
Discrete Comput Geom 6:485-524 (1991)
Discrete & Computational Geometry

~) 1991 Springer-Verlag New York Inc.

Triangulating a Simple Polygon in Linear Time*

Bernard Chazelle

Department of Computer Science, Princeton University,
Princeton, NJ 08544, USA

Abstract. We give a deterministic algorithm for triangulating a simple polygon in
linear time. The basic strategy is to build a coarse approximation of a triangulation
in a bottom-up phase and then use the information computed along the way to refine
the triangulation in a top-down phase. The main tools used are the polygon-cutting
theorem, which provides us with a balancing scheme, and the planar separator
theorem, whose role is essential in the discovery of new diagonals. Only elementary
data structures are required by the algorithm. In particular, no dynamic search trees,
finger trees, or point-location structures are needed. We mention a few applications
of our algorithm.

1. Introduction

Triangulating a simple polygon has been one of the most outstanding open
problems in two-dimensional computational geometry. It is a basic primitive in
computer graphics and, generally, seems the natural preprocessing step for most
nontrivial operations on simple polygons [5], [14]. Recall that to triangulate a
polygon is to subdivide it into triangles without adding any new vertices. Despite
its apparent simplicity, however, the triangulation problem has remained elusive.
In 1978 Garey et al. [12] gave an O(n log n)-time algorithm for triangulating a
simple n-gon. While it was widely believed that triangulating should be easier than
sorting, no proof was to be found until 1986, when Tarjan and Van Wyk [27]
discovered an O(n log log n)-time algorithm. Following this breakthrough, Clark-
son et al. [7] discovered a Las Vegas algorithm, recently simplified by Seidel [25],
with O(nlog* n) expected time. In 1989 Kirkpatrick et al. [20] gave a new,

* The author wishes to acknowledge the National Science Foundation for supporting this research
in part under Grant CCR-8700917.

486 B. Chazelle

conceptually simpler O(nloglog n)-time algorithm, and they also derived an
O(n log* n) bound for the case where vertices have polynomially bounded integer
coordinates. Other results on the triangulation problem include linear or quasi-
linear algorithms for restricted classes of polygons [6], [11], [17], [28]-[30].

Our main result is a linear-time deterministic algorithm for triangulating a
simple polygon. The algorithm is elementary in that it does not require the use
of any complicated data structure; in particular, it does not need dynamic search
trees, finger trees, or any fancy point-location structures.

What makes fast polygon triangulation a difficult problem are the basic
inadequacies of either a pure top-down or a pure bottom-up approach. To proceed
top-down is to look at the whole polygon and infer global information right away.
We can rely on the polygon-cutting theorem [4] which says that the polygon
can be cut along a diagonal into two roughly equal-size pieces. The immediate
dilemma is that to find such a diagonal appears just as difficult as triangulating
the whole polygon to begin with. Besides, we would actually need to find such a
diagonal in sublinear amortized time (say, bounded by O(n/log 2 n)) to keep our
hopes for an optimal triangulation algorithm alive. A bottom-up approach, on
the other hand, involves computing, say, triangulations of subpieces of the
polygon's boundary. This suffers from the obvious flaw that too much information
gets to be computed. Indeed, diagonals for small pieces of the boundary are not
guaranteed to be diagonals of the whole polygon and might therefore be wasted.
Our solution is to mix bottom-up and top-down approaches together. The basic
strategy is to build a coarse approximation of a triangulation in a bottom-up
phase and then use the information computed along the way to refine the
triangulation in a top-down phase. The main tools used are

(i) the polygon-cutting theorem, which provides us with a balancing scheme,
and

(ii) the planar separator theorem [21], whose role is essential in the discovery
of new diagonals.

Here is a more detailed overview of the algorithm. As was observed in [6]
and [11] a triangulation of a polygon can be derived in linear time from its
horizontal visibility map, sometimes referred to in the literature as trapezoidal
decomposition: this is the partition of the polygon obtained by drawing horizontal
chords from the vertices. We can extend this notion easily and speak, more
generally, of the visibility map of any simple polygonal curve (Fig. 2.1). Chazelle
and Incerpi [6] showed how to build the visibility map of an n-vertex curve in
O(n log n) time, using divide-and-conquer. Their algorithm mimics mergesort:
assuming that n is a power of 2, at the kth stage (k = 1, 2 , . . . , log n), the boundary
of the polygon is decomposed into chains of size 2 k, whose visibility maps are
computed by piecing together the maps obtained at the previous stage. Each stage
can be accomplished in a linear number of operations, so computing the visibility
map of the polygon takes O(n log n) time.

The new algorithm follows the same pattern: it goes through an up-phase of
log n stages, each involving the merging of maps obtained at the previous stage.
The novelty we bring into this process is to use only coarse samples of the visibility

Triangulating a Simple Polygon in Linear Time 487

maps during the merges. In this way we can carry out an entire stage in sublinear
time and beat the n log n barrier. The samples are uniform submaps of the visibility
maps; uniform in the sense that they approximate the visibility maps anywhere
equally well. Of course, in the end, we also need an efficient way to refine the
submap derived for the whole polygon into its full-fledged visibility map. After
this is done, it takes only linear time to compute a triangulation. To refine a
submap we go down through stages in reverse (a down-phase): each transition
refines the submap incrementally, until we get back to the first stage, at which
point the full visibility map emerges at last. Figure 1.1 illustrates the meaning of
the up- and down-phases.

Perhaps now is the right time to wonder whether our approach is not inherently
flawed from the start. How sound is it to mimic mergesort when our goal is to
beat n log n? Any attempt to speed up mergesort by using "coarse samples" of
the lists to be merged is trivially doomed. So, what is so different about polygons?
The difference is rooted in a notion which we call conformality. This is perhaps
the single most important concept in our algorithm, for it is precisely where

Up phose

Fig. 1.1

488 B. Chazelle

mergesort and triangulation part ways. Recall that the polygon-cutting theorem
is a geometric analog of the centroid theorem for free trees: a visibility map has
a tree structure and, so, can be written as a collection of "blobs" of roughly equal
size, themselves interconnected in a tree pattern. These blobs are the constituents
of a submap. Merging two submaps can thus be equated with "merging" two trees
together. The mergesort equivalent of a submap would be a sublist (of one of the
lists to be merged) obtained by picking keys at regular intervals. Notice that
merging two such sublists might in the worst case produce a new sublist whose
corresponding intervals are up to twice the size of the original intervals. This
coarsening effect prevents us from speeding up mergesort, because repairing the
damage might involve computing medians or things of that nature for which no
shortcuts can be found. To be sure, as we shall see, equally bad things can happen
with submaps; repairing the damage, however, can be done by simply adding new
chords to submaps, which can be made to take only sublinear time. To make this
possible we must keep the coarseness of submaps under control by requiring that
the tree structure of a submap be of bounded degree: in our terminology
"conformal" actually means degree at most 4. Restoring conformality after
merging two submaps is the linchpin of the algorithm and, as we should expect,
its most delicate and subtle part as well: it can be viewed as a geometric
"two-dimensional" analog of rotations in balanced dynamic search trees.

Although our algorithm is an outgrowth of the mergesort-like method of
Chazelle and Incerpi, it goes far beyond it. For example, the algorithm n e v e r

actually merges visibility maps but only submaps (which is done quite differently).
We must also borrow ideas from a number of other sources: as we mentioned
before, one of them is the polygon-cutting theorem, and, more specifically, the
hierarchical polygon decomposition of Chazelle and Guibas [5]. There exist
optimal algorithms for computing such decompositions [3], [14] but, as it turns
out, standard suboptimal methods work just as well for our purposes. Merging
submaps requires a primitive to detect new chords. In the Chazelle-Incerpi method
the detection is limited to constant-size domains, so it can be done naively. But
here the domains can be arbitrarily large so we need a sublinear ray-shooting
method. This cannot be done by using fast planar point location, which is the
approach followed in the algorithm of Kirkpatrick e t al. [20]. The reason is that
we need to support merging of two point-location structures, and the known
methods, even the dynamic ones, are inadequate in that regard. We turn the
problem around by using a weak form of divide-and-conquer based on Lipton
and Tarjan's planar separator theorem [21].

2. Visibility Maps and Submaps

Following the tradition of visibility algorithms, we begin by restricting their
applicability to polygons where no two distinct vertices have the same y-co-
ordinate. Of course, the standard excuse still works: we can easily get around this
assumption by applying the symbolic perturbation techniques of [10] and [31].
Turning now to visibility maps, recall that, in the Chazelle-Incerpi method, chords

Triangulating a Simple Polygon in Linear Time 489

are extended only toward the interior of the polygon, with a special rule to
determine how far they should extend. Kirkpatrick et al. [20] use the simpler
scheme of extending chords on both sides. This amounts to thinking of a polygonal
curve as a very thin polygon embedded in a cylindrical plane that lets chords wrap
around infinity. For the reasons we give below, we find it more convenient to
embed our objects in a topological manifold, called the spherical plane, which is
equivalent to a 2-sphere. Proofs of correctness in the polygonal merging business
tend to be tricky and ridden with painful case-analyses. One reason for this is that
these proofs often attempt to establish topological facts by geometric means, thus
adding unnecessary complication. By sticking to topological considerations as
much as possible, proofs become much simpler, provided, of course, that the
ambient space has the "right" topology.

What is the right topology in this context? One problem with the cylindrical
plane is that although it has a Jordan curve theorem, the two regions created by
removing a simple closed curve may now have one of three types:

(1) an open disk,
(2) a cylinder S 1 • (0, + ~) , or
(3) a perforated cylinder.

We simplify all that by defining our ambient space to be the spherical plane: this
is the product space [- ~ , + ~] z with the following identification rules:

(i) (- m, y) = (+ m, y),
(ii) (x, - ~) = (- x , - ~) ,

(iii) (x, + ~) = (- x , + ~),

for all x, y 6 [- ~ , + ~] . The spherical plane is homeomorphic to a 2-sphere, so
we now have the nicest Jordan curve theorem of all: the removal of any simple
closed curve creates two open disks.

The only remaining difficulty is the orientability of Jordan curves. If we fix an
orientation of the spherical plane, the boundary of any region homeomorphic to
a disk, being of codimension 1, has an induced orientation, called clockwise; the
reverse orientation is called counterclockwise. Conversely, given a Jordan curve, a
clockwise tour of the curve refers to the orientation induced by one of the two
homeomorphic disks that it bounds. Unless one of these disks is already under-
stood, we choose one unambiguously by fixing a reference point somewhere in
the plane and looking at the unique disk that does not contain it. Of course, this
means restricting ourselves to curves that avoid that point, but this is only a minor
inconvenience. From now on, we assume that the reference point is at (0, + ~) .
In this way, to speak of the clockwise traversal of a Jordan curve, without reference
to an enclosed region, makes full sense.

2.1. The Visibility Map

Given a simple (nonclosed) polygonal curve C with vertices vl v,, we define
the visibility map of C, denoted V(C), as the planar subdivision formed by extending

490 B. Chazelle

two horizontal segments from each vertex vi, one in each direction. Each segment,
which we call a chord, is extended until it meets another point of C. If it were to
go to infinity in the Cartesian plane, then it would actually wrap around in the
spherical plane until it hits C again. Adding chords to C subdivides the spherical
plane into regions: triangles or trapezoids with two horizontal segments and two
nonhorizontal segments, all of which are possibly divided into several collinear
edges (Fig. 2.1).

