
Discrete Comput Geom 4:423-432 (1989) C I ~l~.rJ'te d, Ccmttnllal~ ~ 1  

Jeometrv  
7~. 1989 Sprlnger-Vertag New York lnc 

A Fast Las Vegas Algorithm for Triangulating a Simple Polygon 

Kenneth L. Clarkson, ~ Robert E. Tarjan, ~'2'* and Christopher J. Van Wyk ~ 

J AT&T Bell Laboratories, Murray Hill, NJ 07974, USA 

2 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA 

Abstract. We present a randomized algorithm that triangulates a simple polygon 
on n vertices in O(n log* n) expected time. The averaging in the analysis of running 
time is over the possible choices made by the algorithm; the bound holds for any 
input polygon. 

I. Introduction 

To triangulate a simple polygon on n vertices, we add to it n -  3 line segments 
between vertices (diagonals) that partition its interior into triangles. Determining 
the complexity of triangulating a simple polygon is an outstanding open problem 
in computational geometry. 

Previous work on the triangulation problem has concentrated on finding fast 
deterministic algorithms to solve it. Garey et aL gave an algorithm to triangulate 
an n-gon in O(n log n) time [GJPT]. Tarjan and Van Wyk devised a much more 
complicated algorithm that runs in O(n log log n) time [TV]. 

In this revised and expanded version of  our conference paper [CTV], we 
present a randomized algorithm that triangulates a simple polygon on n vertices 
in O(n log* n) expected time. Our algorithm uses the following key ideas: 

• divide and conquer; 
• the "random sampling" paradigm [C1], [CS], [ES], [HW]; 
• the vertical visibility decomposition determined by a set of noncrossing line 

segments in the plane: each endpoint of a line segment defines the vertical 
boundaries of two generalized trapezoids, generated by vertical rays that 

* Research partially supported by the National Science Foundation under Grant No. DCR- 
8605962. 
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are extended up and down from the endpoint until they encounter other 
line segments [CI] ,  [FM];  

• Jordan sorting [FNTV], [HMRT]:  given the intersections of  two simple 
curves A and B in the order in which they occur along curve A, find the 
order in which they occur along curve B. 

Except for random sampling, these are the same ideas used in the algorithm of 
Tarjan and Van Wyk [TV]. The addition of  random sampling both simplifies the 
algorithm and improves the time bound. 

The rest of  this paper  is organized as follows. Section 2 describes the vertical 
visibility decomposit ion in more detail, and explains its role in the solution of 
the triangulation problem. Section 3 outlines our algorithm; Sections 4 and 5 
describe at greater length how to perform some of its steps. Section 6 contains 
an analysis of  the running time of the algorithm. Throughout Sections 2-6 we 
assume that no two vertices of  the polygon being triangulated share the same 
x-coordinate; Section 7 describes two ways to cope with input that does not have 
this nice property. Section 8 explains how to use our algorithm to test whether 
the input polygon is simple. Section 9 concludes with open problems. 

2. Vertical Visibility Decomposition 

Given a set S of noncrossing line segments, a line segment e and an endpoint v 
of another line segment are mutually vertically visible if the vertical line segment 
from v to e does not intersect any other element of S. Each endpoint of a line 
segment in S can see at most one line segment in S above it and another line 
segment in S below it, so the number of  different vertically visible pairs of  edges 
and vertices is at most 4tSt. 

The boundary of a simple polygon is a set of  noncrossing line segments. In 
this case, the set of  vertically visible pairs of  vertices and edges composes the 
total vertical visibility information of the polygon. If  the open vertical line segment 
between vertex v and edge e lies inside the polygon, the pair is internally vertically 
visible; if it lies outside the polygon, the pair is externally vertically visible; if it 
lies on the boundary of  the polygon, the pair is vertically visible along the boundary. 
To simplify the presentation of  the algorithm, we assume that no two vertices of 
the polygon have the same x-coordinate; thus, there will be no vertex-edge pairs 
that are vertically visible along the boundary. Section 7 describes two ways to 
remove this restriction while preserving the bound on expected running time. 

The algorithm in this paper  computes the total vertical visibility information 
of the polygon. This contrasts with earlier algorithms [CI],  [FM], [TV], which 
compute only the internal vertical visibility information. Given the internal vertical 
visibility information for a polygon, we can triangulate it in linear time [CI],  [FM]. 
Since the internal vertical visibility information can be deduced from the total 
vertical visibility information, we rely on this linear-time reduction to triangulate 
the polygon given the information computed by our algorithm. 

