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Abstract. We give a deterministic algorithm for triangulating a simple polygon in 
linear time. The basic strategy is to build a coarse approximation of a triangulation 
in a bottom-up phase and then use the information computed along the way to refine 
the triangulation in a top-down phase. The main tools used are the polygon-cutting 
theorem, which provides us with a balancing scheme, and the planar separator 
theorem, whose role is essential in the discovery of new diagonals. Only elementary 
data structures are required by the algorithm. In particular, no dynamic search trees, 
finger trees, or point-location structures are needed. We mention a few applications 
of our algorithm. 

1. Introduction 

Triangulating a simple polygon has been one of the most outstanding open 
problems in two-dimensional computational geometry. It is a basic primitive in 
computer graphics and, generally, seems the natural preprocessing step for most 
nontrivial operations on simple polygons [5], [14]. Recall that to triangulate a 
polygon is to subdivide it into triangles without adding any new vertices. Despite 
its apparent simplicity, however, the triangulation problem has remained elusive. 
In 1978 Garey et al. [12] gave an O(n log n)-time algorithm for triangulating a 
simple n-gon. While it was widely believed that triangulating should be easier than 
sorting, no proof was to be found until 1986, when Tarjan and Van Wyk [27] 
discovered an O(n log log n)-time algorithm. Following this breakthrough, Clark- 
son et al. [7] discovered a Las Vegas algorithm, recently simplified by Seidel [25], 
with O(nlog* n) expected time. In 1989 Kirkpatrick et al. [20] gave a new, 
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conceptually simpler O(nloglog n)-time algorithm, and they also derived an 
O(n log* n) bound for the case where vertices have polynomially bounded integer 
coordinates. Other results on the triangulation problem include linear or quasi- 
linear algorithms for restricted classes of polygons [6], [11], [17], [28]-[30]. 

Our main result is a linear-time deterministic algorithm for triangulating a 
simple polygon. The algorithm is elementary in that it does not require the use 
of any complicated data structure; in particular, it does not need dynamic search 
trees, finger trees, or any fancy point-location structures. 

What makes fast polygon triangulation a difficult problem are the basic 
inadequacies of either a pure top-down or a pure bottom-up approach. To proceed 
top-down is to look at the whole polygon and infer global information right away. 
We can rely on the polygon-cutting theorem [4] which says that the polygon 
can be cut along a diagonal into two roughly equal-size pieces. The immediate 
dilemma is that to find such a diagonal appears just as difficult as triangulating 
the whole polygon to begin with. Besides, we would actually need to find such a 
diagonal in sublinear amortized time (say, bounded by O(n/log 2 n)) to keep our 
hopes for an optimal triangulation algorithm alive. A bottom-up approach, on 
the other hand, involves computing, say, triangulations of subpieces of the 
polygon's boundary. This suffers from the obvious flaw that too much information 
gets to be computed. Indeed, diagonals for small pieces of the boundary are not 
guaranteed to be diagonals of the whole polygon and might therefore be wasted. 
Our solution is to mix bottom-up and top-down approaches together. The basic 
strategy is to build a coarse approximation of a triangulation in a bottom-up 
phase and then use the information computed along the way to refine the 
triangulation in a top-down phase. The main tools used are 

(i) the polygon-cutting theorem, which provides us with a balancing scheme, 
and 

(ii) the planar separator theorem [21], whose role is essential in the discovery 
of new diagonals. 

Here is a more detailed overview of the algorithm. As was observed in [6] 
and [11] a triangulation of a polygon can be derived in linear time from its 
horizontal visibility map, sometimes referred to in the literature as trapezoidal 
decomposition: this is the partition of the polygon obtained by drawing horizontal 
chords from the vertices. We can extend this notion easily and speak, more 
generally, of the visibility map of any simple polygonal curve (Fig. 2.1). Chazelle 
and Incerpi [6] showed how to build the visibility map of an n-vertex curve in 
O(n log n) time, using divide-and-conquer. Their algorithm mimics mergesort: 
assuming that n is a power of 2, at the kth stage (k = 1, 2 , . . . ,  log n), the boundary 
of the polygon is decomposed into chains of size 2 k, whose visibility maps are 
computed by piecing together the maps obtained at the previous stage. Each stage 
can be accomplished in a linear number of operations, so computing the visibility 
map of the polygon takes O(n log n) time. 

The new algorithm follows the same pattern: it goes through an up-phase of 
log n stages, each involving the merging of maps obtained at the previous stage. 
The novelty we bring into this process is to use only coarse samples of the visibility 
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maps during the merges. In this way we can carry out an entire stage in sublinear 
time and beat the n log n barrier. The samples are uniform submaps of the visibility 
maps; uniform in the sense that they approximate the visibility maps anywhere 
equally well. Of  course, in the end, we also need an efficient way to refine the 
submap derived for the whole polygon into its full-fledged visibility map. After 
this is done, it takes only linear time to compute a triangulation. To refine a 
submap we go down through stages in reverse (a down-phase): each transition 
refines the submap incrementally, until we get back to the first stage, at which 
point the full visibility map emerges at last. Figure 1.1 illustrates the meaning of 
the up- and down-phases. 

Perhaps now is the right time to wonder whether our approach is not inherently 
flawed from the start. How sound is it to mimic mergesort when our goal is to 
beat n log n? Any attempt to speed up mergesort by using "coarse samples" of 
the lists to be merged is trivially doomed. So, what is so different about polygons? 
The difference is rooted in a notion which we call conformality. This is perhaps 
the single most important concept in our algorithm, for it is precisely where 

Up phose 

Fig. 1.1 
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mergesort and triangulation part ways. Recall that the polygon-cutting theorem 
is a geometric analog of the centroid theorem for free trees: a visibility map has 
a tree structure and, so, can be written as a collection of "blobs" of roughly equal 
size, themselves interconnected in a tree pattern. These blobs are the constituents 
of a submap. Merging two submaps can thus be equated with "merging" two trees 
together. The mergesort equivalent of a submap would be a sublist (of one of the 
lists to be merged) obtained by picking keys at regular intervals. Notice that 
merging two such sublists might in the worst case produce a new sublist whose 
corresponding intervals are up to twice the size of the original intervals. This 
coarsening effect prevents us from speeding up mergesort, because repairing the 
damage might involve computing medians or things of that nature for which no 
shortcuts can be found. To be sure, as we shall see, equally bad things can happen 
with submaps; repairing the damage, however, can be done by simply adding new 
chords to submaps, which can be made to take only sublinear time. To make this 
possible we must keep the coarseness of submaps under control by requiring that 
the tree structure of a submap be of bounded degree: in our terminology 
"conformal" actually means degree at most 4. Restoring conformality after 
merging two submaps is the linchpin of the algorithm and, as we should expect, 
its most delicate and subtle part as well: it can be viewed as a geometric 
"two-dimensional" analog of rotations in balanced dynamic search trees. 

Although our algorithm is an outgrowth of the mergesort-like method of 
Chazelle and Incerpi, it goes far beyond it. For example, the algorithm n e v e r  

actually merges visibility maps but only submaps (which is done quite differently). 
We must also borrow ideas from a number of other sources: as we mentioned 
before, one of them is the polygon-cutting theorem, and, more specifically, the 
hierarchical polygon decomposition of Chazelle and Guibas [5]. There exist 
optimal algorithms for computing such decompositions [3], [14] but, as it turns 
out, standard suboptimal methods work just as well for our purposes. Merging 
submaps requires a primitive to detect new chords. In the Chazelle-Incerpi method 
the detection is limited to constant-size domains, so it can be done naively. But 
here the domains can be arbitrarily large so we need a sublinear ray-shooting 
method. This cannot be done by using fast planar point location, which is the 
approach followed in the algorithm of Kirkpatrick e t  al. [20]. The reason is that 
we need to support merging of two point-location structures, and the known 
methods, even the dynamic ones, are inadequate in that regard. We turn the 
problem around by using a weak form of divide-and-conquer based on Lipton 
and Tarjan's planar separator theorem [21]. 

2. Visibility Maps and Submaps 

Following the tradition of visibility algorithms, we begin by restricting their 
applicability to polygons where no two distinct vertices have the same y-co- 
ordinate. Of course, the standard excuse still works: we can easily get around this 
assumption by applying the symbolic perturbation techniques of [10] and [31]. 
Turning now to visibility maps, recall that, in the Chazelle-Incerpi method, chords 
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are extended only toward the interior of the polygon, with a special rule to 
determine how far they should extend. Kirkpatrick et al. [20] use the simpler 
scheme of extending chords on both sides. This amounts to thinking of a polygonal 
curve as a very thin polygon embedded in a cylindrical plane that lets chords wrap 
around infinity. For the reasons we give below, we find it more convenient to 
embed our objects in a topological manifold, called the spherical plane, which is 
equivalent to a 2-sphere. Proofs of correctness in the polygonal merging business 
tend to be tricky and ridden with painful case-analyses. One reason for this is that 
these proofs often attempt to establish topological facts by geometric means, thus 
adding unnecessary complication. By sticking to topological considerations as 
much as possible, proofs become much simpler, provided, of course, that the 
ambient space has the "right" topology. 

What is the right topology in this context? One problem with the cylindrical 
plane is that although it has a Jordan curve theorem, the two regions created by 
removing a simple closed curve may now have one of three types: 

(1) an open disk, 
(2) a cylinder S 1 • (0, + ~) ,  or 
(3) a perforated cylinder. 

We simplify all that by defining our ambient space to be the spherical plane: this 
is the product space [ -  ~ ,  + ~ ] z  with the following identification rules: 

(i) ( - m, y) = ( + m, y), 
(ii) (x, - ~ )  = ( - x ,  - ~ ) ,  

(iii) (x, + ~ )  = ( - x ,  + ~),  

for all x, y 6 [ -  ~ ,  + ~ ] .  The spherical plane is homeomorphic to a 2-sphere, so 
we now have the nicest Jordan curve theorem of all: the removal of any simple 
closed curve creates two open disks. 

The only remaining difficulty is the orientability of Jordan curves. If we fix an 
orientation of the spherical plane, the boundary of any region homeomorphic to 
a disk, being of codimension 1, has an induced orientation, called clockwise; the 
reverse orientation is called counterclockwise. Conversely, given a Jordan curve, a 
clockwise tour of the curve refers to the orientation induced by one of the two 
homeomorphic disks that it bounds. Unless one of these disks is already under- 
stood, we choose one unambiguously by fixing a reference point somewhere in 
the plane and looking at the unique disk that does not contain it. Of course, this 
means restricting ourselves to curves that avoid that point, but this is only a minor 
inconvenience. From now on, we assume that the reference point is at (0, + ~) .  
In this way, to speak of the clockwise traversal of a Jordan curve, without reference 
to an enclosed region, makes full sense. 