In order to distinguish between the two sides of an edge, we give each edge of
C an infinitesimal width so as to make the curve C into a very thin simple polygon.
(This is just a conceptual device, so, in particular, no actual perturbation of the
polygon needs to be performed on the computer.) The boundary of that polygon
is called the double boundary of C and is denoted 8C. By abuse of terminology
we refer to the two sides of the double boundary as one would speak of the left
and right sides of a snake; of course, this is meaningful geometrically but not
topologically. Each vertex of C that is not a local extremum in the y-direction
gives rise to two companion vertices in 8C, one on each side of the curve (Fig.
2.2.1). In this way, each vertex is incident upon exactly one chord (possibly the
same chord for the two companions). But what about local extrema? For each
such vertex of C, if it is not one of the two endpoints, we create a total of four
vertices in dC (Fig. 2.2.2): two companion pairs of duplicate vertices; one pair on
each side of t3C. The duplicate vertices in a given pair are next to each other along
8C. By convention, we say that one of these pairs, the one on the "inside" of the
turn, gives rise to a chord of null length. Finally, as shown in Fig. 2.2.3, for each
endpoint of C we create two companion vertices; these can also be called duplicates
since they are next to each other as well as on both sides of 8C. Figure 2.3 illustrates
these definitions. Note that for simplicity we have not numbered vertices connected
to null-length chords, but we have numbered all chord endpoints for later use.
We have now ensured that each vertex of 8C is incident upon exactly one chord
of the visibility map. Therefore, any vertex--and actually also any poin t - -of 8C
has a unique horizontal "chord direction" (left or right) assigned to it. Roughly

o I

Fig. 2.1

Triangulating a Simple Polygon in Linear Time 491

Fig. 2.2

speaking, this direction points to the left of an observer walking clockwise around
~C.

If a chord of V(C) has p and q as endpoints, we say that p and q see each other
with respect to C, or simply, see each other, when C is understood. Equivalently,
we say that p and q are mutually visible. More generally, if p and q are two points
(not necessarily vertices) of ~C with the same y-coordinates, we say that p and q
see each other with respect to C if one of the two (relatively open) segments joining
p and q lies completely outside of C (regarded as a thin simple polygon). By
extension the segment pq is also called a chord. For example, in Fig. 2.3 points
labeled 6 and 7 see each other, whereas points 6 and 14 as well as points 3 and
4 and points 1 and 1' do not see each other. We close our discussion of visibility
with a simple but useful fact.

T r r
17 17'

Zz

"rrr

13' 13
Tr

Fig. 2.3

492 B. Chazelle

Lemma 2.1. I f we remove a pair of mutually visible points from the double boundary
of a simple polygonal curve, then no chord can connect the two resulting pieces.

Proof. Let C1 and C 2 be the two pieces of the double boundary resulting from
the removal of a pair of visible points. Together with C~ and C2, the chord c
connecting the two points subdivides the spherical plane into three polygonal
regions (i.e., regions bounded by simple polygonal curves), one of which is the
infinitesimally thin polygon C itself. Any chord connecting C 1 and C2 lies outside
the "polygon" C, so it must cross c. But this is impossible because chords are
horizontal. []

The circular sequence of chord endpoins in V(C) encountered during a clock-
wise traversal of OC is called the canonical vertex enumeration of V(C): note that
it contains other points besides the vertices of ~C. Figure 2.3 provides the sequence
1, 1', 17', 18, with the primes indicating duplicated vertices. Recall that we have
refrained from numbering the endpoints of null-length chords. Speaking of which,
note that null-length chords create empty regions. The traversal of the double
boundary leads to a canonical enumeration of the regions (with repetitions). In
the case of Fig. 2.3 we have the list (including only the nonempty regions for
simplicity)

(I, II, III, IV, V, VI, VII, VIII, VII, IX, VII, VI,
V, IV, III, X, XI, X, III, II, I, XII, I, XIII).

It is easy to see that the dual graph of the subdivision is a tree, naturally called
the visibility tree of C. This graph is defined by associating a distinct node with
each region (empty or nonempty) of the visibility map and connecting any pair
of nodes whose corresponding regions share a common chord. Note that this also
includes null-length chords. Figure 2.1 shows the tree without the nodes asso-
ciated with empty regions. Since any two consecutive regions in the canonical
region enumeration have a common chord, the visibility tree is indeed connected.
Why can it not have cycles? It suffices to show that removing any chord ab would
disconnect the graph.

First, assume that a and b are not duplicates of each other (although they might
be companions). Then, from Lemma 2.1, removing a and b splits the double
boundary into two pieces which are closed under visibility. It follows that the
boundary of any region contains segments from exactly one of the two pieces, and
therefore can be classified by the piece to which these segments belong. Any chord
separating a region associated with one piece from a region associated with the
other piece must join two points at the juncture between the two pieces, and only
ab satisfies this requirement. This concludes the first case. Assume now that a and
b are duplicates of each other. If the chord ab has zero length, then removing it
isolates an empty region from the rest, and our claim holds. So, suppose that ab
has nonzero length. Then a is either the highest or lowest point of c3C, therefore
removing ab would disconnect the upper or lower part of the spherical plane from
the other regions. This completes the proof that the visibility tree is indeed a tree.
(There is also a simple topological proof, which is given in Lemma 2.2 below.)

Triangulating a Simple Polygon in Linear Time 493

2.2. Visibility Submaps

An operation which we will find useful is the removal of chords from V(C). Before
we go any further, however, we wish to prepare for the possibility that V(C) has
been augmented with some additional chords (something that will often happen
later). Obviously, these new chords cannot connect vertices of ~?C (since all have
been used up) but rather arbitrary points on the curve. Although this clearly affects
V(C) as well as the visibility tree, everything we said previously regarding canonical
enumerations can be trivially extended to this new situation. So, from now on, let
us treat V(C) either in its original state or in some augmented form. We specify
which applies whenever the distinction needs to be made.

The operation we want to discuss now involves removing a given chord from
V(C). Since V(C) may have additional chords, we need to be careful about the
meaning of a removal. A chord has two endpoints; none, one, or two of which
are vertices of c?C. So, the removal of a chord entails removing not only the chord
itself but also those endpoints that are not vertices of 0C, and glueing back 0C at
those points. This cleanup operation is meant to prevent the presence of vertices
stranded in the middle of an edge of 0C: in other words, any vertex that is not a
vertex of 0C must be the endpoint of a nonremoved chord.

Removing one or several chords (of zero or nonzero length) from a map
produces a polygonal subdivision of the spherical plane, called a submap of V(C)
(Fig. 2.4). The boundary of a nonempty region of the submap is an oriented circular
sequence of horizontal segments, called exit chords, alternating with pieces of OC
and not of C. For example, let us assume that all null-length chords have been
removed in the submap of Fig. 2.4. Then the boundary of the region labeled II
consists of a two-edge arc (beginning at the big dot), followed by an exit chord,
a one-edge arc, an exit chord, a three-edge arc (not a four-edge arc!), an exit chord,
a one-edge arc, and one final exit chord. Note that some arcs may be of zero
length, as is the case in the region labeled V. As illustrated in Fig. 2.4, a clockwise
traversal of OC induces a traversal of the boundary of each region of the submap
which is counterclockwise with respect to the orientation of the region. More
formally, we have the following fact.

a l l

"r

l i t _ _

Fig. 2.4

494 B. Chazelle

Lemma 2.2. Let A 1 A k be the counterclockwise enumeration of the (oriented)
arcs of a nonempty submap region (as induced from the region's orientation). Then
each Ai is oriented clockwise with respect to OC. Moreover, the sequence A1,. . . , Ak
also occurs clockwise around OC.

Proof. The curve t3C is homeomorphic to a circle embedded in the spherical
plane. Adding a chord is topologically equivalent to connecting two points on the
circle by a simple curve lying entirely on one side of the circle. The requirement
that all these curves should be mutually disjoint induces a parenthesis system
which immediately reveals the tree structure of the dual graph. This is similar to
the parenthesis systems in Jordan sorting [-18-1. As an example, Fig. 2.5 depicts
the topological equivalent of the submap of Fig. 2.4. From this perspective, the
lemma should be completely obvious. []

As was the case with V(C), a clockwise traversal of dC induces canonical
vertex/region enumerations of the submap. Figure 2.4 gives the region enumera-
tion: I, II, III, II, IV, II, V, II, I. (Recall that that particular submap is supposed
to have had all its null-length chords removed and therefore has no empty regions.)
Bold dots mark the points during the clockwise traversal of the double boundary
where the canonically enumerated regions are first discovered. An important
requirement is that a vertex enumeration of a submap should list only the
endpoints of actual exit chords and thus might skip over many vertices of t3C. In
this way, canonical enumerations of any type take time proportional to the number
of regions and not to the number of vertices (which might be much higher). We
define the weight of a region as 0 if the region is empty, or else as the maximum
number of nonnull length edges in any of its arcs. For example, regions I and II
in Fig. 2.4 have weights 4 and 3, respectively.

Although weights count only edges of nonzero length, chords of zero length (if
any) are taken into account inasmuch as they separate arcs. In other words, an
arc never contains any chord, whether that chord be of nonzero length or not. Of
course, once removed, a chord of zero length ceases to separate any arcs. Also,
note the important role played by the double boundary in the definition of a
region's weight. Indeed, a region may have a very small weight because its arcs

3"

Fig. 2.5

Triangulating a Simple Polygon in Linear Time

|

Fig. 2.6

495

are all small; but this does not prevent any one of these arcs from having a huge
number of vertices on the other side of the double boundary. Of course, because
vertices of 0C have companions those extra vertices have to be endpoints of exit
chords.

Combinatorially, a region corresponds to a subtree of the visibility tree of C.
The dual graph of a submap is obtained by contracting the edges of the visibility
tree that correspond to the removed chords (Fig. 2.6). Being derived from the
visibility tree by graph-minor operations, the dual graph of a submap is itself a
tree (as was clear in the proof of Lemma 2.2), which we simply call the tree of the
submap. Note that, conversely, contracting any edge of the visibility tree amounts
to removing the corresponding chord from the visibility map. The weight of a
node naturally refers to the weight of its corresponding region.

2.3. Conformality and Granularity

Since no two distinct vertices of C have the same y-coordinate, the degree of any
node in a visibility tree cannot exceed 4. We should not expect this to be always
true of submap trees, however, so we distinguish the trees of conformal submaps
as those with node-degree at most 4. By analogy with the polygon-cutting theorem
[4] we can decompose a conformal submap in an hierarchical manner. The idea
is to pick the centroid of the submap's tree and observe that there exists at least
one incident edge whose removal leaves two subtrees, each with a number of edges
at most three-quarters the original number. Associating the removed edge with
the root of a binary tree and recursing in this fashion with respect to the root's
two children provides a tree decomposition of the submap. The tree has depth
logarithmic in the number of regions (which is the number of chords plus one).
The internal nodes (resp. leaves) are in bijection with the exit chords (resp. regions)
of the submap. Figure 2.7 illustrates the correspondence (leaves have been omitted).

496

lO

8 9

Fig. 2.7

B. Chazelle

1

By using straightforward tree-labeling techniques we can find the centroid node,
and from there, the first edge to be removed, in linear time. Proceeding recursively
gives us a simple O(m log m + 1)-time algorithm for computing the tree decomposi-
tion of a submap of m regions. We use this result below because it is simple and
practical. Optimal methods exist but they are all fairly complicated and un-
necessary for our purposes [3], [14].

One final piece of classification addresses our desire to make submaps coarse
but uniform approximations of visibility maps. We say that a submap is ?-granular
if

(i) every node of its tree has weight at most y and
(ii) contracting any edge incident upon at least one node of degree less than 3

produces a new node whose weight exceeds 7.

