. Since y’ lies outside p it cannot lie inside both of the circles (p, Iprl)
and (r, Iprl), If y’ lies inside (r, Iprl), then IPY’I > Ipxl which implies [YY’I > IxYl by the
tZ-Lemma for pyxy’. Otherwise, we have Iry’l > Irxl which implies lYY’I > Ixyl by the
[]-Lemma for ryxy’. This concludes the proof of Claim 2 because yy’ is an edge of t(R)
and is therefore no longer than pq.

Claim 2 and the Fan-Out Lemma imply that all diagonals of f(X) are shorter than
pq. In the case for which pq fq rx O we now have a contradiction because the retrian-
gulating process ofX eliminates pq and all edges of the resulting new triangulation ofR
are shorter than pq. In the case for which rq fpx 0 the new triangulation still includes
pq. We will show below that the height of the new triangle incident to pq is smaller than
the height of pqr and thus arrive at a contradiction.
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542 HERBERT EDELSBRUNNER AND TIOW SENG TAN

So assume rq N pz q}; in this case pq is an edge of the boundary of X and p is
visible from z. If q is also visible from z, then the new triangle incident to pq is pqz with
height Izz’l, where z’ E pq minimizes the distance to z. Analogously, define r’ E pq that
minimizes the distance to r. Since Iprl > Ipxl, we have Irr’l > Ixr’l by the [:]-Lemma for
prxr’. Together with Izr’l > Ixx’l, this implies Irr’l > Izz’l. If q is not visible from x,
then pq belongs to the pocket Xuv defined by a cut-off edge uv. We have u p, w q,
and the center v of X,v lies inside pqx. So again, either pqv is a triangle, and its height
is less than that ofpqx and therefore that ofpqr, or q is not visible from v, in which case
the argument can be repeated. Eventually, we arrive at a triangle incident to pq whose
height is less than that ofpqr. gl

Remark. Recall that the assertion ofthe 2-Edge Lemma is made under the condition
that no two diagonals or edges of the complete rng-polygon R are equally long. Indeed,
the assertion is false without this condition. Take, for example, two equilateral triangles
abc and abd and move d slightly towards the common edge ab. For S {a, b, c, d} we
have that rng(S) {ac, cb, bd, da}, ab is a 1-edge, and cd is a 2-edge. So acbd is a
complete rng-polygon. There is only one minmax length triangulation of acbd, namely,
the one obtained by drawing the diagonal ab. But ab is not a 2-edge.

5.4. Undoing the simulated perturbation. For every finite point set S in 2 there
is an arbitrarily small perturbation S’ so that S’ satisfies convenient nondegeneracy as-
sumptions (see [EdMii90]). For a point p 6 S we denote its perturbed version by p’. In
the case of relative neighborhood graphs and minmax length triangulations this means
that no two pairs of points in S’ define the same distance. Because the perturbation is
arbitrarily small, the nondegenerate properties of S are maintained, that is, for four not
necessarily distinct points p, q, r, s S with IPql < Its[ we have IP’q’l < r’8,[

Let us consider the effect of the perturbation on the computation of a minmax length
triangulation. Clearly, if ffq’ rng(S’), then pq rng(S), but not vice versa. The fact
that in the perturbed setting the relative neighborhood graph has potentially fewer edges
than in the unperturbed setting does not adversely influence the triangulation algorithm
since rng(S’) is still connected and spans S’. When the edges of ch(S’) are added and
the polygonal regions defined by ch(S’) t2 rng(S) are triangulated, it can happen that
triangles a’b,c are constructedwhose unperturbed counterparts abc are fiat, that is, a, b, c
are collinear. Although this is not a problem for the algorithm, it is somewhat distressing
when this triangulation is interpreted as a triangulation of S. The remainder of this
section shows how to remedy this deficiency.

Let t(S’) be a minmax length triangulation of S’, and consider its unperturbed ver-
sion t(S), that is, pq t(S) if and only if p’q’ t(S’). A longest edge of t(S) is no longer
than a longest edge of any minmax length triangulation mlt(S) of S since mlt(S’), the
perturbed version of mlt(S), is a valid triangulation of S’ and would otherwise contra-
dict that t(S’) is a minmax length triangulation of S’. The reverse is also true, namely,
that a longest edge of t(S) is no shorter than a longest edge of mlt(S). We show this by
converting t(S) into a minmax length triangulation of S.