2.1. The Visibility Map 

Given a simple (nonclosed) polygonal curve C with vertices vl . . . . .  v,, we define 
the visibility map of C, denoted V(C), as the planar subdivision formed by extending 
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two horizontal segments from each vertex vi, one in each direction. Each segment, 
which we call a chord, is extended until it meets another point of C. If it were to 
go to infinity in the Cartesian plane, then it would actually wrap around in the 
spherical plane until it hits C again. Adding chords to C subdivides the spherical 
plane into regions: triangles or trapezoids with two horizontal segments and two 
nonhorizontal segments, all of which are possibly divided into several collinear 
edges (Fig. 2.1). 

In order to distinguish between the two sides of an edge, we give each edge of 
C an infinitesimal width so as to make the curve C into a very thin simple polygon. 
(This is just a conceptual device, so, in particular, no actual perturbation of the 
polygon needs to be performed on the computer.) The boundary of that polygon 
is called the double boundary of C and is denoted 8C. By abuse of terminology 
we refer to the two sides of the double boundary as one would speak of the left 
and right sides of a snake; of course, this is meaningful geometrically but not 
topologically. Each vertex of C that is not a local extremum in the y-direction 
gives rise to two companion vertices in 8C, one on each side of the curve (Fig. 
2.2.1). In this way, each vertex is incident upon exactly one chord (possibly the 
same chord for the two companions). But what about local extrema? For each 
such vertex of C, if it is not one of the two endpoints, we create a total of four 
vertices in dC (Fig. 2.2.2): two companion pairs of duplicate vertices; one pair on 
each side of t3C. The duplicate vertices in a given pair are next to each other along 
8C. By convention, we say that one of these pairs, the one on the "inside" of the 
turn, gives rise to a chord of null length. Finally, as shown in Fig. 2.2.3, for each 
endpoint of C we create two companion vertices; these can also be called duplicates 
since they are next to each other as well as on both sides of 8C. Figure 2.3 illustrates 
these definitions. Note that for simplicity we have not numbered vertices connected 
to null-length chords, but we have numbered all chord endpoints for later use. 
We have now ensured that each vertex of 8C is incident upon exactly one chord 
of the visibility map. Therefore, any vertex--and actually also any poin t - -of  8C 
has a unique horizontal "chord direction" (left or right) assigned to it. Roughly 
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Fig. 2.2 

speaking, this direction points to the left of an observer walking clockwise around 
~C. 

If a chord of V(C) has p and q as endpoints, we say that p and q see each other 
with respect to C, or simply, see each other, when C is understood. Equivalently, 
we say that p and q are mutually visible. More generally, if p and q are two points 
(not necessarily vertices) of ~C with the same y-coordinates, we say that p and q 
see each other with respect to C if one of the two (relatively open) segments joining 
p and q lies completely outside of C (regarded as a thin simple polygon). By 
extension the segment pq is also called a chord. For  example, in Fig. 2.3 points 
labeled 6 and 7 see each other, whereas points 6 and 14 as well as points 3 and 
4 and points 1 and 1' do not see each other. We close our discussion of visibility 
with a simple but useful fact. 
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Lemma 2.1. I f  we remove a pair of mutually visible points from the double boundary 
of a simple polygonal curve, then no chord can connect the two resulting pieces. 

Proof. Let C1 and C 2 be the two pieces of the double boundary resulting from 
the removal of a pair of visible points. Together with C~ and C2, the chord c 
connecting the two points subdivides the spherical plane into three polygonal 
regions (i.e., regions bounded by simple polygonal curves), one of which is the 
infinitesimally thin polygon C itself. Any chord connecting C 1 and C2 lies outside 
the "polygon" C, so it must cross c. But this is impossible because chords are 
horizontal. [] 

The circular sequence of chord endpoins in V(C) encountered during a clock- 
wise traversal of OC is called the canonical vertex enumeration of V(C): note that 
it contains other points besides the vertices of ~C. Figure 2.3 provides the sequence 
1, 1', . . . .  17', 18, with the primes indicating duplicated vertices. Recall that we have 
refrained from numbering the endpoints of null-length chords. Speaking of which, 
note that null-length chords create empty regions. The traversal of the double 
boundary leads to a canonical enumeration of the regions (with repetitions). In 
the case of Fig. 2.3 we have the list (including only the nonempty regions for 
simplicity) 

(I, II, III, IV, V, VI, VII, VIII, VII, IX, VII, VI, 
V, IV, III, X, XI, X, III, II, I, XII, I, XIII). 

It is easy to see that the dual graph of the subdivision is a tree, naturally called 
the visibility tree of C. This graph is defined by associating a distinct node with 
each region (empty or nonempty) of the visibility map and connecting any pair 
of nodes whose corresponding regions share a common chord. Note that this also 
includes null-length chords. Figure 2.1 shows the tree without the nodes asso- 
ciated with empty regions. Since any two consecutive regions in the canonical 
region enumeration have a common chord, the visibility tree is indeed connected. 
Why can it not have cycles? It suffices to show that removing any chord ab would 
disconnect the graph. 

First, assume that a and b are not duplicates of each other (although they might 
be companions). Then, from Lemma 2.1, removing a and b splits the double 
boundary into two pieces which are closed under visibility. It follows that the 
boundary of any region contains segments from exactly one of the two pieces, and 
therefore can be classified by the piece to which these segments belong. Any chord 
separating a region associated with one piece from a region associated with the 
other piece must join two points at the juncture between the two pieces, and only 
ab satisfies this requirement. This concludes the first case. Assume now that a and 
b are duplicates of each other. If the chord ab has zero length, then removing it 
isolates an empty region from the rest, and our claim holds. So, suppose that ab 
has nonzero length. Then a is either the highest or lowest point of c3C, therefore 
removing ab would disconnect the upper or lower part of the spherical plane from 
the other regions. This completes the proof that the visibility tree is indeed a tree. 
(There is also a simple topological proof, which is given in Lemma 2.2 below.) 
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2.2. Visibility Submaps 

An operation which we will find useful is the removal of chords from V(C). Before 
we go any further, however, we wish to prepare for the possibility that V(C) has 
been augmented with some additional chords (something that will often happen 
later). Obviously, these new chords cannot connect vertices of ~?C (since all have 
been used up) but rather arbitrary points on the curve. Although this clearly affects 
V(C) as well as the visibility tree, everything we said previously regarding canonical 
enumerations can be trivially extended to this new situation. So, from now on, let 
us treat V(C) either in its original state or in some augmented form. We specify 
which applies whenever the distinction needs to be made. 

The operation we want to discuss now involves removing a given chord from 
V(C). Since V(C) may have additional chords, we need to be careful about the 
meaning of a removal. A chord has two endpoints; none, one, or two of which 
are vertices of c?C. So, the removal of a chord entails removing not only the chord 
itself but also those endpoints that are not vertices of 0C, and glueing back 0C at 
those points. This cleanup operation is meant to prevent the presence of vertices 
stranded in the middle of an edge of 0C: in other words, any vertex that is not a 
vertex of 0C must be the endpoint of a nonremoved chord. 

Removing one or several chords (of zero or nonzero length) from a map 
produces a polygonal subdivision of the spherical plane, called a submap of V(C) 
(Fig. 2.4). The boundary of a nonempty region of the submap is an oriented circular 
sequence of horizontal segments, called exit chords, alternating with pieces of OC 
and not of C. For example, let us assume that all null-length chords have been 
removed in the submap of Fig. 2.4. Then the boundary of the region labeled II 
consists of a two-edge arc (beginning at the big dot), followed by an exit chord, 
a one-edge arc, an exit chord, a three-edge arc (not a four-edge arc!), an exit chord, 
a one-edge arc, and one final exit chord. Note that some arcs may be of zero 
length, as is the case in the region labeled V. As illustrated in Fig. 2.4, a clockwise 
traversal of OC induces a traversal of the boundary of each region of the submap 
which is counterclockwise with respect to the orientation of the region. More 
formally, we have the following fact. 

a l l  
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Lemma 2.2. Let A 1 . . . . .  A k be the counterclockwise enumeration of the (oriented) 
arcs of a nonempty submap region (as induced from the region's orientation). Then 
each Ai is oriented clockwise with respect to OC. Moreover, the sequence A1,. . . ,  Ak 
also occurs clockwise around OC. 

Proof. The curve t3C is homeomorphic to a circle embedded in the spherical 
plane. Adding a chord is topologically equivalent to connecting two points on the 
circle by a simple curve lying entirely on one side of the circle. The requirement 
that all these curves should be mutually disjoint induces a parenthesis system 
which immediately reveals the tree structure of the dual graph. This is similar to 
the parenthesis systems in Jordan sorting [-18-1. As an example, Fig. 2.5 depicts 
the topological equivalent of the submap of Fig. 2.4. From this perspective, the 
lemma should be completely obvious. []  

As was the case with V(C), a clockwise traversal of dC induces canonical 
vertex/region enumerations of the submap. Figure 2.4 gives the region enumera- 
tion: I, II, III, II, IV, II, V, II, I. (Recall that that particular submap is supposed 
to have had all its null-length chords removed and therefore has no empty regions.) 
Bold dots mark the points during the clockwise traversal of the double boundary 
where the canonically enumerated regions are first discovered. An important 
requirement is that a vertex enumeration of a submap should list only the 
endpoints of actual exit chords and thus might skip over many vertices of t3C. In 
this way, canonical enumerations of any type take time proportional to the number 
of regions and not to the number of vertices (which might be much higher). We 
define the weight of a region as 0 if the region is empty, or else as the maximum 
number of nonnull length edges in any of its arcs. For  example, regions I and II 
in Fig. 2.4 have weights 4 and 3, respectively. 

Although weights count only edges of nonzero length, chords of zero length (if 
any) are taken into account inasmuch as they separate arcs. In other words, an 
arc never contains any chord, whether that chord be of nonzero length or not. Of 
course, once removed, a chord of zero length ceases to separate any arcs. Also, 
note the important role played by the double boundary in the definition of a 
region's weight. Indeed, a region may have a very small weight because its arcs 
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are all small; but this does not prevent any one of these arcs from having a huge 
number of vertices on the other side of the double boundary. Of course, because 
vertices of 0C have companions those extra vertices have to be endpoints of exit 
chords. 