Note that this weight might be less than the added weight of the two nodes of
the contracted edge. This is either because the arcs incident upon the chord
removed did not determine the weights, or more interestingly, because one or both
endpoints of the chord might not be vertices of OC and might thus disappear. If
only condition (i) holds, then the submap is 7-semigranular. Adding condition (ii)
makes the semigranularity maximal in some sense. Finally, by default, if (i) holds
but the submap has no exit chord, it is still said to be ?-granular. The following
result asserts that, as we would expect, a ?-granular conformal submap is more
economical to encode that its full visibility map by a factor of 7.

Lemma 2.3. I f C is a polygonal curve with n vertices, any ?-granular conformal
submap of the (possibly augmented) visibility map of C has O(n/y + 1) regions and
each region is bounded by 0(7) edges.

Triangulating a Simple Polygon in Linear Time 497

Proof. We can assume that the tree of the submap has at least one edge, otherwise
the lemma is trivial because of the y-granularity. Among the edges of that tree,
let E be the set of those incident upon at least one node of degree less than 3. It
is trivial to show by induction on the size of the tree that E accounts for at least
a fixed fraction of all the edges. Now, contracting any edge in E, or equivalently,
removing a chord associated with E produces a merged region of weight greater
than 7, meaning that it has an arc with more than ~, edges of nonzero length. Since
a vertex of C can give rise to at most four vertices of OC, and removed chords do
not leave extra vertices behind except those of c~C, such an arc must involve at
least fl(y) distinct vertices of C. If contracting any edge of E were always to produce
a disjoint merged region, then it would follow from the pigeon-hole principle that
E, and hence the whole tree, has O(n/7 + 1) edges. Unfortunately, two edges of E
might produce overlapping merged regions (i.e., if they share a common node).
From the conformality of the submap, however, we know that a given vertex of
C can be used at most a constant number of times in this counting argument,
therefore E has indeed O(n/7 + 1) edges and the first part of the lemma is
established. The second part derives from the conformality of the submap, which
ensures that there is a bounded number of arcs per region and, hence, that the
total number of bounding edges is at most proportional to the weight of the region.

[]

2.4. Representation Issues

How do we represent visibility maps and submaps as data structures? We first
describe our mode of representation, then we point out some of its idiosyncracies
and explain why they are needed. Let P be the input polygonal curve (the one
whose visibility map is sought) and let C be the subchain of P whose visibility
map (or submap) we wish to represent. We assume that P is nonclosed; this is
not restrictive since a little hole can always be punctured if it is closed to begin
with. We assume that the edges of P are stored in a table (the input table) in the
order in which they occur along the boundary of P. (A doubly linked list would
also do.) Note that the notion of double boundary need not be encoded explicitly,
i.e., no edges are duplicated in the table. The input table is read-only: it is never
to be modified or even copied. A visibility submap of V(C) is represented by its
own data structure: arcs are encoded by pointing directly into the input table.
More precisely, each arc is represented by a separate arc-structure. Null-length
arcs can be represented explicitly so let us assume that the arc has nonzero length.
Let e 1 e, be the edges of an arc in clockwise order along the double boundary,
where el and e t are the edges adjacent to the two chords connected by the arc. If
t -- 1, then the arc-structure consists of a single pointer into the input table to the
edge e of P that contains ev Since el is an edge of the double boundary, we also
need to indicate by a flag which side of e is to be understood. We do not need to
record the endpoints of the arc because chords take care of that. If t > 1, we store
the same information as above but now with respect to both e~ and e, in that

498 B. Chazelle

order. We say that a submap (or map) is given in normal form if the following
information is provided:

(i) The tree of the submap (or map) is represented in standard edge/node
adjacency fashion.

(ii) Each edge of the tree contains a record describing the corresponding chord
as well as pointers to the arc-structures of the two, three, or four arcs
adjacent to it. Conversely, each arc-structure has a pointer to the node of
the tree whose corresponding region is incident upon the arc in question.

(iii) The arc-structures are stored in a table (the arc-sequence table) in the order
corresponding to a canonical traversal of the double boundary ~C. Also,
the endpoints of C are identified by appropriate pointers into the input
table as well as by pointers to the arc-structures whose corresponding arcs
pass through the endpoints.

(iv) If the submap is conformal, then its tree decomposition should be available.

We choose what may seem to be a contrived representation of a submap in order
to use storage proportional not to the number of edges in the submap but rather
to the number of regions (which is of the same order of magnitude as the number
of chords and arcs). It is essential to avoid excessive duplication of information
because we need to encode a collection of submaps whose number of distinct
features is only O(n), but whose combined size, counting redundancy, is | log n).
Note that our representation is powerful enough to let us perform canonical
vertex/region enumerations in optimal time. If we wish to, we can also enumerate
all the vertices of OC in clockwise order directly from a canonical vertex enumera-
tion of the submap, since any arc can be reconstructed explicitly from the succinct
information given by the arc-structure: it suffices to explore the input table between
the locations indicated by the two pointers of the arc-structure. Note that caution
must be used since an arc might wrap around both sides of OC, something we call
double-backing. This can be detected when we traverse the arc as soon as we reach
an edge of P incident upon an endpoint of C.

Perhaps a less obvious task is to retrieve the arc-structure corresponding to an
arc, given one of its edges. More specifically, suppose that we are given an edge
e of C and a point q on it. The question is to find the arc-structures of all those
arcs in the submap that pass through the point q. By passing through, we do not
care whether the arc is on any particular side of the double boundary, so, for
example, if q is not an endpoint of any chord in the submap, then there are at
most two distinct arcs to be found. Otherwise, there are at most six of them, two
of which are of zero length: this worst case occurs when q coincides with a vertex
of C that is a local extremum in the y-direction. Since we know the location of
the two endpoints of C in the arc-sequence table (i.e., which arcs pass through
them) we can conceptually break up the circular arc sequence into two linear
sequences and perform in each of them a binary search, using the name of the
containing edge e as a query. Either search might take us to a unique arc-structure,
in which case we are done, or else to a contiguous interval of arc-structures: this
might happen if e contributes several arcs. We can disambiguate by pursuing the

Triangulating a Simple Polygon in Linear Time 499

binary search, now using, say, the y-coordinate of q as a query. The total running
time is logarithmic in the number of arcs. This operation is very useful later when
we want to navigate in a submap across its arcs: we call it the double identification
of a point of C.

We have said repeatedly that a submap has a tree structure. Now let us change
our perspective for a moment and look at a submap as a standard planar
subdivision, without distinguishing between chords and arc edges. There are many
standard representations of planar graphs [2], [15], [23] which allow us to
navigate through such a subdivision along the edges in constant time per step
taken. Normal-form representations are not quite that powerful. One problem
arises if we attempt to cross from one side of an arc to the other along, say, a
straight line. In order to find which region we are about to enter we must perform
a double identification. The difficulty here is that unlike what is commonly done
in standard graph representations we do not keep adjacency information between
regions and edges (except for chords). More important yet, we do not provide an
explicit correspondence between the features on the two sides of an edge of C.
For reasons which will become clear later, it would be a very bad idea to try to
do so.

2.5. A Topological Lemma

We close this discussion of visibility submaps by proving a result on the topology
of regions and chords, which we use to establish the correctness of our submap
merging algorithm. Let D be a closed disk in the spherical plane, let b be its
boundary, and let ab denote a diametrical chord of D. Pick two distinct points c,
d o n /) such that a, c, b occur in clockwise order (with respect to D), and let A be
a simple curve lying inside D and running from c to d. Consider the circular arc
that runs clockwise from d to c and let B i (i = 1,2) be the closures of its
intersections with the two circular arcs of D\{a, b} (Fig. 2.8). Note that each Bi
consists of 0, 1, or 2 circular arcs. We say that a subset fl of A is shielded from Bj
if either Bj is empty or else no point of fl can be connected to any point of Bj by
a curve (understood here as a closed set) that lies entirely inside D and does not
intersect either ab or A. In Fig. 2.8.1, for example, the piece of A running from c

c dl L~ ot~/ Bl

a (~ / / b ' b

Bz
2. B 2 ~ d

Fig. 2.8

500 B. Chazelle

to a' is shielded from B 2 since none of its points can be connected to B 2 without
crossing ab. Similarly, the piece from a' to b' is shielded from B~ since a connection
to it would have to cross ab or A.

Lemma 2.4. I f a ~ B 1 w B 2 (resp. b ~ B1 u B2), let a' (resp. b') be the first (resp.
last) point of ab c~ A encountered when traversing the diametrical chord ab from a
to b. The points a' and b' (which might not exist) subdivide A into a total of one, two,
or three connected curves, each of which is shielded from some B~ (not necessarily
the same j for all curves). Furthermore, an appropriate Bj can be identified simply
on the basis of a, b, c, d, a', b'.

Proof. We can assume that both B~ and B 2 a r e nonempty and that A intersects
ab (else the lemma is trivially correct). By attaching B~ u B 2 to A, we obtain a
simple closed curve within D, which is, therefore, the boundary of a subset R of
D homeomorphic to a disk. If a (resp. b) belongs to B~ w B 2, then the segment
aa' (resp. bb') lies within R and thus, acting like a chord, subdivides R into two
regions. Since aa' and bb' cannot intersect, together they subdivide R into two or
three disk-like regions. The boundary of each such region intersects the boundary
of D in a single connected arc and therefore avoids one B i (outside of a and b)
entirely. Figure 2.8 illustrates the two possible cases; note that the third case,
where the counterclockwise traversal from c to d avoids both a and b, was
eliminated earlier, since it corresponds to a situation where one of the B~'s is empty.
None of the curves obtained by removing a' and b' (if they exist) from A can belong
to more than one of the subdividing regions, so each of them is shielded from
some B~. Which one can be determined by simple examination of the relative order
of the points a, b, c, d, a', b' around the boundary of R. []

3. Merging Two Submaps

The inner loop of the visibility algorithm involves merging two conformal
submaps. Everything else in the algorithm is part of a control mechanism for
deciding what gets to be merged with what, at what time, and with what desired
granularity. Let C 1 and C2 be two polygonal curves of nl and n 2 vertices
respectively, whose union C forms a connected vertex-to-vertex piece of the input
(simple and nonclosed) polygonal curve P; we assume that C1 c~ C2 is a vertex of
P. Let Si (i = 1, 2) be a 7i-granular conformal submap of V(C3, with 71 < 72. Given
any integer 7 > 72, to merge $1 and $2 (where 7 is understood) means to compute
a normal-form 7-granular conformal submap of V(C).

To facilitate the exposition we assume that we have at our disposal two
primitives: one is a ray-shooting oracle, which allows us to shoot a horizontal ray
toward any subarc of St or $2 and discover which point, if any, is first hit by the
ray; this gives us a way to discover new chords. The other primitive is an
arc-cutting oracle, which enables us to cut up any subarc into a small number of
pieces for which conformal submaps of the appropriate granularity have already

Triangulating a Simple Polygon in Linear Time 501

been computed. This is to be used for restoring the conformality of merged
submaps.

The merge proceeds in three stages. First we find which points of t3C can be
seen by the endpoints of the exit chords of Si (i = 1, 2) and by the companion
vertices resulting from the duplication of C1 n C2; this gives us chords which we
use to create a submap S of V(C), called the fusion of $1 and $2 (Section 3.1). In
the second stage we ensure that the submap is conformal, which might involve
adding new chords to cut up regions with more than four arcs. This is done by
calling upon the arc-cutting oracle, which allows us to deal with subarcs for which
conformal submaps and their tree decompositions are available. Finding new
chords to cut up big regions is carried out by binary search through the
appropriate tree decompositions, using the ray-shooting oracles along the way
(Section 3.2). In the third stage, finally, we bring the submap S to the desired
granularity by removing chords if necessary (Section 3.3). The implementation of
the oracles is discussed in Section 3.4.