Given a set S of noncrossing line segments in the plane, its vertical visibility 
decomposit ion T(S) is a set of  open regions. To construct T(S), extend a ray 
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Fig. I. Five line segments and their vertical visibility decomposition. 

vertically from each endpoint of each line segment in S until it hits another line 
segment in S or it sees infinity. Thus, each vertical segment bounding a region 
in T(S) contains an endpoint of a segment in S. There are four kinds of regions 
in T(S): 

(a) those bounded by two portions of line segments in S and two vertical line 
segments; 

(b) those bounded by one portion of a line segment in S and two vertical rays; 
(c) those bounded only by two vertical lines; 
(d) those bounded only by one vertical line. 

Figure 1 shows a vertical visibility decomposition whose regions have been labeled 
with their types according to the above list. Regions of type (a) are trapezoids 
(or triangles), so T(S) is often called a trapezoidal decomposition of  the plane. 

If S contains s noncrossing line segments, we can compute T(S) in O(s log s) 
time. The lower bound follows because we can use the vertical visibility decompo- 
sition to sort. The upper bound can be achieved either in the worst case by a 
plane-sweep algorithm [PS], or on average by a randomized algorithm [CS]. 

3. Outline of the Algorithm 

The algorithm computes the total vertical visibility information of polygon P by 
computing the total vertical visibility information about a random subset of the 
edges of  P, then using that random subset to partition P into pieces on which 
the algorithm is applied recursively. 

The general step of the algorithm accepts as input a sequence S of line segments 
that compose a simple polygon Ps. At the top level, the edges of the input polygon 
P are processed by the algorithm as sequence S. Each recursive call of the 
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algorithm is on a sequence that defines a polygon bounded by pieces of edges 
of P together with vertical line segments that correspond to mutually vertically 
visible points on two edges of P. 

We note that the input sequence S never contains two consecutive vertical 
segments. The assumption that no two vertices of P have the same x-coordinate 
guarantees that there are no vertical edges in P, so this is certainly true at the 
top level. At each recursive call, each vertical line segment in S is preceded and 
followed by nonvertical line segments that are pieces of edges of  P. 

The following is the general recursive step of the algorithm: 

1. [Select random sample] Let S'  be the subset of  nonvertical line segments 
in S; let s ' = t S '  t. Choose a random sample R c S' of size r (where r is a 
function of s', to be determined in Section 6). 

2. [Compute  vertical visibility decomposit ion] Compute  T(R) .  Only vertices 
in R that are original vertices of  P need participate in this computation: 
any other endpoints of  line segments lie at either the extreme left or right 
side of  Ps, and whatever piece of  P they see is already known. 

3. [Break polygon edges at vertical visibility segments] Chop each line segment 
in S each time it crosses the boundary of a region in T(R). Let I be the 
number  of  such intersections. If  ever I is about to exceed C, ota~, or some 
region in T(R) is about to intersect more than Cm~x segments, immediately 
restart the recursive step at step 1. (Both C~ot~ and Cma~ depend on r and 
s'; we determine their exact values in Section 6. The value of I also appears 
in the running-time analyses in Sections 4 and 6.) 

4. [Jordan sort] For each region F ~ T(R) ,  Jordan sort the intersection points 
found in step 3 around the boundary of F. Compute the "family trees" 
associated with the Jordan sorting. 

5. [Reconstruct subpolygons and recur] Decompose each region in T(R) into 
a set of  simple polygons, using the family trees computed in step 4. Apply 
the algorithm recursively to each polygon that contains at least one vertex 
of Ps that does not lie on a vertical visibility edge. 

When all recursive calls are completed, the algorithm has computed a finer 
partition of  the plane than T(P). The internal vertical visibility information for 
P, and hence a triangulation of P, can be computed from this partition. 

4. Breaking the Polygon Boundary at Vertical Visibility Segments 

We define the neighbors of a region F in a vertical visibility decomposition T(R) 
to be the regions that we can reach by crossing a vertical edge of F. For our 
application, the nonvertical edges of  F will always be edges of  the polygon, 
which we would never want to cross; thus we do not consider the regions above 
and below F with which it shares a nonvertical boundary to be neighbors of  F. 

I f  the input polygon contains two or more vertices with the same x-coordinate,  
then a region in the vertical visibility decomposit ion could have more than two 
neighbors on each side. We describe in Section 7 how to deal with this anomaly, 



A Fast Las Vegas Algorithm for Triangulating a Simple Polygon 427 

T 

Fig. 2. A simple curve through the line segments of Fig. 1. The endpoints of  the original segments 
are (1, 37), (6.9). (13, 16), (19, 22), and (30, 31 ), In a polygon the curves would be polygonal chains. 

but for now we assume that the polygon is in general position so this does not 
happen. That is, each region has at most four neighbors, and we can move from 
a region to one of its neighbors in O(1) time. 

To perform step 3, traverse the boundary of Ps as it moves from region to 
neighboring region in T(R).  (Figure 2 shows how Ps might meander through 
T(R).) Since each region has at most four neighbors, we can perform step 3 in 
0 ( I  + s') time. 