Combinatorially, a region corresponds to a subtree of the visibility tree of C. 
The dual graph of a submap is obtained by contracting the edges of the visibility 
tree that correspond to the removed chords (Fig. 2.6). Being derived from the 
visibility tree by graph-minor operations, the dual graph of a submap is itself a 
tree (as was clear in the proof of Lemma 2.2), which we simply call the tree of the 
submap. Note that, conversely, contracting any edge of the visibility tree amounts 
to removing the corresponding chord from the visibility map. The weight of a 
node naturally refers to the weight of its corresponding region. 

2.3. Conformality and Granularity 

Since no two distinct vertices of C have the same y-coordinate, the degree of any 
node in a visibility tree cannot exceed 4. We should not expect this to be always 
true of submap trees, however, so we distinguish the trees of conformal submaps 
as those with node-degree at most 4. By analogy with the polygon-cutting theorem 
[4] we can decompose a conformal submap in an hierarchical manner. The idea 
is to pick the centroid of the submap's tree and observe that there exists at least 
one incident edge whose removal leaves two subtrees, each with a number of edges 
at most three-quarters the original number. Associating the removed edge with 
the root of a binary tree and recursing in this fashion with respect to the root's 
two children provides a tree decomposition of the submap. The tree has depth 
logarithmic in the number of regions (which is the number of chords plus one). 
The internal nodes (resp. leaves) are in bijection with the exit chords (resp. regions) 
of the submap. Figure 2.7 illustrates the correspondence (leaves have been omitted). 
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By using straightforward tree-labeling techniques we can find the centroid node, 
and from there, the first edge to be removed, in linear time. Proceeding recursively 
gives us a simple O(m log m + 1)-time algorithm for computing the tree decomposi- 
tion of a submap of m regions. We use this result below because it is simple and 
practical. Optimal methods exist but they are all fairly complicated and un- 
necessary for our purposes [3], [14]. 

One final piece of classification addresses our desire to make submaps coarse 
but uniform approximations of visibility maps. We say that a submap is ?-granular 
if 

(i) every node of its tree has weight at most y and 
(ii) contracting any edge incident upon at least one node of degree less than 3 

produces a new node whose weight exceeds 7. 

Note that this weight might be less than the added weight of the two nodes of 
the contracted edge. This is either because the arcs incident upon the chord 
removed did not determine the weights, or more interestingly, because one or both 
endpoints of the chord might not be vertices of OC and might thus disappear. If 
only condition (i) holds, then the submap is 7-semigranular. Adding condition (ii) 
makes the semigranularity maximal in some sense. Finally, by default, if (i) holds 
but the submap has no exit chord, it is still said to be ?-granular. The following 
result asserts that, as we would expect, a ?-granular conformal submap is more 
economical to encode that its full visibility map by a factor of 7. 

Lemma 2.3. I f  C is a polygonal curve with n vertices, any ?-granular conformal 
submap of the (possibly augmented) visibility map of C has O(n/y + 1) regions and 
each region is bounded by 0(7) edges. 
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Proof. We can assume that the tree of the submap has at least one edge, otherwise 
the lemma is trivial because of the y-granularity. Among the edges of that tree, 
let E be the set of those incident upon at least one node of degree less than 3. It 
is trivial to show by induction on the size of the tree that E accounts for at least 
a fixed fraction of all the edges. Now, contracting any edge in E, or equivalently, 
removing a chord associated with E produces a merged region of weight greater 
than 7, meaning that it has an arc with more than ~, edges of nonzero length. Since 
a vertex of C can give rise to at most four vertices of OC, and removed chords do 
not leave extra vertices behind except those of c~C, such an arc must involve at 
least fl(y) distinct vertices of C. If contracting any edge of E were always to produce 
a disjoint merged region, then it would follow from the pigeon-hole principle that 
E, and hence the whole tree, has O(n/7 + 1) edges. Unfortunately, two edges of E 
might produce overlapping merged regions (i.e., if they share a common node). 
From the conformality of the submap, however, we know that a given vertex of 
C can be used at most a constant number of times in this counting argument, 
therefore E has indeed O(n/7 + 1) edges and the first part of the lemma is 
established. The second part  derives from the conformality of the submap, which 
ensures that there is a bounded number of arcs per region and, hence, that the 
total number of bounding edges is at most proportional to the weight of the region. 

[] 

2.4. Representation Issues 

How do we represent visibility maps and submaps as data structures? We first 
describe our mode of representation, then we point out some of its idiosyncracies 
and explain why they are needed. Let P be the input polygonal curve (the one 
whose visibility map is sought) and let C be the subchain of P whose visibility 
map (or submap) we wish to represent. We assume that P is nonclosed; this is 
not restrictive since a little hole can always be punctured if it is closed to begin 
with. We assume that the edges of P are stored in a table (the input table) in the 
order in which they occur along the boundary of P. (A doubly linked list would 
also do.) Note that the notion of double boundary need not be encoded explicitly, 
i.e., no edges are duplicated in the table. The input table is read-only: it is never 
to be modified or even copied. A visibility submap of V(C) is represented by its 
own data structure: arcs are encoded by pointing directly into the input table. 
More precisely, each arc is represented by a separate arc-structure. Null-length 
arcs can be represented explicitly so let us assume that the arc has nonzero length. 
Let e 1 . . . . .  e, be the edges of an arc in clockwise order along the double boundary, 
where el and e t are the edges adjacent to the two chords connected by the arc. If 
t -- 1, then the arc-structure consists of a single pointer into the input table to the 
edge e of P that contains ev Since el is an edge of the double boundary, we also 
need to indicate by a flag which side of e is to be understood. We do not need to 
record the endpoints of the arc because chords take care of that. If t > 1, we store 
the same information as above but now with respect to both e~ and e, in that 
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order. We say that a submap (or map) is given in normal form if the following 
information is provided: 

(i) The tree of the submap (or map) is represented in standard edge/node 
adjacency fashion. 

(ii) Each edge of the tree contains a record describing the corresponding chord 
as well as pointers to the arc-structures of the two, three, or four arcs 
adjacent to it. Conversely, each arc-structure has a pointer to the node of 
the tree whose corresponding region is incident upon the arc in question. 

(iii) The arc-structures are stored in a table (the arc-sequence table) in the order 
corresponding to a canonical traversal of the double boundary ~C. Also, 
the endpoints of C are identified by appropriate pointers into the input 
table as well as by pointers to the arc-structures whose corresponding arcs 
pass through the endpoints. 

(iv) If the submap is conformal, then its tree decomposition should be available. 

We choose what may seem to be a contrived representation of a submap in order 
to use storage proportional  not to the number of edges in the submap but rather 
to the number of regions (which is of the same order of magnitude as the number 
of chords and arcs). It is essential to avoid excessive duplication of information 
because we need to encode a collection of submaps whose number  of distinct 
features is only O(n), but whose combined size, counting redundancy, is | log n). 
Note that our representation is powerful enough to let us perform canonical 
vertex/region enumerations in optimal time. If we wish to, we can also enumerate 
all the vertices of OC in clockwise order directly from a canonical vertex enumera- 
tion of the submap, since any arc can be reconstructed explicitly from the succinct 
information given by the arc-structure: it suffices to explore the input table between 
the locations indicated by the two pointers of the arc-structure. Note that caution 
must be used since an arc might wrap around both sides of OC, something we call 
double-backing. This can be detected when we traverse the arc as soon as we reach 
an edge of P incident upon an endpoint of C. 

Perhaps a less obvious task is to retrieve the arc-structure corresponding to an 
arc, given one of its edges. More specifically, suppose that we are given an edge 
e of C and a point q on it. The question is to find the arc-structures of all those 
arcs in the submap that pass through the point q. By passing through, we do not 
care whether the arc is on any particular side of the double boundary, so, for 
example, if q is not an endpoint of any chord in the submap, then there are at 
most  two distinct arcs to be found. Otherwise, there are at most six of them, two 
of which are of zero length: this worst case occurs when q coincides with a vertex 
of C that is a local extremum in the y-direction. Since we know the location of 
the two endpoints of C in the arc-sequence table (i.e., which arcs pass through 
them) we can conceptually break up the circular arc sequence into two linear 
sequences and perform in each of them a binary search, using the name of the 
containing edge e as a query. Either search might take us to a unique arc-structure, 
in which case we are done, or else to a contiguous interval of arc-structures: this 
might happen if e contributes several arcs. We can disambiguate by pursuing the 
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binary search, now using, say, the y-coordinate of q as a query. The total running 
time is logarithmic in the number of arcs. This operation is very useful later when 
we want to navigate in a submap across its arcs: we call it the double identification 
of a point of C. 

We have said repeatedly that a submap has a tree structure. Now let us change 
our perspective for a moment  and look at a submap as a standard planar 
subdivision, without distinguishing between chords and arc edges. There are many 
standard representations of planar graphs [2], [15], [23] which allow us to 
navigate through such a subdivision along the edges in constant time per step 
taken. Normal-form representations are not quite that powerful. One problem 
arises if we attempt to cross from one side of an arc to the other along, say, a 
straight line. In order to find which region we are about to enter we must perform 
a double identification. The difficulty here is that unlike what is commonly done 
in standard graph representations we do not keep adjacency information between 
regions and edges (except for chords). More important yet, we do not provide an 
explicit correspondence between the features on the two sides of an edge of C. 
For reasons which will become clear later, it would be a very bad idea to try to 
do  so. 

2.5. A Topological Lemma 

We close this discussion of visibility submaps by proving a result on the topology 
of regions and chords, which we use to establish the correctness of our submap 
merging algorithm. Let D be a closed disk in the spherical plane, let b be its 
boundary, and let ab denote a diametrical chord of D. Pick two distinct points c, 
d o n / )  such that a, c, b occur in clockwise order (with respect to D), and let A be 
a simple curve lying inside D and running from c to d. Consider the circular arc 
that runs clockwise from d to c and let B i (i = 1,2) be the closures of its 
intersections with the two circular arcs of D\{a, b} (Fig. 2.8). Note that each Bi 
consists of 0, 1, or 2 circular arcs. We say that a subset fl of A is shielded from Bj 
if either Bj is empty or else no point of fl can be connected to any point of Bj by 
a curve (understood here as a closed set) that lies entirely inside D and does not 
intersect either ab or A. In Fig. 2.8.1, for example, the piece of A running from c 

c dl L~ ot~/ Bl 

a ( ~ / / b '  b 

Bz 
2. B 2 ~  d 

Fig. 2.8 
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to a' is shielded from B 2 since none of its points can be connected to B 2 without 
crossing ab. Similarly, the piece from a' to b' is shielded from B~ since a connection 
to it would have to cross ab or A. 