Consider the dual graph t*(S’) of t(S’), and call a node a’b’c’ flat if a, b, c, are
collinear. Determine the connected components of the subgraph of t* (S’) induced by
the set of all flat nodes. Each component corresponds to a collection of collinear points
in S interconnected by flat triangles; see Fig. 10. Carry out the following steps for one
component at a time. Remove all edges of the flat triangles of the component, sort the
corresponding points along the supporting line, and add edges connecting points that
are adjacent in the sorted order. This produces regions bounded by more than three
edges, as shown in Fig. 10. All vertices of such a region are collinear, except for one
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MINMAX LENGTH TRIANGULATION 543

vertex y that is connected to the first and last of the vertices z. Triangulate this region
by connecting y to all other vertices z. By the A-Lemma the newly introduced edges are
no longer than the longer of the two original edges incident to

FI6. 10. Thefivepoints in the middle ofthe left triangulation are theperturbed versions offive collinearpoints
in the right triangulation.

6. Finding the shortest expandable 2-edge. This section shows how the first step of
the algorithm for triangulating a complete rng-polygon R can be made to run in time
O(n), where n is the number of vertices of R. As in 5.3, we assume that no two diag-
onals or edges of R are equally long; so the shortest expandable 2-edge is unique. For
convenience we also assume that no three vertices of R are collinear.

Input. A complete rng-polygon R.

Output. The shortest expandable 2-edge of R.

Algorithm. 1. Determine the type of each diagonal pq of R.
2. For each 2-edge pq find vertices p’, p", q’, q" that minimize the

counterclockwise angles/p’pq, Zqpp", Zq’qp, Zpqq" contingent on
pp, pp", qq, qq" being -ng-edges or 1-edges with pq on their beneath
sides (see Fig. 11).

3. Return the shortest 2-edge pq for which pp’, qq’, pp", qq" are such
that p’ q" or pp N qq" and that p" q or pp" N qq .

FIG. 11. By the choice ofp the counterclockwise angle/ppq contains no 1-edge with pq on its beneath
side. Symmetric statements holdforp, q, and q.

Below we give the algorithmic details of the above steps.
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544 HERBERT EDELSBRUNNER AND TIOW SENG TAN

Step 1. Classifying diagonals. For each vertex p of R we compute all incident diago-
nals pq and their angular order around p. Furthermore, we determine whether or not the
half-lune r/p contains any vertex of R. Recall that by the Visibility Lemma r/p contains
a vertex visible from p if it contains a vertex of R at all. We can thus base the decision of
whether or not r/ is empty of vertices solely on the vertices visible from p. As defined
earlier, pq is a 2-edge if both half-lunes of pq contain vertices of R. Otherwise, pq is a
1-edge and its beyond side is where the half-lune contains vertices of R. We now show
that the computation for p can be done in time O(n). It follows that O(n2) time suffices
for Step 1.

Computing the sorted sequence ofdiagonals ppl, pp2, PPm incident to p is a stan-
dard operation for simple polygons and can be done in time O(n); see, e.g., [E1Av81],
[JoSi87], [Lee83]. Letppo andpp,+l be the two edges ofR incident to p, and assume that
p0, p, p,..., p,,p,+ is in a counterclockwise order around p. To determine whether
there is a vertex of R in the half-lune rh,, for 1 < i < m, we scan the list po,p,... ,Pm+
once, from smallest index to largest. During the scanwe maintain a stack of diagonals ppL
whose half-lunes Op are not yet found to contain any vertex of R. Before pushing pp
onto the stack, we remove all diagonals ppL whose half-lunes contain p. Using a straight-
forward extension of the Containment Lemma, we can show that the order of processing
implies that the edges whose half-lunes containp lie on top of the ones whose half-lunes
do not contain p. Thus the former can be removed by simply repeatedly popping the
topmost diagonal. When the scan is complete, the stack contains exactly all diagonals
ppt whose half-lunes contain no vertex of R. Since a diagonal can be pushed and popped
only once each, the entire process takes constant time per diagonal.

Step 2. Finding rng- and 1-edges. For each vertex p we scan pp, pp,..., pp, in
this order. In the process we keep track of the most recent rng-edge or 1-edge pp whose
beneath side is in the direction of the scan. Initially, pp PP0. When a 2-edge pq is
encountered, then pp is the edge pp’ that belongs to pq. A symmetric scan is carried out
to find the edge pp" that belongs to pq. The total time for all vertices p of R is clearly
O(n).