We need to be able to distinguish between an arc of c~C and the piece of C
from which it originates. For this purpose we introduce the notation ~ to refer to
the portion of C to which an arc ct of OC corresponds. Recall that an arc may
double-back around an endpoint of C, so ~ may not always be as "long" as ~.
We assume that each St is given in normal form and that the following set of
primitives is available. For each region arc ct of Si (i = 1, 2) specified by a pointer
to its arc-structure:

(i)

(ii)

There exists a ray-shooter which, given any point p along with a horizontal
direction (left or right) and any subarc ct' of ~ specified by its two endpoints
(along with two pointers to the input table to indicate the names of the
edges of P that contain these two endpoints as well as two flags indicating
which side of t~P is to be understood), reports the single point of ct' (if any)
that a ray of light shot from p in the given direction would hit in the absence
of any obstacle except ~'. In addition to the point hit, the report should
also include the name of the edge of P that contains it. The report should
take O(f(Ti)) time, where f is a nondecreasing function.
There exists an arc-cutter which, in O(g(yl)) time, subdivides the subarc ct'
into at most g(7~) subarcs ~1, ct2, -.., such that (1) each ctj is specified by its
two endpoints and a pair of pointers into the input table to indicate which
edges of P contain these endpoints; the pair should be ordered to reflect a
clockwise traversal along t3P and two flags should be included to indicate
on which sides of OP these endpoints fall; (2) l~he relative interior of no atj
should contain a point of aC~ that corresponds to an endpoint of C~, that
is, each subarc must lie entirely on one side of OC (no double-backing); and
(3) except for ~t and ~2 (in the case where these are single-edge pieces
attached to the points of C corresponding to the endpoints of 0t'), all the
~j's are vertex-to-vertex subchains of C i (i.e., they do not stop in the middle
of an edge) and, for each of them, an h(7~)-granular conformal submap of
V(~j) is available in normal form. Again, 9 and h are assumed to be
nondecreasing functions.

502 B. Chazelle

Given these oracles we show how to merge S~ and S 2 in

O((n,/7, + nz/72 + 1)f(y2)g(yz)(h(72) + log(n1 + n2)))

time. Ideally, we would like the extra factor f(y2)g(Y2Xh(~/2) + log(n1 + n2)) to be
constant. This would mean that the merge could be done in time proportional
not to the total size of the submaps but to the number of chords in them. We
cannot achieve this, but we can find functions f, g, h which, although nonconstant,
are small enough for our purposes. Specifically, we have f (x) = O(x~ g(x) =
0(log x), and h(x) = O(x~176 This allows us to carry out a merge in time almost
proportional to the total number of chords. Note that to achieve f (x) = g(x) = x
is trivial but, for our purposes, completely useless.

3.1. Fusion of Two Submaps

By symmetry, we may limit our discussion to the problem of fusing $1 into S 2,
that is, determining the points of 0C that are seen by the endpoints of the exit
chords of $1 and by the companion vertices resulting from the duplication of
C~ n C2. The idea is then to repeat the work described below with respect to Sz
(i.e., fusing S 2 into S~), and set up a new submap S based on the information
collected. Let a,,+l and a o be the
each other clockwise around I~C1,
C l c ~ C 2 in aC r Let a 1, a 2 a,,
Recall that this enumerates the exit

companion vertices, as they appear next to
resulting from the duplication of the vertex
be the canonical vertex enumeration of S r
chord endpoints in S~ as we encounter them

going clockwise around c3Cr Since the sequence is circular we can assume that
a0 precedes al and a,,+ 1 follows am. Note that it could happen that a o and a,,+l
are already part of the sequence, but this need not be the case because of chord
removals which might have occurred during previous merges, so, for the sake of
generality, we assume that they are not and therefore add them to the sequence.
A clockwise tour around ~3C1 that begins at a o thus ends at am+ 1. We compute
the points of c3C seen by a o, a 1 am+ 1 in that order.

We begin with a simple observation. Given any point p of ~3Ci and the arc to
which it belongs (specified by its arc-structure), we can determine which point of
OCi it sees (with respect to CI) in O(f(~'i)) time. This operation is called local
shooting. Recall that because of the double boundary the shooting direction is
always uniquely defined. If p is an endpoint of an exit chord we can easily do that
(even in constant time). If not, then p belongs to a unique region of Si, which we
can determine in constant time (i.e., via its node in the submap tree), and the point
of c~Ci that it sees lies on one of the region's arcs. This is because regions are closed
under visibility, which is a corollary of Lemma 2.1. Using the appropriate
ray-shooters, we can find that point by checking each arc in turn and finding the
nearest hit. The claim on the time follows from the conformality of Si, which
ensures that at most four arcs need to be checked. Note that local shooting is still
possible even if p does not lie on ~3Ci: it can lie anywhere in the spherical plane

Triangulating a Simple Polygon in Linear Time 503

as long as a horizontal direction (left or right) has been specified and we know in
which region of Si the point lies. We still call this operat ion local shooting.

To fuse S~ into S z we let a variable p run through OC~ in clockwise order,
stopping at a o ar,+~ as well as at some other places to be specified. We
determine what p sees along the way, while keeping track of the current region of
$2 in which p lies. We use a start-up phase to initialize p and launch the fusion.

Start-Up. Using local shooting, we find the point of ~C1 that ao sees with respect
to C~. Although ao is at worst infinitesimally close to OC z it does not always lie
on it, as we shall see in the next paragraph. However, using the information about
the endpoints of Ca encoded in the normal-form representation of $2 (namely,
pointers to incident arcs), we can find, in constant time, in which region of $2 the
point ao lies. This allows us to do local shooting and find the point of ~C2 that
a o sees with respect to Ca. These two pieces of information combine to give us
the unique point c o of 0C that ao sees with respect to C. We distinguish between
two cases:

1. If Co belongs to c~C2, then we set p = ao and we call the region of Sa crossed
by aoc o current: the start-up phase is over (Figure 3.1.1).

2. If c o belongs to 0C~, from Lemma 2.1, the chord aoc o splits t~C into two
curves, each closed under visibility. One of these curves, the one running
from ao to Co clockwise, is a piece of ~C1 (Fig. 3.1.2), so the points of t3C
that its exit chord endpoints see all belong to dCl, and thus are available
directly from $1. We can therefore skip all the way to Co. Now, however, Co
sees a point of c3Cz, namely ao, so we set p = Co and call the region of $2
containing ao current.

Technically, it is not quite true that ao is always a point of t3C2. It coincides with
one most often, but when it sits at a local extremum (in the y-direction) it is not
one because of duplication. What is true, however, is that when c o cannot see a
point of dC2, an infinitesimal deformation of c~C2 locally a round ao can make c o
see one. This is a minor technicality which will not affect the remainder of the
fusion algorithm, so for simplicity we still go on saying that Co sees a point of t~Cz
with respect to C. Another minor problem is that aoc o might lie on an exit chord
of $2 and thus there might be more than one candidate for the status of current

(c2) (c~)
I. 2 .

Fig. 3.1

504 B. Chazelle

region. We break ties by electing the region that we locally enter as we leave p in
a clockwise traversal of dC 1. This concludes the start-up phase. At this point we
have the following situation (all visibility being understood with respect to C):

A. The points of dC that are seen by the exit chord endpoints of $1 on the
portion of t9C1 running clockwise from a o to the point p in its current
position have all been determined already.

B. The point q of t~C that is seen by p belongs to t3C2 and the chord pq lies
in the region of $2 called current. If p lies on a chord between two regions
of $2, then the current region should be the one that we enter as we locally
leave p clockwise around t~Cl.

These two conditions form our loop invariant, that is, they hold prior to every
iteration of the process which we now describe.

Main Loop. Let Ai denote the oriented arc of $1 running from ai-1 to al
(in clockwise order around t3C1); by extension A1 (resp. A,~ + 1) stands for the subarc
extending from a o to a 1 (resp. am to am+ 1). Let Ak be the arc containing p. In the
likely event that p is an endpoint of a chord of $1 and thus belongs to two arcs,
we must choose the one starting (and not ending) at p, i.e., we set the condition
p ~ ak. When p is set to a,~+ 1, however, the algorithm simply terminates and no
A k need be defined. Let R denote the current region prior to entering the following
loop: iterate through j = k, k + 1 until

(i) aj lies in R and the point ofdC that aj sees belongs to t3C 2 (Figure 3.2.1), or
(ii) the previous condition (i) does not hold, but R has at least one exit chord

such that the point of dC seen by one of its endpoints belongs to Aj but
strictly follows p (Fig. 3.2.2), or

(iii) j = m + 2.

If case (i) occurs, find Which point of (3C is seen by a j, declare that all ai's (k < i < j)
see points of (~CI (with respect to C), set p = aj, let the current region still be R,
and iterate through the loop, resetting k so as to comply with its definition. If
case (ii) occurs, then of all the candidate endpoints, i.e., those chord endpoints
satisfying (ii), determine the one which sees the point p' that is the last one
encountered as we traverse (~C1 clockwise starting from p. In Fig. 3.2.2, for example,
/7' is the point labeled P3 and the chosen endpoint is labeled q3. Next, declare that

1 .

q

2 .

Fig. 3.2

Triangulating a Simple Polygon in Linear Time 505

all a,.'s (k < i < j) see points of t3C~, set p = p', make current the region of $2 which
we enter as we locally cross the exit chord at p' along CC1, and iterate after
updating k and R according to their definitions. In case (iii) we stop and, unless
k = m + 2, we declare that all ai's (k < i < m + 1) see points of 0C~. We have made
several claims and skipped over important implementation issues in order to get
the main idea of the algorithm across. Next, we fill in the missing parts and
substantiate our claims.

Lemma 3.1. I t is possible to compute the fusion S o f $1 and S 2 in

0((nl/71 + n2/)'2 + 1)(f(72) + log(nt + n2)))

time.

Proof. We restrict our attention to the task of fusing $1 into $2, the other case
being similar. We have already shown that the start-up phase leads to a situation
which satisfies the loop invariant, so it suffices to establish the correctness of the
inner loop past a 0. In case (i) we know that aj lies in R (actually in its interior)
and sees a point of 0C2, so invariant (B) is satisfied. How about (A)? We made
the claim that a k aj_ ~ all see points of OCr But actually the negation of (i)
for ak a j_ ~ is not strong enough to reach the necessary conclusion about what
ak aj_~ must see. Any of these points (if they exist) either sees OCt or lies
outside of R. Why should lying outside R imply seeing OCt? Suppose that, for
some l (k < l <j) , a t lies in region R' distinct from R (like ak+ 1 in Figure 3.2.1)
but also sees OC2. We derive a contradiction. Let ~r denote the directed portion
of OCt as we go from p to a~ clockwise, and let q (resp. q') be the point of 0C seen
by p (resp. a3. The union of ~r the chords pq and atq', and the portion ~ of OC2
running clockwise (with respect to C2) from q' to q forms the boundary of a simple
polygon (Figure 3.3). Since the dual graph of a submap is a tree, there is a unique
exit chord ab of R that leads to R' (note that ab need not be an exit chord of R',
since there might be one or even several regions separating R from R'). Because

runs from R' to R it passes through one of the chord endpoints, say, a. Let a'
be the point of ab c~ sr first encountered as we go from a to b along the chord.
Note that ab cuts through d , so a' is well defined. The points a and a' see each
other with respect to OC, and a' lies in Ah, for some h between k and l inclusive.