Lemma 2.4. I f  a ~ B 1 w B 2 (resp. b ~ B1 u B2), let a' (resp. b') be the first (resp. 
last) point of  ab c~ A encountered when traversing the diametrical chord ab from a 
to b. The points a' and b' (which might not exist) subdivide A into a total of one, two, 
or three connected curves, each of which is shielded from some B~ (not necessarily 
the same j for all curves). Furthermore, an appropriate Bj can be identified simply 
on the basis of a, b, c, d, a', b'. 

Proof. We can assume that both B~ and B 2 a r e  nonempty and that A intersects 
ab (else the lemma is trivially correct). By attaching B~ u B 2 to A, we obtain a 
simple closed curve within D, which is, therefore, the boundary of a subset R of 
D homeomorphic  to a disk. If a (resp. b) belongs to B~ w B 2, then the segment 
aa' (resp. bb') lies within R and thus, acting like a chord, subdivides R into two 
regions. Since aa' and bb' cannot intersect, together they subdivide R into two or 
three disk-like regions. The boundary of each such region intersects the boundary 
of D in a single connected arc and therefore avoids one B i (outside of a and b) 
entirely. Figure 2.8 illustrates the two possible cases; note that the third case, 
where the counterclockwise traversal from c to d avoids both a and b, was 
eliminated earlier, since it corresponds to a situation where one of the B~'s is empty. 
None of the curves obtained by removing a' and b' (if they exist) from A can belong 
to more than one of the subdividing regions, so each of them is shielded from 
some B~. Which one can be determined by simple examination of the relative order 
of the points a, b, c, d, a', b' around the boundary of R. []  

3. Merging Two Submaps 

The inner loop of the visibility algorithm involves merging two conformal 
submaps. Everything else in the algorithm is part of a control mechanism for 
deciding what gets to be merged with what, at what time, and with what desired 
granularity. Let C 1 and C2 be two polygonal curves of nl and n 2 vertices 
respectively, whose union C forms a connected vertex-to-vertex piece of the input 
(simple and nonclosed) polygonal curve P; we assume that C1 c~ C2 is a vertex of 
P. Let Si (i = 1, 2) be a 7i-granular conformal submap of V(C3, with 71 < 72. Given 
any integer 7 > 72, to merge $1 and $2 (where 7 is understood) means to compute 
a normal-form 7-granular conformal submap of V(C). 

To facilitate the exposition we assume that we have at our disposal two 
primitives: one is a ray-shooting oracle, which allows us to shoot a horizontal ray 
toward any subarc of St or $2 and discover which point, if any, is first hit by the 
ray; this gives us a way to discover new chords. The other primitive is an 
arc-cutting oracle, which enables us to cut up any subarc into a small number of 
pieces for which conformal submaps of the appropriate granularity have already 
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been computed. This is to be used for restoring the conformality of merged 
submaps. 

The merge proceeds in three stages. First we find which points of t3C can be 
seen by the endpoints of the exit chords of Si (i = 1, 2) and by the companion 
vertices resulting from the duplication of C1 n C2; this gives us chords which we 
use to create a submap S of V(C), called the fusion of $1 and $2 (Section 3.1). In 
the second stage we ensure that the submap is conformal, which might involve 
adding new chords to cut up regions with more than four arcs. This is done by 
calling upon the arc-cutting oracle, which allows us to deal with subarcs for which 
conformal submaps and their tree decompositions are available. Finding new 
chords to cut up big regions is carried out by binary search through the 
appropriate tree decompositions, using the ray-shooting oracles along the way 
(Section 3.2). In the third stage, finally, we bring the submap S to the desired 
granularity by removing chords if necessary (Section 3.3). The implementation of 
the oracles is discussed in Section 3.4. 

We need to be able to distinguish between an arc of c~C and the piece of C 
from which it originates. For this purpose we introduce the notation ~ to refer to 
the portion of C to which an arc ct of OC corresponds. Recall that an arc may 
double-back around an endpoint of C, so ~ may not always be as "long" as ~. 
We assume that each St is given in normal form and that the following set of 
primitives is available. For  each region arc ct of Si (i = 1, 2) specified by a pointer 
to its arc-structure: 

(i) 

(ii) 

There exists a ray-shooter which, given any point p along with a horizontal 
direction (left or right) and any subarc ct' of ~ specified by its two endpoints 
(along with two pointers to the input table to indicate the names of the 
edges of P that contain these two endpoints as well as two flags indicating 
which side of t~P is to be understood), reports the single point of ct' (if any) 
that a ray of light shot from p in the given direction would hit in the absence 
of any obstacle except ~'. In addition to the point hit, the report should 
also include the name of the edge of P that contains it. The report should 
take O(f(Ti)) time, where f is a nondecreasing function. 
There exists an arc-cutter which, in O(g(yl)) time, subdivides the subarc ct' 
into at most g(7~) subarcs ~1, ct2, -.., such that (1) each ctj is specified by its 
two endpoints and a pair of pointers into the input table to indicate which 
edges of P contain these endpoints; the pair should be ordered to reflect a 
clockwise traversal along t3P and two flags should be included to indicate 
on which sides of OP these endpoints fall; (2) l~he relative interior of no atj 
should contain a point of aC~ that corresponds to an endpoint of C~, that 
is, each subarc must lie entirely on one side of OC (no double-backing); and 
(3) except for ~t and ~2 (in the case where these are single-edge pieces 
attached to the points of C corresponding to the endpoints of 0t'), all the 
~j's are vertex-to-vertex subchains of C i (i.e., they do not stop in the middle 
of an edge) and, for each of them, an h(7~)-granular conformal submap of 
V(~j) is available in normal form. Again, 9 and h are assumed to be 
nondecreasing functions. 
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Given these oracles we show how to merge S~ and S 2 in 

O((n,/7, + nz/72 + 1)f(y2)g(yz)(h(72) + log(n1 + n2))) 

time. Ideally, we would like the extra factor f(y2)g(Y2Xh(~/2) + log(n1 + n2) ) to be 
constant. This would mean that the merge could be done in time proportional 
not to the total size of the submaps but to the number of chords in them. We 
cannot achieve this, but we can find functions f, g, h which, although nonconstant, 
are small enough for our purposes. Specifically, we have f (x)  = O(x~ g(x) = 
0(log x), and h(x) = O(x~176 This allows us to carry out a merge in time almost 
proportional to the total number of chords. Note that to achieve f (x)  = g(x) = x 
is trivial but, for our purposes, completely useless. 

3.1. Fusion of  Two Submaps 

By symmetry, we may limit our discussion to the problem of fusing $1 into S 2, 
that is, determining the points of 0C that are seen by the endpoints of the exit 
chords of $1 and by the companion vertices resulting from the duplication of 
C~ n C2. The idea is then to repeat the work described below with respect to Sz 
(i.e., fusing S 2 into S~), and set up a new submap S based on the information 
collected. Let a,,+l and a o be the 
each other clockwise around I~C1, 
C l c ~ C  2 in aC r Let a 1, a 2 . . . . .  a,, 
Recall that this enumerates the exit 

companion vertices, as they appear next to 
resulting from the duplication of the vertex 
be the canonical vertex enumeration of S r  
chord endpoints in S~ as we encounter them 

going clockwise around c3Cr Since the sequence is circular we can assume that 
a0 precedes al and a,,+ 1 follows am. Note that it could happen that a o and a,,+l 
are already part  of the sequence, but this need not be the case because of chord 
removals which might have occurred during previous merges, so, for the sake of 
generality, we assume that they are not and therefore add them to the sequence. 
A clockwise tour around ~3C1 that begins at a o thus ends at am+ 1. We compute 
the points of c3C seen by a o, a 1 . . . . .  am+ 1 in that order. 

We begin with a simple observation. Given any point p of ~3Ci and the arc to 
which it belongs (specified by its arc-structure), we can determine which point of 
OCi it sees (with respect to CI) in O(f(~'i)) time. This operation is called local 
shooting. Recall that because of the double boundary the shooting direction is 
always uniquely defined. If p is an endpoint of an exit chord we can easily do that 
(even in constant time). If not, then p belongs to a unique region of Si, which we 
can determine in constant time (i.e., via its node in the submap tree), and the point 
of c~Ci that it sees lies on one of the region's arcs. This is because regions are closed 
under visibility, which is a corollary of Lemma 2.1. Using the appropriate 
ray-shooters, we can find that point by checking each arc in turn and finding the 
nearest hit. The claim on the time follows from the conformality of Si, which 
ensures that at most four arcs need to be checked. Note that local shooting is still 
possible even if p does not lie on ~3Ci: it can lie anywhere in the spherical plane 



Triangulating a Simple Polygon in Linear Time 503 

as long as a horizontal direction (left or right) has been specified and we know in 
which region of  Si the point lies. We still call this operat ion local shooting. 

To fuse S~ into S z we let a variable p run through OC~ in clockwise order, 
stopping at a o . . . . .  ar,+~ as well as at some other places to be specified. We 
determine what p sees along the way, while keeping track of the current region of 
$2 in which p lies. We use a start-up phase to initialize p and launch the fusion. 

Start-Up. Using local shooting, we find the point of ~C1 that ao sees with respect 
to C~. Although ao is at worst infinitesimally close to OC z it does not always lie 
on it, as we shall see in the next paragraph.  However,  using the information about  
the endpoints  of Ca encoded in the normal-form representation of $2 (namely, 
pointers to incident arcs), we can find, in constant  time, in which region of $2 the 
point ao lies. This allows us to do local shooting and find the point of  ~C2 that 
a o sees with respect to Ca. These two pieces of information combine to give us 
the unique point c o of 0C that ao sees with respect to C. We distinguish between 
two cases: 

1. If  Co belongs to c~C2, then we set p = ao and we call the region of  Sa crossed 
by aoc o current: the start-up phase is over (Figure 3.1.1). 