Step 3. Returning the solution. Step 3 is computationally trivial. It takes time O(n2)
since constant time suffices to test whether or not pp, pp’, qq, qq" satisfy the conditions
of Step 3. However, it is not trivial to see that the edge pq returned in Step 3 is also the
shortest expandable 2-edge. First, note that the shortest expandable 2-edge is no shorter
than pq. This is because all 2-edges shorter than pq fail the test of Step 3. The following
straightforward topological lemma implies that these 2-edges are not expandable.

CROSSING LEMMA. Let v v2 Vn be the sequence ofvertices ofa simplepolygon,
and let vlv and VjVn be two diagonals. Then vv fq vjv ifand only ifj < i.

Proof. The edge vjv, decomposes the polygon into two disjoint polygons with ver-
tex sequences v, v2,..., vj, v, and vj, vj+,..., v,. If j < i, then neither of the two
polygons has v and v on its boundary. It follows that vlv crosses from one polygon
into the other, and because vv is a diagonal, this is only possible by crossing vjv,. To
prove the other direction we assume vv f vv, and observe that Vl and v belong
to different polygons because there is no way that vv can enter the second polygon and
leave it again. Thus j < i.

So it remains to show that the edge pq computed in Step 3 is indeed expandable.
EXPANDABILITY LEMMA. The shortest 2-edge pq ofR that satisfies the conditions of

Step 3 is also expandable.
Proof. We show below that R can be triangulated on both sides of pq by using only

edges shorter than pq. If we now assume that pq is not expandable, we get a contradic-
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MINMAX LENGTH TRIANGULATION 545

tion to the 2-Edge Lemma because pq is the longest edge of the triangulation and all
expandable 2-edges are longer than pq.

We describe how to triangulate the part of R to the right of pq; the other part is
symmetric.

Case 1. p’ q". Assume that Iqq"l > IPP’I. Then Iqq"l < IPql, for otherwise
p T]qiTq and qq" would be neither an rng-edge nor a 1-edge with pq on its beneath side.
Ifwe apply the triangulation algorithm for incomplete rng-polygons (5.1), once for pp’
and once for qq", we obtain a triangulation with the desired properties.

Case 2. pp’ f3 qq" :/: . In this case pp’ and qq" are 1-edges. Because pp’ and qq"
intersect, it must be that p’ is closer to q than top or that q" is closer top than to q. Assume
without loss of generality that Iq"Pl < Iq"ql. As in Case 1, we also have Iq"ql < IPql, but
note that we do not necessarily have Ipp’l < Ipql.

We now describe the triangulation process. It takes three steps, illustrated in Figs.
12 and 13.

1. Construct the triangulation tqa,, of R beyond qq" by using the algorithm for in-
complete rng-polygons (see Fig. 12).

2. Find the subset V of vertices of R that lie inside the triangle pqq", and compute
the convex hull C of V t3 {p, q"}. Add the edges of C that are diagonals of R to the
triangulation, and connect q to all vertices of C’ (see Fig. 12).

3. Step 2 creates untriangulated pockets Y,, one for each edge uv of C’ that is a
diagonal of R. Assume that zt precedes v on the clockwise path from p to q" on the
boundary of C. The pocket Y,, is triangulated as follows.

3.1 Set zt: "= v if zv is a 1-edge and pq lies on the beneath side of ztv. Otherwise,
find a vertex uz so that Itztz[ < [pq[, ztztz is a 1-edge, pq lies beneath ztzt/, and zztz
does not intersect C’. (The existence of such a vertex u: will be established shortly.)

3.2 Construct the triangulation t,,,, of R beyond ztztz, again using the algorithm
for incomplete vng-polygons, but retain only the triangles that lie completely
inside the pocket Y,. Let X= denote the untriangulated part of Y,.

3.3 Construct the fan-out triangulation f(X,).

P q

FIG. 12. The shadedportion represents the triangulation beyond qq’ itformspart ofthefinal triangulation.