B'-~f ~ ~ r

Fig. 3.3

506 B. Chazelle

Because, in clockwise order around OC 1, the point a' is leaving R locally, it cannot
be equal to p. Therefore, the inequality I < j implies that case (ii) must have already
occurred when the running variable j was assigned to some integer between k and
l, which is impossible.

Having shown that the loop invariant remains satisfied through case (i), we
must do the same with case (ii). Let ~r now denote the directed portion of 0C 1
as we go from p to aj clockwise. The new assignment of p is the last point of d ,
distinct from p, that sees an endpoint of an exit chord of R. Certainly, the new
assignment of the current region satisfies invariant (B). Figure 3.2.2 shows three
candidate endpoints, with q3 winning the contest. Turning now to invariant (A), we
must prove our claim that the points of c3C seen by a k , aj_ ~ all belong to dC~.
We omit the proof since it is identical to the previous one, with the role of aj now
played by p'.

What about termination? Obviously, the three cases rule out an infinite
loop. Every time we fall in either of the two cases (i) or (ii) we determine more
visibility information, so that all visibility relations are known from a0 all
the way to the current position of p. How about the last iteration, the one leading
to case (iii)? We claimed that all ai's (k <_ i _< m + 1) see points of OCv This follows
from the proof of the last paragraph, which showed that if al sees c3C 2, then either
a t lies in R (case (i)) or it does not, but then, we must fall in case (ii) after leaving
p but upon or prior to getting to a t. The proof of correctness is now complete.

Let use now analyze the complexity of the algorithm. To test whether aj lies
in R can be done in O(f(~,2)) time by using the ray-shooters for each arc that
bounds R: first we find which point of an arc is hit by a ray of light shot from a t
in its assigned chord direction. If there is no hit on any arc, a t is not in R. Else,
let s be the first point hit by the ray over all the arcs of R. Whether a t lies in R
or not can be directly inferred from the local orientation of the hit at s and which
side of the double boundary is hit. This is because, as we should recall, arc-
structures encode on which side(s) of the double boundary the arcs lie. If a t lies
in R, then s is the point of c~C 2 seen by a t with respect to C2. Next we use local
shooting within S~ to determine the point t of OCx hit by a ray of light shot from
a t in its assigned direction. Note that most often (i.e., when 0 < j <_ m) a t is the
endpoint of a chord of S~ so t is just the other endpoint of the chord. Now that
we know which points of OC1 and t3C2 the point a t can see, we can immediately
derive the point of t3C that it sees and, from there, decide whether we are in case
(i). The test takes O(f(), 0 + f(72)) = O(f(Y2)) time (since f is nondecreasing and
Yl < Y2)- This cost also includes the start-up phase.

Regarding (ii), we must assess how fast we can find the point of OC that is seen
by an endpoint a of a given exit chord ab of R. Actually, we must find that point
only if it belongs to Aj. So, we can shoot a ray of light from a toward A t in the
appropriate direction and see what happens, which takes O(f(70) time. If we do
not get a hit, or if the hit does not lie on ab, or if it occurs before p along At, or
if it does not have the proper orientation which lets a see Aj without the other
side of the double boundary of A t interfering (a constant-time test), then the
endpoint can be disqualified. Otherwise, we must find whether the point s of A t
hit by the ray of light can see a with respect to C: the problem here is that other

Triangulating a Simple Polygon in Linear Time 507

arcs Ai (i :~j) might get in the way. Using local shooting in S~, however, we can
shoot a ray of light from s toward a. We aim in the natural shooting direction
from s since we have already ruled out that the "companion" point of s should
prevent it from seeing a. The point t hit by the ray is found in O(f(~q)) time. If
shooting from s to t passes through a, then s and a see each other with respect to
C and we fall in case (ii), else we know that case (ii) cannot occur with respect to
Aj and the endpoint a of the chord ab (although it might occur with respect to
other endpoints of exit chords in R). This shows that testing case (ii) takes O(f(70)
time.

We thus have shown that every elementary test (i), (ii) can be performed in
O(f(72)) time. At each such test we advance through the list of Ai's or we report
a pair of visible points in 0C, one of which is an endpoint of an exit chord of $2.
These reports are never duplicated because we always move forward among the
A~'s. Therefore, to discover all the chords of the fusion S of S 1 and S 2 takes time
O(mf(72)) time, where m is the total number of arcs and exit chords in $1 and $2.
By Lemma 2.3, m is O(n~/71 + n2/72 + 1). Note that among the chords to be
included in the fusion S, we not only have the newly discovered chords that connect
t3Ca and t3C2 as well as the old chords of S~ and $2 that still form visible pairs of
points with respect to C, but we also have all the null-length chords of S~ and $2
as well as the chords incident upon the vertices of 0C resulting from the duplication
of the vertex C~ c~ C2; this last category is where null-length chords originate.

After fusing S 1 (resp. Sz) into S 2 (resp. S 0, we have all the chords of the submap
S and we can set it up in normal form quite easily. In order to allow for canonical
vertex enumerations, let us sort the endpoints of these chords along OC, which is
done by sorting the names of the edges of P on which these arcs abut, and then
sorting the endpoints falling within the same edges by considering y-coordinates.
This allows us to set up the required arc-sequence table. Note that merging can
also be used instead of sorting but this step is not the dominant cost, anyway.
With this information it is now straightforward to set up the tree of the submap
S, along with all the necessary arc-structures and their relevant pointers. Since the
submap might not be conformal we dispense with the tree decomposition at this
point. Very conservatively, all this work can be done in time

O((n~/vl + n2/~; 2 + 1)log(n1 + n2)).

Putting everything together, we derive the upper bound of

O((nL/Yl + n2/Yz + 1Xf(y2) + log(nl + nz)))

on the time needed to complete the fusion of S 1 and $2. []

Remarks. 1. Since the chords of S reflect the visibility of the chord endpoints of
S 1 and S 2, they need not be incident upon any vertex of t3C, hence the notion of
augmented maps and submaps.

2. It is possible to simplify the fusion procedure in various ways, albeit at the
expense of a slightly more complicated proof of correctness. For one thing, the

508 B. Chazelle

start-up phase is not strictly required and with a bit of care can be integrated
within the main loop. Also, the two fusing passes can be unified into a single one
(toward that end, we might want to catch the first occurrence of case (ii) and not
the last one, for example).

3.2. Restoring Conformality

As we said earlier, there is no reason to believe that the fusion S should be
conformal. Things can never be too bad, however. Indeed, let A 1, A 2 be the
arcs of a region R of S in counterclockwise order. It is clear that each A i belongs
to OCt o r 0 C 2 but not both. So, we can partition the sequence of arcs into runs,
B1, B2 meaning that Bj =AiI, A~I+ 1 A i , ,_ t is a maximal subsequence of
arcs from either 0CI or 0C 2 (but not both). In the definition of maximal, we regard
A 1, A 2 as a circular sequence. Because any exit chord endpoint of Si is still an
endpoint of a chord in S and, with the possible exception of the chords incident
upon ao or a,,+ 1, every chord of S that connects two points of 0C~ is also a chord
of S~, it follows by conformality that a run associated with 0CI cannot have more
than four exit chords in its midst, not counting the new chords incident upon ao
or am + 1. Therefore, a run cannot have more than a constant number of arcs. On
the other hand, it follows from Lemma 2.2 that there are at most two runs. Why
is that so? The lemma says that if we walk along 0C clockwise we will in effect
traverse, among other things, the boundary of R counterclockwise (except for the
exit chords). If we begin our walk at one of the two points of 0C corresponding
to the vertex C~ c~ C2, we first exhaust, say, 0C1 and then 0C2. Therefore, the
counterclockwise traversal of the boundary of R must exhaust first the runs B~
contributed by St and then the runs contributed by S 2. Obviously, this leaves only
the possibility of having at most one run of each type, and hence a total of at
most two runs. The conclusion to draw is that, although not necessarily conformal,
the submap S has no region with more than a bounded number of arcs. If S is
not conformal we must now reduce the number of arcs per region to four or less
by adding new chords into S. To discover these chords we need the ability to
check whether two arcs or subarcs of the same region can "see" each other (Lemma
3.2). We also need to show that the desired chords do exist (Lemma 3.3).

Lemma 3.2. Given two arcs AI and A 2 of the same region of S, assume that they
have a pair of mutually visible points, one of which is a vertex of OC (meaning that,
say, A x contains a vertex v which is also a vertex of OC and is such that the point
of OC seen by v lies in A2). Then we can find a point of A 1 (not necessarily a vertex
of OC) that sees A 2 in time O(f(Y2)g(v2)(h(y2) + log V2)).

Proof To begin, observe that At and A 2 a r e arcs or subarcs of either St o r S 2

but cannot overlap both OCt and aC 2. The reason is that all chord endpoints in
St and $2 are still chord endpoints in S (perhaps with different chords) and that
we added chords incident upon the vertices of 0C resulting from the duplication

Triangulating a Simple Polygon in Linear Time 509

of the vertex C~ n C2. Therefore, because of the bounded number of arcs per
region, it is still possible to do local shoot ing within any region of S. Since 71 < 7z
and f is nondecreasing this takes O(f(72)) time. Thus, we can efficiently check, in
time O(f(Tz)), whether a given vertex of A~ qualifies as the point v sought. (Again,
we must be careful that local shoot ing reports edges of P and does not tell us if
the point hit is on the desired arc or is the companion of a point of the arc. We
already discussed how local checking can decide which way it is in constant time,
so we will not make further mention of that minor difficulty.) Of course, we should
not check all the vertices of A 1 because there might just be too many of them.
Instead, we need to do some kind of binary search among the vertices of A1.

For that purpose we invoke the arc-cutter associated with the arc of $1 or Sz
containing A~, which allows us to subdivide A 1 into at most g(Tt) subarcs, with
l = 1 ifA 1 c 8C1 and I = 2 ifA 1 ~ 8C2. Except for at most two single-edge subarcs
at tached to the endpoints of A 1 (which we ignore), for each subarc ~ we have a
normal- form h(Tt)-granular conformal submap S, of V(~). We search each subarc
in turn, s topping as soon as we find a good vertex or point, if ever. Since
the normal-form representation of S, provides us with the tree decomposi t ion
T of the submap, we are able to check the candidacy of ct in its entirety
in O(f(yzXh(y2) + log 3)2)) time, provided that the following test can be performed
in O(f(72)) time: given a chord ab of S,, either determine that a or b is a point of
ct and s e e s A 2 with respect to C, or find some ie {1, 2} such that ~t n ~t i is empty
or has no point that sees A2, where cq and ~2 denote the two pieces of S~ between
a and b. Note that 8~ is a superset of ~ with twice the number of vertices (not
fewer because the arc-cutter oracle guarantees that ct does not double-back a round
an endpoint). First we show how such a test can be used to check the candidacy
of ~. Then we explain how to implement the test and why it covers all possible
c a s e s .

We begin by applying this test with respect to the chord corresponding to the
root of the tree T (corresponding to the hierarchical decomposi t ion of S~). Then,
as claimed, either we terminate with a positive answer or else we identify one of
~1 or ~a, say, ~1, such that ~ n a 1 is empty or has no point that sees A 2. In that
case, we find the child of the root that corresponds to ~z and we iterate on this
process from that node. This leads us to termination at some internal node of T
or perhaps takes us to the bo t tom of the tree. Note that determining which node
to branch to at each step is trivial once we have identified the ~i to be rejected.
(So, we can perform the test just as stated above without having to "resize" ~ to
reflect the current status of the ever-shrinking set of candidates.) If we reach a leaf,
we examine each vertex of the region associated with it and, among those belonging
to ~t, we check whether any of them can s ee A 2. Since there are only O(h(3)2))

vertices in the region and the depth of the tree is O(log 72) the running time of
the algori thm is O(f(Tz)(h(72)+ log 72)), as claimed. Again we use the fact that
71 < 71 and that h is nondecreasing.