2. If c o belongs to 0C~, from Lemma 2.1, the chord aoc o splits t~C into two 
curves, each closed under visibility. One of these curves, the one running 
from ao to Co clockwise, is a piece of ~C1 (Fig. 3.1.2), so the points of  t3C 
that its exit chord endpoints  see all belong to dCl, and thus are available 
directly from $1. We can therefore skip all the way to Co. Now, however, Co 
sees a point  of c3Cz, namely ao, so we set p = Co and call the region of $2 
containing ao current. 

Technically, it is not  quite true that ao is always a point of t3C2. It coincides with 
one most  often, but when it sits at a local extremum (in the y-direction) it is not  
one because of  duplication. What  is true, however, is that when c o cannot  see a 
point  of dC2, an infinitesimal deformation of c~C2 locally a round ao can make c o 
see one. This is a minor  technicality which will not  affect the remainder of  the 
fusion algorithm, so for simplicity we still go on saying that Co sees a point of t~Cz 
with respect to C. Another  minor  problem is that  aoc o might lie on an exit chord 
of $2 and thus there might  be more  than one candidate for the status of current 

(c2) (c~) 
I. 2 .  

Fig. 3.1 
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region. We break ties by electing the region that we locally enter as we leave p in 
a clockwise traversal of dC 1. This concludes the start-up phase. At this point we 
have the following situation (all visibility being understood with respect to C): 

A. The points of dC that are seen by the exit chord endpoints of $1 on the 
portion of t9C1 running clockwise from a o to the point p in its current 
position have all been determined already. 

B. The point q of t~C that is seen by p belongs to t3C2 and the chord pq lies 
in the region of $2 called current. If p lies on a chord between two regions 
of $2, then the current region should be the one that we enter as we locally 
leave p clockwise around t~Cl. 

These two conditions form our loop invariant, that is, they hold prior to every 
iteration of the process which we now describe. 

Main Loop. Let Ai denote the oriented arc of $1 running from ai-1 to al 
(in clockwise order around t3C1); by extension A1 (resp. A,~ + 1) stands for the subarc 
extending from a o to a 1 (resp. am to am+ 1). Let Ak be the arc containing p. In the 
likely event that p is an endpoint of a chord of $1 and thus belongs to two arcs, 
we must choose the one starting (and not ending) at p, i.e., we set the condition 
p ~ ak. When p is set to a,~+ 1, however, the algorithm simply terminates and no 
A k need be defined. Let R denote the current region prior to entering the following 
loop: iterate through j = k, k + 1 . . . .  until 

(i) aj lies in R and the point ofdC that aj sees belongs to t3C 2 (Figure 3.2.1), or 
(ii) the previous condition (i) does not hold, but R has at least one exit chord 

such that the point of dC seen by one of its endpoints belongs to Aj but 
strictly follows p (Fig. 3.2.2), or 

(iii) j = m + 2. 

If case (i) occurs, find Which point of (3C is seen by a j, declare that all ai's (k < i < j) 
see points of (~CI (with respect to C), set p = aj, let the current region still be R, 
and iterate through the loop, resetting k so as to comply with its definition. If 
case (ii) occurs, then of all the candidate endpoints, i.e., those chord endpoints 
satisfying (ii), determine the one which sees the point p' that is the last one 
encountered as we traverse (~C1 clockwise starting from p. In Fig. 3.2.2, for example, 
/7' is the point labeled P3 and the chosen endpoint is labeled q3. Next, declare that 

1 .  

q 

2 .  

Fig. 3.2 
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all a,.'s (k < i < j )  see points of t3C~, set p = p', make current the region of $2 which 
we enter as we locally cross the exit chord at p' along CC1, and iterate after 
updating k and R according to their definitions. In case (iii) we stop and, unless 
k = m + 2, we declare that all ai's (k < i < m + 1) see points of 0C~. We have made 
several claims and skipped over important implementation issues in order to get 
the main idea of the algorithm across. Next, we fill in the missing parts and 
substantiate our claims. 

Lemma 3.1. I t  is possible to compute the fusion S o f  $1 and S 2 in 

0((nl/71 + n2/)'2 + 1)(f(72) + log(nt + n2))) 

time. 

Proof. We restrict our attention to the task of fusing $1 into $2, the other case 
being similar. We have already shown that the start-up phase leads to a situation 
which satisfies the loop invariant, so it suffices to establish the correctness of the 
inner loop past a 0. In case (i) we know that aj lies in R (actually in its interior) 
and sees a point of 0C2, so invariant (B) is satisfied. How about (A)? We made 
the claim that a k . . . . .  aj_ ~ all see points of OCr But actually the negation of (i) 
for ak . . . . .  a j_ ~ is not strong enough to reach the necessary conclusion about what 
ak . . . . .  aj_~ must see. Any of these points (if they exist) either sees OCt or lies 
outside of R. Why should lying outside R imply seeing OCt? Suppose that, for 
some l (k < l <j ) ,  a t lies in region R' distinct from R (like ak+ 1 in Figure 3.2.1) 
but also sees OC2. We derive a contradiction. Let ~r denote the directed portion 
of OCt as we go from p to a~ clockwise, and let q (resp. q') be the point of 0C seen 
by p (resp. a3. The union of ~r the chords pq and atq', and the portion ~ of OC2 
running clockwise (with respect to C2) from q' to q forms the boundary of a simple 
polygon (Figure 3.3). Since the dual graph of a submap is a tree, there is a unique 
exit chord ab of R that leads to R' (note that ab need not be an exit chord of R', 
since there might be one or even several regions separating R from R'). Because 

runs from R' to R it passes through one of the chord endpoints, say, a. Let a' 
be the point of ab c~ sr first encountered as we go from a to b along the chord. 
Note that ab cuts through d ,  so a' is well defined. The points a and a' see each 
other with respect to OC, and a' lies in Ah, for some h between k and l inclusive. 

B'-~f ~ ~ r 

Fig. 3.3 
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Because, in clockwise order around OC 1, the point a' is leaving R locally, it cannot 
be equal to p. Therefore, the inequality I < j implies that case (ii) must have already 
occurred when the running variable j was assigned to some integer between k and 
l, which is impossible. 

Having shown that the loop invariant remains satisfied through case (i), we 
must do the same with case (ii). Let ~r now denote the directed portion of 0C 1 
as we go from p to aj clockwise. The new assignment of p is the last point of d ,  
distinct from p, that sees an endpoint of an exit chord of R. Certainly, the new 
assignment of the current region satisfies invariant (B). Figure 3.2.2 shows three 
candidate endpoints, with q3 winning the contest. Turning now to invariant (A), we 
must prove our claim that the points of c3C seen by a k . . . .  , aj_ ~ all belong to dC~. 
We omit the proof since it is identical to the previous one, with the role of aj now 
played by p'. 

What  about  termination? Obviously, the three cases rule out an infinite 
loop. Every time we fall in either of the two cases (i) or (ii) we determine more 
visibility information, so that all visibility relations are known from a0 all 
the way to the current position of p. How about  the last iteration, the one leading 
to case (iii)? We claimed that all ai's (k <_ i _< m + 1) see points of OCv This follows 
from the proof  of the last paragraph, which showed that if al sees c3C 2, then either 
a t lies in R (case (i)) or it does not, but then, we must fall in case (ii) after leaving 
p but upon or prior to getting to a t. The proof  of correctness is now complete. 

Let use now analyze the complexity of the algorithm. To test whether aj lies 
in R can be done in O(f(~,2) ) time by using the ray-shooters for each arc that 
bounds R: first we find which point of an arc is hit by a ray of light shot from a t 
in its assigned chord direction. If there is no hit on any arc, a t is not in R. Else, 
let s be the first point hit by the ray over all the arcs of R. Whether a t lies in R 
or not can be directly inferred from the local orientation of the hit at s and which 
side of the double boundary is hit. This is because, as we should recall, arc- 
structures encode on which side(s) of the double boundary the arcs lie. If a t lies 
in R, then s is the point of c~C 2 seen by a t with respect to C2. Next we use local 
shooting within S~ to determine the point t of OCx hit by a ray of light shot from 
a t in its assigned direction. Note that most often (i.e., when 0 < j <_ m) a t is the 
endpoint of a chord of S~ so t is just the other endpoint of the chord. Now that 
we know which points of OC1 and t3C2 the point a t can see, we can immediately 
derive the point of t3C that it sees and, from there, decide whether we are in case 
(i). The test takes O(f(), 0 + f(72)) = O(f(Y2)) time (since f is nondecreasing and 
Yl < Y2)- This cost also includes the start-up phase. 

Regarding (ii), we must assess how fast we can find the point of OC that is seen 
by an endpoint a of a given exit chord ab of R. Actually, we must find that point 
only if it belongs to Aj.  So, we can shoot a ray of light from a toward A t in the 
appropriate direction and see what happens, which takes O(f(70)  time. If we do 
not get a hit, or if the hit does not lie on ab, or if it occurs before p along At, or 
if it does not have the proper orientation which lets a see Aj without the other 
side of the double boundary of A t interfering (a constant-time test), then the 
endpoint can be disqualified. Otherwise, we must find whether the point s of A t 
hit by the ray of light can see a with respect to C: the problem here is that other 
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arcs Ai (i :~j) might get in the way. Using local shooting in S~, however, we can 
shoot a ray of light from s toward a. We aim in the natural shooting direction 
from s since we have already ruled out that the "companion"  point of s should 
prevent it from seeing a. The point t hit by the ray is found in O(f(~q)) time. If 
shooting from s to t passes through a, then s and a see each other with respect to 
C and we fall in case (ii), else we know that case (ii) cannot occur with respect to 
Aj and the endpoint a of the chord ab (although it might occur with respect to 
other endpoints of exit chords in R). This shows that testing case (ii) takes O(f(70 ) 
time. 

We thus have shown that every elementary test (i), (ii) can be performed in 
O(f(72) ) time. At each such test we advance through the list of Ai's or we report 
a pair of visible points in 0C, one of which is an endpoint of an exit chord of $2. 
These reports are never duplicated because we always move forward among the 
A~'s. Therefore, to discover all the chords of the fusion S of S 1 and S 2 takes time 
O(mf(72)) time, where m is the total number of arcs and exit chords in $1 and $2. 
By Lemma 2.3, m is O(n~/71 + n2/72 + 1). Note that among the chords to be 
included in the fusion S, we not only have the newly discovered chords that connect 
t3Ca and t3C2 as well as the old chords of S~ and $2 that still form visible pairs of 
points with respect to C, but we also have all the null-length chords of S~ and $2 
as well as the chords incident upon the vertices of 0C resulting from the duplication 
of the vertex C~ c~ C2; this last category is where null-length chords originate. 