The remainder of the proof establishes that all diagonals of the thus constructed
triangulation are shorter than pq. This is indeed obvious for tqq,, as constructed in step
1. We now prove an easy extension of the A-Lemma that implies that all edges created
in step 2 are shorter than pq.
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546 HERBERT EDELSBRUNNERAND TIOW SENG TAN

FIG. 13. The shadedportion ofthepocket Yuv represents thepart ofthe triangulation tuu beyond UUL that
is retainedfor thefinal triangulation. The remainingportion is triangulated byfanning outfrom v.

CLAIM 1. Let abc be a mangle, and let d, e be two points inside aba Then de <
max(labl, lacl, Ibcl}.

Proofof Claim 1. Assume without loss of generality that e lies inside abd. The A-
Lemma for abd implies that Idel < max(ladl, Ibdl}, and the same lemma for abc implies
that max{ladl, Ibdl} < max{labl, lacl, Ibcl}. This completes the proof of Claim 1.

If UUL uv, then lUULI < IPql which implies that all edges of t==, as constructed
in step 3.2, are shorter than pq. In this case the proof is complete since X,. and
no edges are added to Y,. in step 3.3. For the remainder of the proof we thus assume
that UL # v, which is the case only if r/- contains at least one vertex of R. We show that
a vertex UL satisfying the conditions of step 3.1 indeed exists, and that all edges of the
fan-out triangulation f. (X=) are shorter than pq. Assume that the sequence of vertices
of the part of R beyond pp’ is p ul, u2,..., q" UK,..., Um p’ (see Fig. 13).

CLAIM 2. There exists a 1-edge UUL that satisfies the conditions ofstep 3.1.
Proofof Claim 2. Construct a triangulation tvv, of R beyond pp’ by using the algo-

rithm for incomplete rng-polygons. This triangulation contains at least one edge uut
disjoint from C. The main invariant of the algorithm (described in 5.1) implies that
uu is a 1-edge and that pq lies on its beneath side. If luutl < Ipql, then u satisfies the
conditions for UL and we are done.

So assume that luutl > IPql. As we showed for the Containment Lemma, we can
show that the part of r/-. to the left of ut is contained in rh,, and thus contains no
vertex of R. It follows that the vertices in r/ must be among UK+, UK+,..., U_.
By the Visibility Lemma at least one of these vertices is visible from u. Let U be the
subset of vertices that are visible from u (including the ones outside r/v), and let UL E U
minimize the distance to u. We have luuLI < luvl < luu l and, as above, the part of rh,a,.
to the left of utt is contained in rh,. Therefore, this part contains no vertex of R. The
part of y,a,, to the right of ut contains no vertex of R by the choice of UL. It follows
that UUL is a diagonal that satisfies the conditions of step 3.1, which completes the proof
of Claim 2.

We now show two easy facts about t=,,, before examining the edges constructed by
step 3.3.

CLAIM 3. Ifuiujuk, with < j < k, is a triangle oftu=L then uuk is its longest edge.
ProofofClaim 3. The first triangle constructed is uIUtUL, for some I < < L, and

its longest edge is UlUL because ut E )u=L. The general assertion follows by induction,
which completes the proof of Claim 3.
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MINMAX LENGTH TRIANGULATION 547

CLAIM 4. The edges of tu,,,, that intersect uv, sorted from u to v, are monotonically
decreasing in length.

ProofofClaim 4. If uiujuk, with i < j < k, intersects uv, u uz and v us, then
eitherl<i<j =i+l < J< korI<i< J<j < k(seeFig. 13). In both cases
uuk intersects uv closer to u than the other intersecting edge, uju or uu. By Claim
3, uu is longer than both, which implies the assertion.

Note that if we delete edges from t,,,, that intersect uv, then we get a polygonal
region, say, W, of which X, is the part on one side of uv. We can thus interpret uv
as a generator of t,,,,, restricted to W,v. Since the edges of Xv and t,,,, are shorter
than IPql, we need to show only that all vertices ofX are closer to v than Ipql, and
the rest follows from the Fan-Out Corollary. Indeed, we prove a stronger bound on the
maximum distance from v to a vertex of X,.

CLAIM 5. For each vertex x ofXu we have that Ivzl _< Ivl.
Proofof Claim 5. Consider the vertices of X,,, in turn from u uz to v us, and

assume inductively that Iw, <_ Iwl for all I < i < j. Consider no and the triangle
Uj-lUjUk in tUUL. By Claim 4, we have that luj_xul > lujul. If Uj_lUjVUk is a convex
quadrilateral, then the -Lemma implies that Ivuj_ll > Ivujl, as desired. Otherwise,
u is contained in vuku_ and therefore also in vuuj_1. The A-Lemma implies Ivul <
max{Ivul, Ivuj_l}, which completes the proof of Claim 5.