5. Jordan Sorting and Polygon Reconstruction 

In step 4 we need to sort the points at which Ps intersects each region Fc  T(R)  
according to their ordering around the boundary of F, given their order along 
Ps. We use the simplified Jordan-sorting algorithm of Fung et aL [FNTV] to sort 
the sequence of intersection points found in step 3 into the order in which they 
lie along the boundary of F in time linear in the number of points. 

To apply the Jordan-sorting algorithm as stated [FNTV], we must transform 
the boundary of  each region into a straight line, while preserving the connections 
defined by the points of  intersection between Ps and F. The appropriate transfor- 
mation depends on the type of  the region: 

(a) split the trapezoid at the midpoint of its lower nonverticat edge and unfold 
it into a straight line; 

(b) unfold the semi-infinite trapezoid to a straight line; 
(c) connect the two bounding lines by a line segment that lies entirely above 

all pieces of Ps, then unfold the boundary to a straight line; 
(d) the boundary is a straight line already. 
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Fig. 3. Representative family trees for the curve shown in Fig. 2. The tree on the left is the inner 
family tree for the region whose corners are 7, 8, 15, and 14. The tree on the right is the inner family 
tree for the region of type (c) in Fig. 1. 

The inner family tree of Ps with respect to F shows how polygon pieces nest 
with respect to the t ransformed region boundary.  Figure 3 shows the inner family 
trees for two regions in Fig. 2. The Jordan-sorting algorithm [FNTV] produces 
family trees as part of  its operation. 

Each node in the inner family tree, together with any children it may have, 
defines a subpolygon of F. To perform step 5, we traverse the inner tree of each 
region F ~ T (R) ,  constructing the subpolygons of F and passing nontrivial ones 
to recursive instances of  the algorithm. All of  this can be done in time linear in 
the size of the tree. 

6. Expected Running Time 

In this section we derive a bound on the expected running time of the algorithm 
if it is applied to a polygon P with n sides. The analysis relies on general theorems 
about random sampling in computational geometry. We define enough notation 
here to state the theorems we need; readers who wish to see the definitions 
and theorems stated in full generality should consult Clarkson and Shor's 
paper  [CS]. 

As in Sections 2-5, S is a set of  s line segments in the plane. The set S (b~ 
contains all subsets of  S of at most b elements. The binary operator 8 relates 
each member  of  S <b~ to one or more regions that belong to a set F of  regions in 
the plane. In our application, the set F is the set of  all planar regions that can 
be represented as the intersection of at most four open halfplanes, and relation 
8 is defined as follows: i f X  is a set of  line segments, then for any F~  T ( X ) ,  FSX. 
The set Fs is the set of  all generalized trapezoidal regions defined by any collection 
of at most four line segments in S: 

Fs - {FI F c F, FSX, X c S('~}. 

For any F ~  Fs, let XF be a set in S (4) of  minimum cardinality such that FSXF. 
I f  no two endpoints of  line segments in S share the same x-coordinate,  then XF 
is unique for each F ~ Fs, and we say that relation 8 is functional. 

Let R be any subset of  $. For any F s Fr ,  I FI denotes the number  of  elements 
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of S that have nonempty intersection with F. We define 

T,.(R)= S tFI". 
F E T ( R )  

Thus, To(R) is the number of  trapezoids in T(R) ,  and T~(R) is the number of 
segments into which S \ R  would be divided were we to chop segments in S \ R  
along the boundaries of regions in T(R).  

Let Tc(r) be the expected value of To(R) where R c S, IRI = r, and each R is 
equally likely to be chosen. Finally, let 

To(r) = max To(r). 
l < z ~ r  

The definition of T(R)  implies that To(r), and hence ~'o(r), are both at most 4r. 
We have the following theorem: 

Theorem. Assume S is a set of noncrossing line segments of size s, and R is a 
random subset of S of  size r; let T( R ) be the vertical visibility decomposition that 
R defines on the plane. There exist constants ktot~J and k~x such that with probability 
at least 1/2, the following two conditions hold simultaneously: 

(1) T~(g)<-k~o,a,s. 
(2) For each F e  T(R),  IF[ < - k~a~(s/r) log r. 

Proof. We appeal to Corollary 3.8 of [CS], which says that if 8 is functional 

a n d i f K  existssuchthatFsContainsatmostK(b)elements,  thenwithprobability 

3 / 4 - t / e  2, both of the following conditions hold: 

T~(R) <- O(n/r)'co(r); (A) 

for some constant z = O(Iog r ) + 2 + l o g e  K, 

max IFt-< zs/r. (B) 
F E T ( R )  

We can satisfy the hypotheses of the corollary by taking K = 4. Since ~ro(r)-< 4r, 
equation (A) implies that there exists a constant ktotat such that T~(R)<-ktotats, 
which is condition (1). Equation (B) implies that there exists a constant k~ax 
such that for each F e  T(R),  IF[-< kmax(S/r) log r, which is condition (2). 