After fusing S 1 (resp. Sz) into S 2 (resp. S 0, we have all the chords of the submap 
S and we can set it up in normal form quite easily. In order to allow for canonical 
vertex enumerations, let us sort the endpoints of these chords along OC, which is 
done by sorting the names of the edges of P on which these arcs abut, and then 
sorting the endpoints falling within the same edges by considering y-coordinates. 
This allows us to set up the required arc-sequence table. Note that merging can 
also be used instead of sorting but this step is not the dominant cost, anyway. 
With this information it is now straightforward to set up the tree of the submap 
S, along with all the necessary arc-structures and their relevant pointers. Since the 
submap might not be conformal we dispense with the tree decomposition at this 
point. Very conservatively, all this work can be done in time 

O((n~/vl + n2/~; 2 + 1)log(n1 + n2) ). 

Putting everything together, we derive the upper bound of 

O((nL/Yl + n2/Yz + 1Xf(y2) + log(nl + nz))) 

on the time needed to complete the fusion of S 1 and $2. [ ]  

Remarks. 1. Since the chords of S reflect the visibility of the chord endpoints of 
S 1 and S 2, they need not be incident upon any vertex of t3C, hence the notion of 
augmented maps and submaps. 

2. It is possible to simplify the fusion procedure in various ways, albeit at the 
expense of a slightly more complicated proof  of correctness. For  one thing, the 
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start-up phase is not strictly required and with a bit of care can be integrated 
within the main loop. Also, the two fusing passes can be unified into a single one 
(toward that end, we might want to catch the first occurrence of case (ii) and not 
the last one, for example). 

3.2. Restoring Conformality 

As we said earlier, there is no reason to believe that the fusion S should be 
conformal. Things can never be too bad, however. Indeed, let A 1, A 2 . . . .  be the 
arcs of a region R of S in counterclockwise order. It is clear that each A i belongs 
to OCt o r  0 C  2 but not both. So, we can partition the sequence of arcs into runs, 
B1, B2 . . . . .  meaning that Bj =AiI,  A~I+ 1 . . . . .  A i , ,_  t is a maximal subsequence of 
arcs from either 0CI or 0C 2 (but not both). In the definition of maximal, we regard 
A 1, A 2 . . . .  as a circular sequence. Because any exit chord endpoint of Si is still an 
endpoint of a chord in S and, with the possible exception of the chords incident 
upon ao or a,,+ 1, every chord of S that connects two points of 0C~ is also a chord 
of S~, it follows by conformality that a run associated with 0CI cannot have more 
than four exit chords in its midst, not counting the new chords incident upon ao 
or am + 1. Therefore, a run cannot have more than a constant number of arcs. On 
the other hand, it follows from Lemma 2.2 that there are at most two runs. Why 
is that so? The lemma says that if we walk along 0C clockwise we will in effect 
traverse, among other things, the boundary of R counterclockwise (except for the 
exit chords). If we begin our walk at one of the two points of 0C corresponding 
to the vertex C~ c~ C2, we first exhaust, say, 0C1 and then 0C2. Therefore, the 
counterclockwise traversal of the boundary of R must exhaust first the runs B~ 
contributed by St and then the runs contributed by S 2. Obviously, this leaves only 
the possibility of having at most one run of each type, and hence a total of at 
most two runs. The conclusion to draw is that, although not necessarily conformal, 
the submap S has no region with more than a bounded number of arcs. If S is 
not conformal we must now reduce the number of arcs per region to four or less 
by adding new chords into S. To discover these chords we need the ability to 
check whether two arcs or subarcs of the same region can "see" each other (Lemma 
3.2). We also need to show that the desired chords do exist (Lemma 3.3). 

Lemma 3.2. Given two arcs AI and A 2 of the same region of  S, assume that they 
have a pair of  mutually visible points, one of which is a vertex of OC (meaning that, 
say, A x contains a vertex v which is also a vertex of OC and is such that the point 
of OC seen by v lies in A2). Then we can find a point of  A 1 (not necessarily a vertex 
of OC) that sees A 2 in time O(f(Y2)g(v2)(h(y2) + log V2)). 

Proof To begin, observe that At and A 2 a r e  arcs or subarcs of either St o r  S 2 

but cannot overlap both OCt and aC 2. The reason is that all chord endpoints in 
St and $2 are still chord endpoints in S (perhaps with different chords) and that 
we added chords incident upon the vertices of 0C resulting from the duplication 
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of the vertex C~ n C2. Therefore, because of the bounded  number  of arcs per 
region, it is still possible to do local shoot ing within any region of  S. Since 71 < 7z 
and f is nondecreasing this takes O(f(72)) time. Thus, we can efficiently check, in 
time O(f(Tz)), whether a given vertex of A~ qualifies as the point v sought. (Again, 
we must be careful that  local shoot ing reports edges of  P and does not tell us if 
the point hit is on the desired arc or  is the companion  of a point  of  the arc. We 
already discussed how local checking can decide which way it is in constant  time, 
so we will not  make further mention of that minor  difficulty.) Of  course, we should 
not check all the vertices of  A 1 because there might just be too  many  of them. 
Instead, we need to do some kind of binary search among  the vertices of A1. 

For  that purpose we invoke the arc-cutter associated with the arc of $1 or Sz 
containing A~, which allows us to subdivide A 1 into at most  g(Tt) subarcs, with 
l = 1 ifA 1 c 8C1 and I = 2 ifA 1 ~ 8C2. Except for at most  two single-edge subarcs 
at tached to the endpoints  of A 1 (which we ignore), for each subarc ~ we have a 
normal- form h(Tt)-granular conformal  submap S, of V(~). We search each subarc 
in turn, s topping as soon as we find a good  vertex or point, if ever. Since 
the normal-form representation of S, provides us with the tree decomposi t ion 
T of the submap, we are able to check the candidacy of ct in its entirety 
in O(f(yzXh(y2) + log 3)2)) time, provided that the following test can be performed 
in O(f(72)) time: given a chord ab of S,, either determine that a or b is a point of  
ct and s e e s  A 2 with respect to C, or find some ie  {1, 2} such that  ~t n ~t i is empty 
or  has no point  that  sees A2, where cq and ~2 denote the two pieces of S~ between 
a and b. Note  that  8~ is a superset of ~ with twice the number  of  vertices (not 
fewer because the arc-cutter oracle guarantees that ct does not  double-back a round  
an endpoint). First we show how such a test can be used to check the candidacy 
of ~. Then we explain how to implement the test and why it covers all possible 
c a s e s .  

We begin by applying this test with respect to the chord corresponding to the 
root  of the tree T (corresponding to the hierarchical decomposi t ion of S~). Then, 
as claimed, either we terminate with a positive answer or else we identify one of 
~1 or ~a, say, ~1, such that ~ n a 1 is empty or has no point  that  sees A 2. In that  
case, we find the child of the root  that  corresponds to ~z and we iterate on this 
process from that  node. This leads us to termination at some internal node of T 
or perhaps takes us to the bo t tom of the tree. Note  that determining which node 
to branch to at each step is trivial once we have identified the ~i to be rejected. 
(So, we can perform the test just as stated above without  having to "resize" ~ to 
reflect the current status of the ever-shrinking set of candidates.) If we reach a leaf, 
we examine each vertex of the region associated with it and, among  those belonging 
to ~t, we check whether any of  them can s ee  A 2. Since there are only O(h(3)2)) 

vertices in the region and the depth of  the tree is O(log 72) the running time of 
the algori thm is O(f(Tz)(h(72)+ log 72)), as claimed. Again we use the fact that  
71 < 71 and that h is nondecreasing. 

Whenever  we discover a successful candidate point, the search can obviously 
be stopped right there. What  remains to be seen is why upon reaching a leaf the 
corresponding region is the only one which can still provide the desired answer. 
Let us assume that the search ends up at a leaf. At the very beginning, let us say 
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that each point of ~3~ is a candidate. Every time we branch down the tree we limit 
the candidacy to those points of 8c~ in the regions of S, associated with the leaves 
of the subtree which we enter. At the end, the remaining candidates are the vertices 
in the region associated with the leaf where the tree search ends. This proves the 
correctness of the procedure. So, to summarize, if the basic test stated earlier can 
be performed in O(f(72)) time, then we can solve the entire problem in 
O(f(72)g(Tz)(h(7,2) + log 72)) time, which proves the lemma. 

We now show how to perform the test and why it is sound, i.e., covers all cases. 
Removing 8~ from the spherical plane leaves two open regions, each polygonal 
and homeomorphic to a disk. One of them is infinitesimally small; let D be the 
closure of the other one. It is important that D should be homeomorphic to a 
closed disk and not to a 2-sphere, so the interior of ~, and, more generally, of C, 
should be understood as being very small but nonempty, Let c and d be the 
endpoints of ~ on 8~. Removing c and d from 8 C  leaves ct and a curve A, both 
lying in D, so we have set the stage for Lemma 2.4. Figure 3.4 illustrates the 
correspondence: the snake on the left represents C; the disk D corresponds to the 
outside of the portion of the snake between r and d, while it is the inside of the 
circle on the right. The curve A runs along the snake clockwise from d to c; note 
that it runs on the boundary of D part of the way. The subarc ct runs clockwise 
from c to d and corresponds to B 1 u B 2. Figure 3.4 shows the case where only 
one endpoint of ab  lies in B 1 L) BE, which corresponds to Figure 2.8,2. The reader 
will easily draw an example matching the case of Figure 2.8.1, where both a and 
b lie in ot = B I u B 2. 