Whenever we discover a successful candidate point, the search can obviously
be stopped right there. What remains to be seen is why upon reaching a leaf the
corresponding region is the only one which can still provide the desired answer.
Let us assume that the search ends up at a leaf. At the very beginning, let us say

510 B. Chazelle

that each point of ~3~ is a candidate. Every time we branch down the tree we limit
the candidacy to those points of 8c~ in the regions of S, associated with the leaves
of the subtree which we enter. At the end, the remaining candidates are the vertices
in the region associated with the leaf where the tree search ends. This proves the
correctness of the procedure. So, to summarize, if the basic test stated earlier can
be performed in O(f(72)) time, then we can solve the entire problem in
O(f(72)g(Tz)(h(7,2) + log 72)) time, which proves the lemma.

We now show how to perform the test and why it is sound, i.e., covers all cases.
Removing 8~ from the spherical plane leaves two open regions, each polygonal
and homeomorphic to a disk. One of them is infinitesimally small; let D be the
closure of the other one. It is important that D should be homeomorphic to a
closed disk and not to a 2-sphere, so the interior of ~, and, more generally, of C,
should be understood as being very small but nonempty, Let c and d be the
endpoints of ~ on 8~. Removing c and d from 8 C leaves ct and a curve A, both
lying in D, so we have set the stage for Lemma 2.4. Figure 3.4 illustrates the
correspondence: the snake on the left represents C; the disk D corresponds to the
outside of the portion of the snake between r and d, while it is the inside of the
circle on the right. The curve A runs along the snake clockwise from d to c; note
that it runs on the boundary of D part of the way. The subarc ct runs clockwise
from c to d and corresponds to B 1 u B 2. Figure 3.4 shows the case where only
one endpoint of ab lies in B 1 L) BE, which corresponds to Figure 2.8,2. The reader
will easily draw an example matching the case of Figure 2.8.1, where both a and
b lie in ot = B I u B 2.

To compute a' and b' (if defined) can be done by local shooting in the region
of S incident upon AI and A2, which takes O (f (y 2)) time. Note that no shooting
is needed for a or b if the point in question does not lie in ~. If ever a (resp. b) is
a point of 7 and a' (resp. b') belongs to A2, then obviously we are done and
successful in our search, so we can assume that neither conjunction holds. But, in
that case, A 2 lies entirely within one of the connected components of the curve A
after it has been cut up by removing a' and b' (whichever exists). Therefore, by
Lemma 2.4, A Z must be shielded from some Bj, which means that it cannot be
connected to Bj without crossing ab or A. Furthermore, we know that Bj can be
identified in constant time. The key observation now is that Bj coincides precisely
with one of ~ n ~1 or ~ n a2, say, the first one. It follows that no point of ~ n ~1
can see A z , and the test is completed. []

d

Fig. 3.4

Triangulating a Simple Polygon in Linear Time 511

Lemma 3.3. Let A 1 A k be the clockwise circular sequence of arcs around a
region of S. I f k > 4, then there exist i, j, such that

(i) i - j : ~ - 1 , 0 , 1 (mod k) and
(ii) A i has a vertex of (?C that sees Aj (with respect to C).

Proof Recall that the region is associated with a subtree of the visibility tree of
C. If S contains chords incident upon no vertices of 0C, then we must include
these chords as well and speak of the tree of the augmented visibility map of C.
Let us add to the subtree in question the edges that connect it to the rest of the
visibility tree. With respect to this augmented subtree, each exit chord of the region
is associated with a distinct node of degree 1 (but the converse may not be true).
Note that some of these exit chords might be of zero length. Consider the Steiner
minimal tree of these particular degree-1 nodes (i.e., the smallest connected set of
edges that join these nodes together), and for simplicity form a tree homomorphic
to it by ignoring nodes of degree 2. Now embed this new tree in the plane and
enclose it by a simple closed curve that connects together all its degree-1 nodes
(Fig. 3.5). By using an embedding that preserves the local orientation of the edges
around the nodes, the area inside that closed curve is partitioned into k faces, each
corresponding to a distinct arc A~. Because there are al least five degree-1 nodes
and the maximum node-degree is 4, it is immediate that at least one edge of the
tree must be incident upon two faces associated with A i and A j, respectively, where
i - j 4: - 1, 0, 1 (mod k). (For a simple proof, try all possible cases with five nodes
of degree 1 and observe that the property remains true with the addition of more
nodes.) Of all the chords in the region only the exit chords might fail to be incident
upon at least one vertex of ?~C. It follows that the edge in question corresponds
to one or several chords of the original, nonaugmented V(C) that connect A~ and
Aj. D

Equipped with the two previous lemmas, making S conformal is now quite
easy. Recall that although S might not be conformal right after fusion, none of its
regions has more than a bounded number of arcs. For any region with more than

Fig. 3.5

512 B. Chazelle

four arcs, let us apply Lemma 3.2 to every pair of nonconsecutive arcs until we
find a chord which we can add to S. We iterate on this process until no region
has more than four arcs. Note that although S keeps changing, Lemma 3.2 always
holds since region arcs can only become smaller. Lemma 3.3 tells us that this
chord addition process will not stop until S becomes conformal. Since the total
number of arcs in S is O(nl/h + n2/72 q- 1), we conclude:

Lemma 3.4. The submap S can be made conformal in time

O((nx/7, + n2/72 + l)f(y2)9(Y2Xh(Tj + log 72)).

3.3. Maintainin 9 Granularity

Since by making S conformal we did not remove any exit chord, it is still the case
that, as observed in the proof of Lemma 3.2, no arc has more than 72 edges.
Therefore, S is conformal and 7z-semigranular. We must now check whether the
second criterion for 72-granularity holds. This criterion says that contracting any
edge of the submap tree that is incident upon at least one node of degree less than
3 produces a new node whose weight exceeds 72. This is very easy to enforce: if
an edge does not pass the test, we just contract it by removing its corresponding
exit chord (and those endpoints that are not vertices of ~3C). Note that this will
not cause a violation of the first criterion, since the size of all the arcs will always
remain within 72. Similarly, the removal keeps the submap conformal. We process
each exit chord in turn and check whether it is removable. Chords need be
processed only once since the removals cannot make any chord removable if it
was not already so before. Therefore, 72-granularity, and more generally 7-
granularity, for any 7 > 72, can be enforced in this nondeterministic fashion
in time linear in the size of the submap tree, that is, O(n~/h + n2/72 + 1). We
can now put S in normal form, which includes computing its tree decom-
position. As we discussed earlier, this can be done very simply in time
O((nl/h + n2/72 + 1)log(n~ + n2)). With the inconsequential assumption that
7i = O(n~ + n2), we derive the following result from Lemmas 3.1 and 3.4:

Lemma 3.5. Let C1 and Cz be two polygonal curves of nl and n 2 vertices,
respectively, whose union forms a connected vertex-to-vertex piece of the input (simple
and nonclosed) polygonal curve P. Suppose that we are #iven a normal-form
7i-granular conformal submap of each V(CI), where 7x-< 72, alon9 with the ray-
shootin9 and arc-cuttin9 oracles necessary for merging. Then, for any 7 >- 72, it is
possible to compute a normal-form 7-9ranular conformal submap of V(C) in time
0((nl/7~ + n2/72 + 1)f(Y2)9(72)(h(72) + log(n1 + n2))).

3.4. Implementin9 the Oracles

Of the two oracles defined earlier, the ray-shooter is the more challenging to
implement, the reason being that it addresses the key issue in the triangulation

Triangulating a Simple Polygon in Linear Time 513

business, which is the discovery of new chords. The arc-cutter is implemented by
using the divide-and-conquer structure of the up-phase of the visibility algorithm.
Since a better understanding of the up-phase is necessary to understand how that
oracle works, we postpone the discussion of its implementation a little. Turning
our attention to the ray-shooting oracle, it might appear at first that fast planar
point location should be the answer. But traditional methods, e.g., [93 and [193,
are inadequate for several reasons, the most crucial of which is their inability to
support merging in sublinear time. We turn this problem around by exploiting
further the approximation scheme provided by the concept of granularity.

Let C be a connected vertex-to-vertex piece of the input polygonal curve P and
let m be its number of vertices. Let S be a normal-form 7-granular conformal
submap of V(C). So far, we have focused mostly on the tree structure of S. But
let us now regard S as a planar graph. For this purpose, we must temporarily
forget the fact that C has been given a double boundary. We define S* to be the
planar subdivision obtained by taking S and making every vertex (vertices of ~C
and chord endpoints) a vertex on both sides of the double boundary, whose
thickness is now null. As a result, the edges of S* might be smaller than those of
S but, unlike in S, no edge of S* is of zero length (zero-length edges are now
"contracted" into vertices). More important, each face of S* coincides exactly with
a distinct region of S, except for the fact that it might have many more vertices
incident upon it. Indeed, a region's only vertices are the endpoints of its own exit
chords along with some vertices of ~C, whereas the vertices of a face include all
of the above plus all the chord endpoints that abut on the corresponding region
from the outside. Notice that since the notion of double boundary is lost, a face
might have dangling edges or edges incident upon it on both sides. There are
several examples of this in Fig. 3.6, which shows the subdivision S* corresponding
to the submap of Fig. 2.6. Note also that the correspondence face/region is not
surjective because empty regions have no associated faces. Besides being planar, the
graph S* has two remarkable properties:

(i) From Lemma 2.3 we know that it has O(m/7 + 1) faces, which is much
smaller than the number of vertices (when ~/is large).

(ii) Although a given face might be very complex (i.e., incident upon many
edges) its number of noncollinear edges is small, i.e., O(7).

These two features allow us to implement an efficient ray-shooting oracle.

Fig. 3.6

514 B. Chazelle

Let G be the dual graph of S*, that is, the graph obtained by associating a
distinct node with each face of S* and connecting two nodes if and only if they
are distinct and their corresponding faces share a common edge. It is a classical
result of graph theory that G is planar. How hard is it to compute G, say, in the
form of adjacency lists? Two faces are adjacent if and only if either they share a
chord or one of them has a chord endpoint that abuts on a nonnull length arc of
the region associated with the other face. The first type of adjacencies can be
detected immediately from S. The latter can be done by double identification, as
discussed in Section 2.4, followed by sorting along C, which takes O(/~ log m) time,
where/~ = O(m/y + 1) is the number of nodes in G. It can also be done faster by
merging chord endpoints along both sides of c3C.

If # = 1, then ray-shooting can be done trivially in O(m) time, so let us assume
that # > I. We show that after O(# log m) preprocessing we can do ray-shooting
in O(y~ 2/3) time. The planarity of G works wonders for us. The first payoff is that
the number of edges is at most 3/~ - 6. The second reward is that we can apply
the linear-time algorithm of Lipton and Tarjan [21] to find a good separator. This
partitions the nodes of G into three subsets A, B, D, such that

(i) no edge joins a node of A with a node of B,
(ii) neither A nor B contains more than 2/~/3 nodes, and

(iii) D contains at most x / ~ nodes.