Since 3 / 4 - l / e 2 >  1/2, the probability that conditions (1) and (2) hold simul- 
taneously is at least 1/2, as required. [] 
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In the algorithm we take Ctotat = k t o t a l S '  and Cm,,x = k~ax(s'/r) log r. The theorem 
implies that with probability at least 1/2, step 3 will "succeed," and not restart 
the recursive step with another random sample; in other words, the expected 
number of times we need to restart step 3 is O(1). If we take r = s ' / log s', then 
condition (2) further implies that the maximum depth of recursion is O(log* n). 

Next we compute the work done during the recursive steps of the algorithm. 
A vertex sends out visibility segments above and below during exactly one 
recursive step of the algorithm, when it is an endpoint of an edge that is chosen 
for the random sample at that step; this is the only time that a vertex can cause 
the boundary of P to be cut into pieces. 

Condition (1) implies that over the course of the entire algorithm, the total 
number of pieces into which the boundary of P can be cut is /qotatn. Since the 
boundary can contain at most one vertical segment for each nonvertical segment, 
the number of different vertical segments considered during the algorithm is also 
at most ktotaln. Therefore, at a single level of recursion, the algorithm considers 
at most 2/qo,atn pieces of the boundary. Since each piece can serve as the boundary 
of at most two regions, and the subpolygons processed at a single level of recursion 
have disjoint interiors, they contain at most 4ktota~n pieces. 

At each level of the recursion, the vertical visibility decomposition can be 
computed in O( r log  r )=  O(n) time, and the boundary can be chopped, the 
crossing points Jordan sorted, and the pieces reconstructed into subpolygons in 
0 ( I +  n) time, which is O(n) by the preceding observations. Thus a single level 
of  recursion can be performed in O(n) time, and all O(log* n) levels of  recursion 
can be completed in O(n log* n) time. 

7. Dealing with Singularities 

Figure 4(a) shows how vertically aligned vertices could cause a visibility region 
to have more than four neighbors. This could cause a problem in the analysis of 
the running time, since it could take longer than O(1) time to move from region 
to neighboring region. A conceptually simple way to deal with the singular case 
is to apply a random rotation to the original input polygon whenever we detect 

" ill, 

t " i - -  'I' ' - ' - ' q  ~L 

I ~ iI I q - -  

Co) (b) 

Fig. 4. The region in (a) has more than two neighbors on each side. By rotating it slightly, as in 
(b), we can construct a vertical visibility decomposition in which no region has more than two 
neighbors. 
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a trapezoid that has more than four neighbors. With probability 1, such a rotation 
avoids any vertical alignment of vertices. 

By careful consideration of Fig. 4, however, we can avoid performing any 
random rotation at all. Let S be the sequence of segments that gave rise to the 
region in Fig. 4, and let S' be S rotated slightly so that no vertices are vertically 
aligned. Figure 4(b) depicts the effect of this rotation on the region in Fig. 4(a): 
a layer of thin regions appears on either side of the original region. When we 
trace the boundary of S' through an edge of the region in Fig. 4(b), the sequence 
of steps is equivalent to performing a linear search in clockwise order through 
the multiple vertices on an edge of the unrotated region in Fig. 4(a). Since the 
same time bound holds whether the algorithm runs on S or S', the algorithm can 
simply use clockwise linear search to perform step 3 even when the input polygon 
is not in general position; in order for the running-time analysis to apply to this 
version of  the algorithm, the count of intersections I must be incremented at 
each step in searches along region edges, as well as at each intersection of Ps 
and T(R).  

8. Simplicity Testing 

The algorithm described in this paper decomposes the plane into regions and 
considers all parts of the input polygon that lie in each region. If the polygon is 
not simple, then the algorithm will detect a self-crossing of  the boundary during 
one of the following operations: 

• the random sample may contain crossing edges, which will be detected 
during the computation of the vertical visibility decomposition of  the sample; 

• the boundary may cross one edge of the random sample, which will be 
detected during step 3; 

• the Jordan sorting in step 4 may fail because the pieces of the polygon do 
not nest properly. 

Thus, this algorithm can test whether an input polygon is simple in O(n log* n) 
expected time. 

9. Remarks 

A nonrecursive version of  this algorithm, which uses a single level of random 
sampling to partition the polygon and then the straightforward algorithm on each 
piece, would run in O(n log log n) time [C2]. 

The foremost remaining open problem is to produce a triangulation algorithm 
that runs in o(n log log n) time or in o(n log* n) expected time. A related problem 
is to devise a parallel algorithm whose time-processor product is o(n log n) 
[ACG]; some progress has been reported on this problem [CCT]. 
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