To compute a' and b' (if defined) can be done by local shooting in the region 
of S incident upon AI and A2, which takes O ( f ( y 2 ) )  time. Note that no shooting 
is needed for a or b if the point in question does not lie in ~. If ever a (resp. b) is 
a point of 7 and a' (resp. b') belongs to A2, then obviously we are done and 
successful in our search, so we can assume that neither conjunction holds. But, in 
that case, A 2 lies entirely within one of the connected components of the curve A 
after it has been cut up by removing a' and b' (whichever exists). Therefore, by 
Lemma 2.4, A Z must be shielded from some Bj, which means that it cannot be 
connected to Bj without crossing ab  or A. Furthermore, we know that Bj can be 
identified in constant time. The key observation now is that Bj coincides precisely 
with one of ~ n ~1 or ~ n a2, say, the first one. It follows that no point of ~ n ~1 
can see A z ,  and the test is completed. []  

d 

Fig. 3.4 
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Lemma 3.3. Let A 1 . . . . .  A k be the clockwise circular sequence of  arcs around a 
region of  S. I f  k > 4, then there exist i, j, such that 

(i) i - j : ~  - 1 , 0 ,  1 (mod k) and 
(ii) A i has a vertex of  (?C that sees Aj (with respect to C). 

Proof  Recall that the region is associated with a subtree of the visibility tree of 
C. If S contains chords incident upon no vertices of 0C, then we must include 
these chords as well and speak of the tree of the augmented visibility map of C. 
Let us add to the subtree in question the edges that connect it to the rest of the 
visibility tree. With respect to this augmented subtree, each exit chord of the region 
is associated with a distinct node of degree 1 (but the converse may not be true). 
Note that some of these exit chords might be of zero length. Consider the Steiner 
minimal tree of these particular degree-1 nodes (i.e., the smallest connected set of 
edges that join these nodes together), and for simplicity form a tree homomorphic 
to it by ignoring nodes of degree 2. Now embed this new tree in the plane and 
enclose it by a simple closed curve that connects together all its degree-1 nodes 
(Fig. 3.5). By using an embedding that preserves the local orientation of the edges 
around the nodes, the area inside that closed curve is partitioned into k faces, each 
corresponding to a distinct arc A~. Because there are al least five degree-1 nodes 
and the maximum node-degree is 4, it is immediate that at least one edge of the 
tree must be incident upon two faces associated with A i and A j, respectively, where 
i - j  4: - 1, 0, 1 (mod k). (For a simple proof, try all possible cases with five nodes 
of degree 1 and observe that the property remains true with the addition of more 
nodes.) Of all the chords in the region only the exit chords might fail to be incident 
upon at least one vertex of ?~C. It follows that the edge in question corresponds 
to one or several chords of the original, nonaugmented V(C) that connect A~ and 
Aj. D 

Equipped with the two previous lemmas, making S conformal is now quite 
easy. Recall that although S might not be conformal right after fusion, none of its 
regions has more than a bounded number of arcs. For  any region with more than 

Fig. 3.5 
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four arcs, let us apply Lemma 3.2 to every pair of nonconsecutive arcs until we 
find a chord which we can add to S. We iterate on this process until no region 
has more than four arcs. Note that although S keeps changing, Lemma 3.2 always 
holds since region arcs can only become smaller. Lemma 3.3 tells us that this 
chord addition process will not stop until S becomes conformal. Since the total 
number of arcs in S is O(nl/h + n2/72 q- 1), we conclude: 

Lemma 3.4. The submap S can be made conformal in time 

O((nx/7, + n2/72 + l)f(y2)9(Y2Xh(Tj + log 72)). 

3.3. Maintainin 9 Granularity 

Since by making S conformal we did not remove any exit chord, it is still the case 
that, as observed in the proof of Lemma 3.2, no arc has more than 72 edges. 
Therefore, S is conformal and 7z-semigranular. We must now check whether the 
second criterion for 72-granularity holds. This criterion says that contracting any 
edge of the submap tree that is incident upon at least one node of degree less than 
3 produces a new node whose weight exceeds 72. This is very easy to enforce: if 
an edge does not pass the test, we just contract it by removing its corresponding 
exit chord (and those endpoints that are not vertices of ~3C). Note that this will 
not cause a violation of the first criterion, since the size of all the arcs will always 
remain within 72. Similarly, the removal keeps the submap conformal. We process 
each exit chord in turn and check whether it is removable. Chords need be 
processed only once since the removals cannot make any chord removable if it 
was not already so before. Therefore, 72-granularity, and more generally 7- 
granularity, for any 7 > 72, can be enforced in this nondeterministic fashion 
in time linear in the size of the submap tree, that is, O(n~/h + n2/72 + 1). We 
can now put S in normal form, which includes computing its tree decom- 
position. As we discussed earlier, this can be done very simply in time 
O((nl/h + n2/72 + 1)log(n~ + n2)). With the inconsequential assumption that 
7i = O(n~ + n2), we derive the following result from Lemmas 3.1 and 3.4: 

Lemma 3.5. Let C1 and Cz be two polygonal curves of nl and n 2 vertices, 
respectively, whose union forms a connected vertex-to-vertex piece of the input (simple 
and nonclosed) polygonal curve P. Suppose that we are #iven a normal-form 
7i-granular conformal submap of each V(CI), where 7x-< 72, alon9 with the ray- 
shootin9 and arc-cuttin9 oracles necessary for merging. Then, for any 7 >- 72, it is 
possible to compute a normal-form 7-9ranular conformal submap of V(C) in time 
0((nl/7~ + n2/72 + 1)f(Y2)9(72)(h(72) + log(n1 + n2))). 

3.4. Implementin9 the Oracles 

Of the two oracles defined earlier, the ray-shooter is the more challenging to 
implement, the reason being that it addresses the key issue in the triangulation 
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business, which is the discovery of new chords. The arc-cutter is implemented by 
using the divide-and-conquer structure of the up-phase of the visibility algorithm. 
Since a better understanding of the up-phase is necessary to understand how that 
oracle works, we postpone the discussion of its implementation a little. Turning 
our attention to the ray-shooting oracle, it might appear at first that fast planar 
point location should be the answer. But traditional methods, e.g., [93 and [193, 
are inadequate for several reasons, the most crucial of which is their inability to 
support merging in sublinear time. We turn this problem around by exploiting 
further the approximation scheme provided by the concept of granularity. 

Let C be a connected vertex-to-vertex piece of the input polygonal curve P and 
let m be its number of vertices. Let S be a normal-form 7-granular conformal 
submap of V(C). So far, we have focused mostly on the tree structure of S. But 
let us now regard S as a planar graph. For this purpose, we must temporarily 
forget the fact that C has been given a double boundary. We define S* to be the 
planar subdivision obtained by taking S and making every vertex (vertices of ~C 
and chord endpoints) a vertex on both sides of the double boundary, whose 
thickness is now null. As a result, the edges of S* might be smaller than those of 
S but, unlike in S, no edge of S* is of zero length (zero-length edges are now 
"contracted" into vertices). More important, each face of S* coincides exactly with 
a distinct region of S, except for the fact that it might have many more vertices 
incident upon it. Indeed, a region's only vertices are the endpoints of its own exit 
chords along with some vertices of ~C, whereas the vertices of a face include all 
of the above plus all the chord endpoints that abut on the corresponding region 
from the outside. Notice that since the notion of double boundary is lost, a face 
might have dangling edges or edges incident upon it on both sides. There are 
several examples of this in Fig. 3.6, which shows the subdivision S* corresponding 
to the submap of Fig. 2.6. Note also that the correspondence face/region is not 
surjective because empty regions have no associated faces. Besides being planar, the 
graph S* has two remarkable properties: 

(i) From Lemma 2.3 we know that it has O(m/7 + 1) faces, which is much 
smaller than the number of vertices (when ~/is large). 

(ii) Although a given face might be very complex (i.e., incident upon many 
edges) its number of noncollinear edges is small, i.e., O(7). 

These two features allow us to implement an efficient ray-shooting oracle. 

Fig. 3.6 
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Let G be the dual graph of S*, that is, the graph obtained by associating a 
distinct node with each face of S* and connecting two nodes if and only if they 
are distinct and their corresponding faces share a common edge. It is a classical 
result of graph theory that G is planar. How hard is it to compute G, say, in the 
form of adjacency lists? Two faces are adjacent if and only if either they share a 
chord or one of them has a chord endpoint that abuts on a nonnull length arc of 
the region associated with the other face. The first type of adjacencies can be 
detected immediately from S. The latter can be done by double identification, as 
discussed in Section 2.4, followed by sorting along C, which takes O(/~ log m) time, 
where/~ = O(m/y + 1) is the number of nodes in G. It can also be done faster by 
merging chord endpoints along both sides of c3C. 

If # = 1, then ray-shooting can be done trivially in O(m) time, so let us assume 
that # > I. We show that after O(# log m) preprocessing we can do ray-shooting 
in O(y~ 2/3) time. The planarity of G works wonders for us. The first payoff is that 
the number of edges is at most 3/~ - 6. The second reward is that we can apply 
the linear-time algorithm of Lipton and Tarjan [21] to find a good separator. This 
partitions the nodes of G into three subsets A, B, D, such that 

(i) no edge joins a node of A with a node of B, 
(ii) neither A nor B contains more than 2/~/3 nodes, and 

(iii) D contains at most x / ~  nodes. 

Let GA (resp. GB) be the graph obtained by keeping only the nodes of A (resp. B) 
and the edges of G that join only nodes of A (resp. B). We repeat the procedure 
over with respect to each of G a and GB and iterate in this fashion until none of 
the graphs have more t han /~  nodes, for some fixed 6 (0 < 6 < 1). Let D* be the 
set of all separators, i.e., the union of all the D's. We easily verify that I D*I = O(#~), 
provided that 6 is chosen large enough; for example, 6 = ~ 1-22]. In O(p log/t) time 
we can compute D* and partition the remaining nodes into subsets D1, D2, etc., 
each of size at most #2/3, such that no path of G can join two nodes in distinct 
subsets without passing through a node of D*. 

What is the utility of D* for ray-shooting? Take a vertical line passing to the 
right of all the vertices of P, and intersect it with the chords of the regions in S. 
This breaks up the line into segments, every one of which falls entirely within 
some region; to split up the line and identify the regions cut by each segment can 
be done by traversing G and checking each chord for intersection with the vertical 
line. Since the regions cut correspond to nodes of G lying on a path, sorting 
the intersections comes for free, and all the work can be done in O(#) time. We 
now claim that ray-shooting toward t3C from any point can be done in O(~fi 2/3) 
time. Our first task is to shoot within each region that is dual to a node of D*, 
using a naive algorithm which involves checking all the 0(7) edges of the region 
(and not the edges of the face, which might be much more numerous). Assume 
that the ray of light hits a point among the edges of the regions dual to the nodes 
of D*. Let R be the last region of S traversed before the first hit. To identify R 
can be done by double identification, followed by checking the local orientation 
of the hit. If R is a region dual to a node v of D*, then the starting point of the 
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ray lies in R (otherwise an earlier hit would have been detected) and we are trivially 
done. 