Let GA (resp. GB) be the graph obtained by keeping only the nodes of A (resp. B)
and the edges of G that join only nodes of A (resp. B). We repeat the procedure
over with respect to each of G a and GB and iterate in this fashion until none of
the graphs have more t han /~ nodes, for some fixed 6 (0 < 6 < 1). Let D* be the
set of all separators, i.e., the union of all the D's. We easily verify that I D*I = O(#~),
provided that 6 is chosen large enough; for example, 6 = ~ 1-22]. In O(p log/t) time
we can compute D* and partition the remaining nodes into subsets D1, D2, etc.,
each of size at most #2/3, such that no path of G can join two nodes in distinct
subsets without passing through a node of D*.

What is the utility of D* for ray-shooting? Take a vertical line passing to the
right of all the vertices of P, and intersect it with the chords of the regions in S.
This breaks up the line into segments, every one of which falls entirely within
some region; to split up the line and identify the regions cut by each segment can
be done by traversing G and checking each chord for intersection with the vertical
line. Since the regions cut correspond to nodes of G lying on a path, sorting
the intersections comes for free, and all the work can be done in O(#) time. We
now claim that ray-shooting toward t3C from any point can be done in O(~fi 2/3)
time. Our first task is to shoot within each region that is dual to a node of D*,
using a naive algorithm which involves checking all the 0(7) edges of the region
(and not the edges of the face, which might be much more numerous). Assume
that the ray of light hits a point among the edges of the regions dual to the nodes
of D*. Let R be the last region of S traversed before the first hit. To identify R
can be done by double identification, followed by checking the local orientation
of the hit. If R is a region dual to a node v of D*, then the starting point of the

Triangulating a Simple Polygon in Linear Time 515

ray lies in R (otherwise an earlier hit would have been detected) and we are trivially
done.

So, assume now that R is dual to a node v not in D*. Incidentally, note that
the double identification needed to find R might require a binary search among
a large collection of collinear edges. Let R' be the region incident upon the (region)
edge containing the point of ~C actually hit by the ray-shooting: this is the region
that we are looking for (Fig. 3.7). If R and R' are not the same then the two regions
can be connected by a horizontal line segment that avoids all the regions dual to
D*. It follows that the node w associated with R' can be reached by a path in G
from v that avoids D*. Consequently, v and w both lie in the same Di. We can
find w, and, from there, answer the ray-shooting query, by first finding Di, which
takes constant time since we know R, and then naively checking all the regions
dual to nodes in D~, which takes O(7/~ z/a) time. Returning to our earlier case-
analysis, assume now that the ray of light hits no region dual to a node in D*.
Then the ray-shooting takes place entirely within the regions dual to the nodes
of a single D~. To find out which one, we shoot toward the vertical line and find
which segment of the line is hit. This takes O(log ~) time by binary search. We
can now identify the region R immediately. The remainder of the algorithm is
unchanged. We conclude that ray-shooting can be done in O(m) time if ~t = 1, and

Fig. 3.7

516 B. Chazelle

0(7/22/3) time if p > 1, after O(/~ log m) preprocessing. Since p = O(m/v + 1), we
have:

Lemma 3.6. Let C be a connected vertex-to-vertex piece of the input polygonal
curve P and let m be its number of vertices. Let S be a normal-form v-granular
conformal submap of V(C). Then it is possible to preprocess S in O(m(log m)/7 + 1)
time so that ray-shooting within S can be done in time 0(71/3m2/3).

4. The Visibility Algorithm

Let P be a simple nonclosed polygonal curve with n vertices Vl , v,. By padding
the curve with additional vertices, if necessary, we can assume that n -- 2 p + 1.
Any subcurve of P of the form v v b, where a - 1 is a multiple of 2 a and
b - a = 2 a is called a chain in grade L Obviously,

(i) a grade-2 chain has 2 ~ + 1 vertices,
(ii) there are 2 p- x chains in grade 2, and

(iii) there are p + 1 grades: 0, 1 p.

We begin our work bottom-up, computing conformal submaps of granularity
roughly m a, where m is the size of the underlying curve and fl is some small enough
positive constant; we set fl = ~, but to make the complexity analysis more explicit
we leave fl as a parameter in most of the calculations. We pursue the computation
until the submap for the whole polygon has been obtained, which completes the
up-phase. Then we reverse the process and work top-down until the submap has
been completely refined into its full-fledged visibility map. The down-phase does
not work by calling the visibility algorithm recursively on the regions of the top
submap, but rather it uses data structures left behind during the top-phase (the
submaps for the chains and their ray-shooting structures) to speed up the
refinement process.

4.1. The Up-Phase

We begin with a piece of terminology: given a curve C consisting of m contiguous
edges of P, we say that a submap of V(C) is canonical if it is 2rarl~
conformal, and represented in normal form. Note that a canonical submap for a
chain in grade 2 is 2ra~Lgranular. For 2 = 0, 1 p, in that order, we process
grade 2, which means:

(i) We compute a canonical submap of V(C) for each chain C in that grade.
(ii) We preprocess each canonical submap for ray-shooting along the lines of

Lemma 3.6, setting y to the value 2 raa].

This work can be done naively for the early grades, so let us pick up the action
at a grade 2 larger than some appropriate constant, assuming that all grades less
than 2 have been processed already. We need the following result.

Triangulating a Simple Polygon in Linear Time 517

Lemma 4.1. Suppose that all grades less than 2 have been processed. Then, given
any portion D of P of the form v , vb, where 2 ~- 1 < b - a < 2 ~, we can compute
a canonical submap of V(D) in time proportional to 2Z(log 2)2 ~(1 -fl/3+4/~2/3).

Proof. In 0(2) time we can partition D into j < 22 chains, D a , D i, in grades
less than 4, with at most two chains per grade. This implies that, for each
i = 1 j, a canonical submap S~ of V(Di) is available. Let 7 be the granularity
of a canonical submap of V(D); we have 7 = 2 raal. Since the granularity of canonical
submaps grows monotonically with the size of the underlying polygonal curve,
we can trivially reset the granularity of each Si to 7 (Section 3.3). The time to do
that is proportional to the total number of chords in all the S:s which, from
Lemma 2.3, is on the order of ~O_~k<~ 2 k-[#k1, that is, 0(2 m -#)).

Let us now merge these submaps two-by-two (D 1 with D2, D 3 with Dr etc.).
More generally, we consider a perfectly balanced binary tree whose leaves are in
bijection with the D:s and we merge submaps bottom-up by following the tree
pattern. Application of Lemma 3.5 results in a canonical submap of V(D) provided,
of course, that the required oracles are available. But are they? Notice that during
any merge any arc a in either of the two input submaps consists of at most 7
edges. Therefore, any subarc a' ~_ a can be subdivided into a constant number of
contiguous pieces (with no double-backing) whose corresponding portions of P
consist of single line segments (at most two of them) and vertex-to-vertex pieces
of P, each with at most 2 taxi edges. Each of these pieces can be partitioned into a
collection of O(4) chains in grades at most [f12]. Our work at previous grades
ensures that we have ray-shooting structures for the canonical submaps associated
with these chains. Thus, to shoot a ray toward ~', we shoot toward each of the
O(4) subarcs of its decomposition and determine the closest hit (if any). Shooting
toward a single-edge subarc is trivial. Shooting toward any other subarc makes
use of the shooting structure of a canonical submap for a chain in grade # _< [f12].
Assuming that [f12] < 2 (which is true for 2 large enough) all these shooting
structures have been computed and therefore, by Lemma 3.6, ray-shooting can be
done in time 0(2 r#"v3+ 2,/3), which is 0(2 a2~/a + 2a~/3). Since there are O(4) subarcs,
it follows that the ray-shooting oracle can be implemented so that

f(7) = 22#2a/3 + 2fl~./3.

As we mentioned, the subarc ~' is decomposed into at most two single-edge pieces,
along with 0(2) pieces for which we have conformal submaps of granularity at
most 2 f#T#xn. We verify that all the requirements of the arc-cutting oracle are
satisfied by this decomposition, so that we can set

and

g(~) = o (~)

h(7) _< 2 r#rBa11.

518 B. Chazelle

To appreciate the connection between the left- and right-hand sides of these
relations, recall that ~/and 2 are related by the identity 7 = 2~#zl. By Lemma 3.5,
if a merge takes input curves with a total of m vertices, then the time to carry it
out is at most proportional to

3.2(m/2#~)2 ~/3+ 2#x/3(2#z't + log m).

There are O(log 2) levels of merging to be performed, each involving a total of
b - a _< 2 a edges, therefore the time to merge the submaps for all the Di's into one
is at most (up to within a constant factor)

22(1og 2)2 x-oz/3 +4/~2A/3.

Since the initial cost of resetting the granularity is only 0(2 atl-p)), the lemma
follows readily. []

Let us now turn to the processing of grade 3.. Lemma 4.1 can be called upon
to compute a canonical submap of the visibility map of each chain in grade 2.
Preprocessing each chain for ray-shooting is done by using Lemma 3.6. Since there
are (n - 1)/24 chains in grade 2, we conclude that processing grade 2 requires time
at most proportional to

n3./(log 2)2~4a/3-1/3) + n3.2-a~.

From our choice of/3 = �89 it follows that preprocessing grade 3. takes O(n2 -a/76)
time, therefore processing all p + 1 grades, and thereby completing the up-phase,
takes linear time.

4.2. The Down-Phase

Now that we have canonical submaps for each chain in each grade, along with
their oracle structures and tree decompositions, we are ready to refine the
canonical submap of V(P). This is done incrementally by going down the tree.
The following lemma provides the key to the algorithm:

Lemma 4.2. Let 2 be any positive grade and let C be an arbitrary chain in any
grade I >_ 3.. l f a 2t#~l-granular conformal submap of V(C) is available in normal form,
then it is possible to compute V(C) in time at most (c - 1/3.)2 l, where c is some
constant large enough.

Proof. We proceed by induction on 2. Let S be the 2wXl-granular conformal
submap of V(C). The case where 3. is a constant is trivial since the regions of S
have bounded size, and therefore the missing chords can be provided in constant
time per region. So, let us switch directly to the inductive case, assuming that).
is large enough. Let R be a region of S. Because of conformality, the union of all

Triangulating a Simple Polygon in Linear Time 519

the arcs of R can be partitioned into a constant number of single edges and
vertex-to-vertex pieces of 0C with at most 2 I ~ edges. Applying Lemma 4.1, we
can compute a canonical submap for each connected polygonal piece in the
partition in time at most proportional to

22(10g A)2pm - 11/3 + 402/3).

Each of these submaps has granularity at most 2 f~f~n, so we can pursue the
merging by putting together all these submaps and thus create a single normal-
form 2rPfP~lkgranular conformal submap of V(R*), where R* is the boundary of R
minus a vertex (to ensure that it is nonclosed). For consistency, we should regard
R* as a standard polygonal curve and not as part of a double boundary. The
operation requires a constant number of merges, so we can carry it out effectively
by merging submaps two-by-two like in Lemma 4.1.

There is a small subtlety in this last round of merges, which we should explain.
To take a simple example, suppose that R* has two arcs and two exit chords: ~1,
albl, o~2, a2b2, in cyclic order. It could be that the endpoints of ~x I or ct 2 are not
vertices of OC, so to deal with the most general case, assume that ct 1 consists of
b2b'2, ill, a'lal and ~2 consists of bib'1, f12, a'2a2, where a'l, b'l, a~, b~ are all vertices
of c~C (Fig. 4.1). Let S~ (resp. $2) be the canonical submap for the vertex-to-vertex
piece of P corresponding to/31 (resp./32) and let Tx (resp. T2) be canonical submaps
for the 3-edge polygonal curve a'lalblb' 1 (resp. a'2a2b2b'2). We obtain $1 and $2 by
application of Lemma 4.1, while T1 and T 2 are computed directly (tilting the edges
alb I and a2b2 symbolically to keep the merging algorithm from complaining later).