This also completes the proof of the lemma, tq

The following theorem summarizes the algorithmic implications of all of this.
MINMAX LENGTH THEOREM. A minmax length triangulation ofa set of n points in

.u can be constructed in time O(nU).
The algorithm that constructs a minmax length triangulation in the claimed amount

of time is a combination of the algorithms given in 3, 5.1, 5.3, and 6. Its correctness
has been demonstrated in 4, 5.3, and 6.

7. Arbitrary normed metrics. An open convex region D c_ that is symmetric
with respect to the origin can be used to impose a norm on" for a point z define

IlXll [IXllD C if x lies on the boundary of c,D {cy E u y E D}. The norm
can then be used to impose a (normed) metric on u: for two points z, y u define

Iz l Iz lD ZlID. D is the unit disk of the metric and the boundary of D is its
unit circle. Notice that the three requirements for a metric are indeed satisfied. First,
labl 0 if and only if a b because Ilzll 0 if and only if z is the origin. Second,
labl Ibal because D is centrally symmetric and therefore Ilzll II- z[I. Third, the
triangle inequality lacl <_ labl / Ibc[ follows from the convexity ofD. Examples ofnormed
metrics are the/p-metrics, for 1 < p < o, and the so-called A-metric discussed in
[WWW85] for its applications to VLSI.

In this section we assume that the triangle inequality is strict unless a, b, c lie on a line
in this order. This is the case if and only if the defining convex region D is strictly convex,
that is, no line intersects the boundary of D in more than two points. This assumption
is convenient and, in fact, without loss of generality since every convex but not strictly
convex region D’ can be approximated arbitrarily closely by a strictly convex region D.
Computationally, this approximation can be simulated by defining

IIxlID IlxllD’ +  llxll ,

where Ilxll is the Euclidean or/u-norm and e is an arbitrarily small but positive real
number. Clearly, if e is sufficiently small then a minmax length triangulation under D is
also a minmax length triangulation under D’.
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548 HERBERT EDELSBRUNNER AND TIOW SENG TAN

In the remainder of this section we point out where the developments in 2-6 need
to be adjusted when the Euclidean metric is replaced by an arbitrary normed metric.
Most important, the graphs defined in 2 can be extended in a natural way. More specif-
ically, the definition of ch(S) remains unchanged since it makes no reference to any
distance notion. If we now stipulate that "circle" means a homothetic copy of the unit
circle as defined above and "lab]" means the distance under the normed metric defined
by D, then the definitions of mlt(S), dr(S), rng/(S), and mat(S) can be taken verbatim.
The minimum spanning tree mat(S) is connected and spans S, and the Delaunay trian-
gulation dt(S) is plane because any two circles intersect in at most two points. Since we
still have mat(S) c_ rng(S) c_ dr(S), we conclude that all three graphs are connected
and plane and that they span S. We remark that these three graphs are not necessarily
plane if D is not strictly convex.

As mentioned in 1, the developments in 2-6 are all based on a small number of
basic facts, namely, the distance relations expressed by the t::]-Lemma and the/-Lemma,
the convexity of the lune of an edge, and the straightness of the bisector of two points.
The t:]-Lemma and the/-Lemma are direct consequences of the triangle inequality and
hold in the stated form (with strict inequality) for arbitrary normed metrics as long as
D is strictly convex. The lune of two points is clearly convex since it is the intersection
of two homothetic copies of D. Unfortunately, the bisector of two points p q, evq
{x Ixpl Ixql}, is not necessarily straight. Nevertheless, epq is still a simple curve
that divides 2 into two unbounded regions, called half-planes, one containing p and the
other containing q. The two half-planes are star-shaped with respect to p and q, that is,
any line through p or q intersects epq in at most one point. In addition, pq is symmetric
with respect to because D is centrally symmetric.

There is only one place where the straightness of the bisector is used in a substantial
way, and that is in the proof of Fact 3 in 4. We restate this fact and show how to prove
it without using the straightness of the bisector. We suggest that the reader go back to
4 and review Facts 1 and 2. Recall, in particular, that bd (respectively, b’d’) is said to be
switchable if ac (respectively, a’c’) is no longer than the longest edge of the triangulation
t(S).