~

Fig. 4.1

520 B. Chazelle

We are now ready to merge S~ with T 1, then merge the resulting submap with $2,
and finally merge the result with T 2. Note that we treat the edges alb 1 and a2b2
as part of the input curve although they are not part of P. As a result, ceasing
(temporarily) to be chords, these edges cannot be removed during the merges.
Since we add at most a constant number of new edges to the input curve, all the
oracle machinery needed for the merges is still available, i.e., the new edges create
only constant-time multiplicative overhead. Although the final submap is con-
formal it might no longer be so if we now reinterpret alb~ and a2b 2 as chords,
which we do once the last round of merges is completed. To remedy this we apply
the conformality-restoring procedure of Section 3.2 to each region that might have
more than four chords with this new interpretation. Again, it is immediate to see
that all the required oracles are still available.

The time taken by this last round of merges is dominated by the cost of the
earlier merges, so computing the 2roraalkgranular conformal submap of all the
V(R*)'s takes time at most proportional to

2t22(log 2)2a~a(4#/3- 1/3)

We can now extract the relevant information, i.e., the exit chords falling entirely
within each region R. This involves checking the exit chords of the computed
submap of V(R*) and keeping only those both of whose endpoints lie on the arcs
(in the double boundary sense) of the region R. This leads to a new map S* of
V(C) which is a refinement of S: all its arcs originate from the previous merges,
therefore S* is a 2rara~ll-semigranular conformal submap of V(C). We can only
speak of semigranularity because some of the chords connecting the R*'s might
be removable now. We can check each of the exit chords directly, which as we
saw in Section 3.3, takes a total amount of time linear in the number of exit chords
in S*.

Now that we have a 2rarPall-granular conformal submap of V(C) at our disposal
we observe that [f12] < 2 - 1 for 2 large enough, so that we can apply the
induction hypothesis and derive V(C) in time at most (c - 1/(2 - 1))2k Putting
everything together, the total running time for the construction of V(C) is at most

1)2 l a2t22(log 2)2#~(4a/3 -1/3) + c 2 - 1

for some constant a > 0. With the setting fl = �89 this is no more than

a2t22(log 2)2 -;`/375 + (c 2

for 2 large enough. []

During the up-phase we built a normal-form 2rPpl-granular conformal submap
of V(P) in linear time. By Lemma 4.2, therefore, V(P) can be obtained also in

Triangulating a Simple Polygon in Linear Time 521

linear time. As demonstrated in [6] and [11], a triangulation can be easily derived
from the visibility map in linear time, so our main goal has been reached.

Theorem 4.3. It is possible to compute the visibility map of a simple polygonal
curve, and, hence, a triangulation of a simple polygon, in linear time.

5. Some Applications and Open Problems

There are many uses for a fast triangulation algorithm. We mention only two of
them and refer the reader to [1], [13], [14], [16], [20], [24], [26], and [28] for
some pointers to other applications. Kirkpatrick [19] and Edelsbrunner et al. [9]
have given optimal planar point-location algorithms which require linear pre-
processing time provided that the planar subdivision has triangulated or monotone
faces. With our algorithm the preprocessing can be made linear as long as the
graph is connected.

The second application follows from the observation that the triangulation
algorithm can be adapted to check whether a polygonal curve is simple. We briefly
outline the method. We begin by computing the visibility map. In all likelihood
the program will crash if the polygonal curve is not simple. But if it does not, then
we are handed over a would-be visibility map with its corresponding visibility
tree. In linear time we can verify that the map is locally sound by checking that
all regions and adjacencies are topologically and geometrically satisfactory. If the
curve has a self-intersection p, then two regions must strictly overlap around that
point, but this can be shown to contradict the local soundness of the map. Indeed,
draw a line connecting p to any point q that provably belongs to only one region
(if an arbitrary choice of q does not work, then obviously the curve is not simple).
By a continuity argument, the segment pq must cross an edge at a point where
the number of overlapping regions differs locally around that point. But, occurring
on an edge, this must be detected by the local tests. So, to summarize, a linear
number of local geometric tests suffice for testing simplicity, once the output of
the visibility algorithm is available.

From this we easily derive a new result: testing whether two simple polygons
intersect in linear time. The reduction of this problem to simplicity-testing was
observed by Dobkin et al. [8]. Slightly simplified, their method consists of taking
the highest points of both polygons and shoot horizontally from the lower point
p toward the other polygon in both directions. If there is no hit, then no
intersection can occur. Otherwise, we can immediately infer from the local
orientation of the hits whether p lies inside or outside the polygon. In the first
case we conclude with a positive answer, else we connect the two polygonal
boundaries into a single one by adding one of the connecting segments and
duplicating it, thus reducing the problem to that of testing simplicity.

It is interesting to notice that our algorithm can be used to perform Jordan
sorting in linear time. This provides a completely different alternative to Hoffman
et al.'s algorithm [18]. Recall that the problem is to sort a sequence of numbers
al a,, which correspond to the intersection points of a Jordan curve with the

522 B. Chazelle

x-axis. Assuming that we do not know anything else about the curve, we construct
the polygon P with vertices A~, B~, A 2, B2 A,, B,, where Ai = (ai, 0) and

Bi=(a i+a~+l (_1)~ a~+l-a~)
2 ' 2- '

with a,+l = al. It is immediate that P is simple and that its visibility map gives
us the ai's in sorted order. (Recall that to have many vertices with the same
y-coordinate is not a serious problem.) It is instructive to compare the two
methods: Hoffman et al's algorithm is on-line and corresponds to an asymptotic-
ally optimal search scheme for Jordan permutations. Our method works off-line
and uses divide-and-conquer. It is an intriguing open question whether triangula-
tion can be done on-line in a manner similar to [18]. Tarjan and Van Wyk's
method (almost) falls in that category but it is not optimal. Can their algorithm
be made optimal? More generally, is it possible to maintain the visibility map
optimally under on-line insertion of new edges? Obviously not in an explicit
fashion, since a new edge can cut through a linear number of diagonals, hence
creating a quadratic blowup. Even implicitly, however, it can be trivially
shown that identifying the order types of the visibility maps of all the prefixes of
a simple n-vertex polygonal curve requires | log n) bits, which is bad news. Thus,
something with less information content should be maintained by an optimal
on-line algorithm. But what? This question might seem rhetorical in light of our
linear-time algorithm, but the underlying issue is whether a fundamentally different
optimal algorithm exists, in particular, one that works on-line. A close look at the
up-phase of our visibility algorithm shows that constructing the computation tree
in symmetric order is tantamount to inserting the edges one at a time along the
boundary and maintaining a small collection of distinct visibility submaps. Since
these maps provide ,only partial visibility information this can be looked at as a
partial answer to our question.

Also, we might wonder whether there exists a simple optimal probabilistic
triangulation algorithm, say, one as straightforward as Clarkson et al.'s I17] or
Seidel's [25]? Our algorithm can be modified by replacing the planar separator
step by a randomized construction, but whether the resulting algorithm is really
simpler is debatable. We close by mentioning what is probably the most interesting
open question left on the subject of polygonal curves. This is the problem,
previously posed by Tarjan and Van Wyk [-27], of computing all the self-
intersections of a nonsimple polygon in time linear in the sum of the input and
output sizes.

Acknowledgments

I wish to thank the referees for reading this paper carefully and making numerous
suggestions to improve its presentation.

Triangulating a Simple Polygon in Linear Time 523

References

1. A. Aggarwal and J. Wein, Computational Geometry, Technical Report MIT/LCS/RSS 3, MIT,
Cambridge, MA, August 1988.

2. B. G. Baumgart, A polyhedron representation for computer vision, Proc. 1975 National Comput.
Conf., AFIPS Conference Proceedings, Vol. 44, AFIPS Press, Montvale, NJ (1975), pp. 589 596.

3. H. Booth, Some fast Algorithms on Graphs and Trees, Ph.D. Thesis, Technical Report CS-TR-
296-60, Princeton University, Princeton, NJ, 1990.

4. B. Chazelle, A theorem on polygon cutting with applications, Proc. 23rd Ann. IEEE Symp. on
Found. of Comput. Sci. (1982), pp. 339-349.

5. B. ChazeUe and L. J. Guibas, Visibility and intersection problems in plane geometry, Discrete
Comput. Geom. 4 (1989), 551-581.

6. B. Chazelle and J. lncerpi, Triangulation and shape-complexity, ACM Trans. Graphics 3 (1984),
135-152.

7. K. Clarkson, R. E. Tarjan, and C. J. Van Wyk, A fast Las Vegas algorithm for triangulating a
simple polygon, Discrete Comput. Geom. 4 (1989), 423432.

8. D. P. Dobkin, D. L. Souvaine, and C. J. Van Wyk, Decomposition and intersection of simple
splinegons, Algorithmica 3 (1988), 473~,85.

9. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,
S lAM Z Comput. 15 (1986), 317 340.

10. H. Edelsbrunner and E. P. Mficke, Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithms, Proc. 4th Ann. ACM Symp. Comput. Geom. (1988), pp. 118-133.

11. A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems, ACM
Trans. Graphics 3 (1984), 153-174.

12. M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple polygon,
Inform. Process. Lett. 7 (1978), 175-180.

13. L. J. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon, Z Comput.
System Sci. 32 (1989), 126-152.

14. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear time algorithms for
visibility and shortest path problems inside triangulated simple polygons, Aloorithmica 2 (1987),
209-233.

15. L. J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graphics 4 (1985), 75-123.

16. J. Hershberger, Finding the visibility graph of a simple polygon in time proportional to its size,
Algorithmica 4 (1989), 141 155.

17. S. Hertel and K. Mehlhorn, Fast triangulation of a simple polygon, Proc. Conf. Found Comput.
Theory, Lecture Notes on Computer Science, Vol. 158, Springer-Verlag, Berlin (1983), pp. 207-
218.

18. K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan, Sorting Jordan sequences in linear
time using level-linked search trees, Inform. and Control 68 (1986), 170-184.

19. D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1983), 28 35.
20. D. G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan, O(n log log n) polygon triangulation with

simple data structures, Proc. 6th Ann. ACM Syrup. Comput. Geom. (1990), pp. 34~43.
21. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Comput. 36 (1979),

177-189.
22. R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM Z Comput. 9

(1980), 615-627.
23. D. E. Muller and F. P. Preparata, Finding the intersection of two convex polyhedra, Theoret.

Comput. Sci. 7 (1978), 217-236.
24. J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.
25. R. Seidel, A simple and fast incremental randomized algorithm for computing trapezoidal

decompositions and for triangulating polygons, Manuscript, 1990.
26. S. Suri, A linear time algorithm for minimum link paths inside a simple polygon, J. Comput. Vision

Graphics Image Process. 35 (1986), 99 110.

524 B. Chazelle

27. R. E. Tarjan and C. J. Van Wyk, An O(n log log n)-time algorithm for triangulating a simple
polygon, SIAM J. Comput. 17 (1988), 143 178.

28. G. Toussaint, Computational Morpholooy, North-Holland, Amsterdam, 1988.
29. G. Toussaint, An Output-Complexity-Sensitive Polygon Triangulation Algorithm, Report SICS-

86.3, McGill University, Montreal, 1988.
30. G. Toussaint and D. Avis, On a convex hull algorithm for polygons and its applications to

triangulation problems, Pattern Recoonition 15 (1982), 23 29.
31. C. K. Yap, A geometric consistency theorem for a symbolic perturbation scheme, Proc. 4th Ann.

ACM Syrup. Comput. Geom. (1988), pp. 134-142.

Received February 1, 1990, and in revised form April 10, 1990, and January 24, 1991.