FACT 3. It is notpossible that both bd and Ud are nonswitchable.

Proof. As established in Fact 2, if bd is nonswitchable, then a and d are contained in
the open half-plane defined by fpq that contains q. Symmetrically, if b’d’ is nonswitchable,
then, a’ and d’ are contained in the other open half-plane. Unlike in the Euclidean case,
it is possible that ad and a’d’ intersect epq. It is thus also possible that ad precedes a’d’ in
the order of edges sorted from p to q by their intersections with pq (see Fig. 14). Below
we will argue that if this is the case, then ad (and symmetrically a’d’) is switchable. In
particular, we show that ladl > laPl, which, together with lapl >_ lacl from Fact 2, implies
that ad is switchable.

One characteristic of the described situation is that ad intersects fpq in at least one
point inside the lune ofpq. Let z be such an intersection point closest to
then pdqz is a convex quadrilateral with Ipdl > IPql by construction. The r-Lemma thus
implies that laxl > Iqx] Ipxl. It follows that ladl laxl + laxl > laxl + Ipxl > lapl.
On the other hand, if pq fq dx 0 then consider the point y ad N pq and note that
IPY[ < IqYl. We derive Idyl > IPYl from IPYl + Idyl > Ipdl > IPql > 21pyl. Therefore,
ladl layl + Idyl > layl + IPYl > lapl, as desired.

All other steps of the proof of the Subgraph Theorem go through unchanged for
arbitrary normed metrics. We thus obtain the following generalization.

D
ow

nl
oa

de
d 

02
/0

2/
21

 to
 1

34
.1

69
.3

4.
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



MINMAX LENGTH TRIANGULATION 549

p.

FIG. 14. Although a and d lie on q’s side ofthe bisector and a and d lie on p’s side, ad intemects pq closer
to p than atd does. This is notpossible if the bisector is a line, asfor the Euclidean metric, see Fig. 4.

GENERAL SUBGRAPH THEOREM. Let S be a finite point set in equipped with a
normed metric with strictly convex unit disk. Then S has a minmax length triangulation
mlt(S) so that rng(S) c_ mlt(S).

So the algorithm for computing a minmax length triangulation is clearmit is the
same as for the Euclidean metric, only the length of edges is now measured in terms of
a normed metric that is possibly different from the Euclidean metric. We assume that
the length of an edge in this metric can be computed in constant time. A careful reex-
amination of5 and 6 shows that the specialized polygon triangulation algorithm works
also in the context of arbitrary normed metrics. We remark, however, that it includes
the distance computation between a point and a line segment. Although it is certainly
reasonable to assume that this can also be done in constant time, the observation in
the remark at the end of 5.1 can be used to avoid this computation. We thus have the
following algorithmic result, which generalizes the MinMax Length Theorem of 6.

GENERAL MINMAX LENGTH THEOREM. Let S be a set of n points in 2 equipped
with a normed metric with strictly convex unit disk. Given the relative neighborhood graph,
a minmax length triangulation of 6; can be constructed in time O(n).

The algorithmic result extends to arbitrary normed metrics. As mentioned above, a
norm with nonstrictly convex unit disk can be simulated by one with strictly convex unit
disk. It follows that the quadratic-time bound also holds for arbitrary normed metrics.
The result stated in the General MinMax Length Theorem raises the question of how
fast my(S) can be constructed. The trivial algorithm tests all () edges, each in time
O(n), and therefore takes time O(na). Faster algorithms are known for the/p-metrics
for which O(n log n) time suffices (see [JKY90] and [Lee85]).

8. Discussion. The main contribution of this paper is the first polynomial-time al-
gorithm for computing a minmax length triangulation of a set S of n points in . Given
the relative neighborhood graph of S, the algorithm takes time O(n2). The algorithm
works for arbitrary normed metrics. The polynomial time bound follows because the
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relative neighborhood graph of S can be found in polynomial time. The question of
whether or not a minmax length triangulation can be computed in less than quadratic
time remains.

The results of this paper are an outgrowth of our general efforts to understand tri-
angulations that optimize length criteria. There are, however, still many related prob-
lems whose complexities remain open. These include the problem of minimizing the en-
tire vector of edge lengths, the minimum length triangulation problem, and the maxmin
length triangulation problem.
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