So, assume now that R is dual to a node v not in D*. Incidentally, note that 
the double identification needed to find R might require a binary search among 
a large collection of collinear edges. Let R' be the region incident upon the (region) 
edge containing the point of ~C actually hit by the ray-shooting: this is the region 
that we are looking for (Fig. 3.7). If R and R' are not the same then the two regions 
can be connected by a horizontal line segment that avoids all the regions dual to 
D*. It follows that the node w associated with R' can be reached by a path in G 
from v that avoids D*. Consequently, v and w both lie in the same Di. We can 
find w, and, from there, answer the ray-shooting query, by first finding Di, which 
takes constant time since we know R, and then naively checking all the regions 
dual to nodes in D~, which takes O(7/~ z/a) time. Returning to our earlier case- 
analysis, assume now that the ray of light hits no region dual to a node in D*. 
Then the ray-shooting takes place entirely within the regions dual to the nodes 
of a single D~. To find out which one, we shoot toward the vertical line and find 
which segment of the line is hit. This takes O(log ~) time by binary search. We 
can now identify the region R immediately. The remainder of the algorithm is 
unchanged. We conclude that ray-shooting can be done in O(m) time if ~t = 1, and 

Fig. 3.7 
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0(7/22/3) time if p > 1, after O(/~ log m) preprocessing. Since p = O(m/v + 1), we 
have: 

Lemma 3.6. Let C be a connected vertex-to-vertex piece of the input polygonal 
curve P and let m be its number of vertices. Let S be a normal-form v-granular 
conformal submap of  V(C). Then it is possible to preprocess S in O(m(log m)/7 + 1) 
time so that ray-shooting within S can be done in time 0(71/3m2/3). 

4. The Visibility Algorithm 

Let P be a simple nonclosed polygonal curve with n vertices Vl . . . .  , v,. By padding 
the curve with additional vertices, if necessary, we can assume that n -- 2 p + 1. 
Any subcurve of P of the form v . . . . . .  v b, where a - 1 is a multiple of 2 a and 
b - a = 2 a is called a chain in grade L Obviously, 

(i) a grade-2 chain has 2 ~ + 1 vertices, 
(ii) there are 2 p- x chains in grade 2, and 

(iii) there are p + 1 grades: 0, 1 . . . . .  p. 

We begin our work bottom-up, computing conformal submaps of granularity 
roughly m a, where m is the size of the underlying curve and fl is some small enough 
positive constant; we set fl = ~, but to make the complexity analysis more explicit 
we leave fl as a parameter  in most of the calculations. We pursue the computation 
until the submap for the whole polygon has been obtained, which completes the 
up-phase. Then we reverse the process and work top-down until the submap has 
been completely refined into its full-fledged visibility map. The down-phase does 
not work by calling the visibility algorithm recursively on the regions of the top 
submap, but rather it uses data structures left behind during the top-phase (the 
submaps for the chains and their ray-shooting structures) to speed up the 
refinement process. 

4.1. The Up-Phase 

We begin with a piece of terminology: given a curve C consisting of m contiguous 
edges of P, we say that a submap of V(C) is canonical if it is 2rarl~ 
conformal, and represented in normal form. Note that a canonical submap for a 
chain in grade 2 is 2ra~Lgranular. For 2 = 0, 1 . . . . .  p, in that order, we process 
grade 2, which means: 

(i) We compute a canonical submap of V(C) for each chain C in that grade. 
(ii) We preprocess each canonical submap for ray-shooting along the lines of 

Lemma 3.6, setting y to the value 2 raa]. 

This work can be done naively for the early grades, so let us pick up the action 
at a grade 2 larger than some appropriate constant, assuming that all grades less 
than 2 have been processed already. We need the following result. 
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Lemma 4.1. Suppose that all grades less than 2 have been processed. Then, given 
any portion D of  P of  the form v . . . . .  , vb, where 2 ~- 1 < b - a < 2 ~, we can compute 
a canonical submap of  V(D) in time proportional to 2Z(log 2)2 ~(1 -fl/3+4/~2/3). 

Proof. In 0(2) time we can partition D into j < 22 chains, D a . . . .  , D i, in grades 
less than 4, with at most two chains per grade. This implies that, for each 
i = 1 . . . . .  j, a canonical submap S~ of V(Di) is available. Let 7 be the granularity 
of a canonical submap of V(D); we have 7 = 2 raal. Since the granularity of canonical 
submaps grows monotonically with the size of the underlying polygonal curve, 
we can trivially reset the granularity of each Si to 7 (Section 3.3). The time to do 
that is proportional to the total number of chords in all the S:s which, from 
Lemma 2.3, is on the order of ~O_~k<~ 2 k-[#k1, that is, 0(2 m -#)). 

Let us now merge these submaps two-by-two (D 1 with D2, D 3 with Dr etc.). 
More generally, we consider a perfectly balanced binary tree whose leaves are in 
bijection with the D:s and we merge submaps bottom-up by following the tree 
pattern. Application of Lemma 3.5 results in a canonical submap of V(D) provided, 
of course, that the required oracles are available. But are they? Notice that during 
any merge any arc a in either of the two input submaps consists of at most 7 
edges. Therefore, any subarc a' ~_ a can be subdivided into a constant number of 
contiguous pieces (with no double-backing) whose corresponding portions of P 
consist of single line segments (at most two of them) and vertex-to-vertex pieces 
of P, each with at most 2 taxi edges. Each of these pieces can be partitioned into a 
collection of O(4) chains in grades at most [f12]. Our work at previous grades 
ensures that we have ray-shooting structures for the canonical submaps associated 
with these chains. Thus, to shoot a ray toward ~', we shoot toward each of the 
O(4) subarcs of its decomposition and determine the closest hit (if any). Shooting 
toward a single-edge subarc is trivial. Shooting toward any other subarc makes 
use of the shooting structure of a canonical submap for a chain in grade # _< [f12]. 
Assuming that [f12] < 2 (which is true for 2 large enough) all these shooting 
structures have been computed and therefore, by Lemma 3.6, ray-shooting can be 
done in time 0(2 r#"v3+ 2,/3), which is 0(2 a2~/a + 2a~/3). Since there are O(4) subarcs, 
it follows that the ray-shooting oracle can be implemented so that 

f(7) = 22#2a/3 + 2fl~./3. 

As we mentioned, the subarc ~' is decomposed into at most two single-edge pieces, 
along with 0(2) pieces for which we have conformal submaps of granularity at 
most 2 f#T#xn. We verify that all the requirements of the arc-cutting oracle are 
satisfied by this decomposition, so that we can set 

and 

g(~) = o (~ )  

h(7) _< 2 r#rBa11. 
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To appreciate the connection between the left- and right-hand sides of these 
relations, recall that ~/and 2 are related by the identity 7 = 2~#zl. By Lemma 3.5, 
if a merge takes input curves with a total of m vertices, then the time to carry it 
out is at most proportional to 

3.2(m/2#~)2 ~/3+ 2#x/3(2#z't + log m). 

There are O(log 2) levels of merging to be performed, each involving a total of 
b - a _< 2 a edges, therefore the time to merge the submaps for all the Di's into one 
is at most (up to within a constant factor) 

22(1og 2)2 x-oz/3 +4/~2A/3. 

Since the initial cost of resetting the granularity is only 0(2 atl-p)), the lemma 
follows readily. []  

Let us now turn to the processing of grade 3.. Lemma 4.1 can be called upon 
to compute a canonical submap of the visibility map of each chain in grade 2. 
Preprocessing each chain for ray-shooting is done by using Lemma 3.6. Since there 
are (n - 1)/24 chains in grade 2, we conclude that processing grade 2 requires time 
at most proportional to 

n3./(log 2)2~4a/3-1/3) + n3.2-a~. 

From our choice of/3 = �89 it follows that preprocessing grade 3. takes O(n2 -a/76) 
time, therefore processing all p + 1 grades, and thereby completing the up-phase, 
takes linear time. 

4.2. The Down-Phase 

Now that we have canonical submaps for each chain in each grade, along with 
their oracle structures and tree decompositions, we are ready to refine the 
canonical submap of V(P). This is done incrementally by going down the tree. 
The following lemma provides the key to the algorithm: 

Lemma 4.2. Let 2 be any positive grade and let C be an arbitrary chain in any 
grade I >_ 3.. l f  a 2t#~l-granular conformal submap of V(C) is available in normal form, 
then it is possible to compute V(C) in time at most ( c -  1/3.)2 l, where c is some 
constant large enough. 

Proof. We proceed by induction on 2. Let S be the 2wXl-granular conformal 
submap of V(C). The case where 3. is a constant is trivial since the regions of S 
have bounded size, and therefore the missing chords can be provided in constant 
time per region. So, let us switch directly to the inductive case, assuming that ). 
is large enough. Let R be a region of S. Because of conformality, the union of all 
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the arcs of R can be partitioned into a constant number of single edges and 
vertex-to-vertex pieces of 0C with at most 2 I ~  edges. Applying Lemma 4.1, we 
can compute a canonical submap for each connected polygonal piece in the 
partition in time at most proportional to 

22(10g A)2pm - 11/3 + 402/3). 

Each of these submaps has granularity at most 2 f~f~n, so we can pursue the 
merging by putting together all these submaps and thus create a single normal- 
form 2rPfP~lkgranular conformal submap of V(R*), where R* is the boundary of R 
minus a vertex (to ensure that it is nonclosed). For consistency, we should regard 
R* as a standard polygonal curve and not as part of a double boundary. The 
operation requires a constant number of merges, so we can carry it out effectively 
by merging submaps two-by-two like in Lemma 4.1. 

There is a small subtlety in this last round of merges, which we should explain. 
To take a simple example, suppose that R* has two arcs and two exit chords: ~1, 
albl,  o~2, a2b2, in cyclic order. It could be that the endpoints of ~x I or ct 2 are not 
vertices of OC, so to deal with the most general case, assume that ct 1 consists of 
b2b'2, ill, a'lal and ~2 consists of bib'1, f12, a'2a2, where a'l, b'l, a~, b~ are all vertices 
of c~C (Fig. 4.1). Let S~ (resp. $2) be the canonical submap for the vertex-to-vertex 
piece of P corresponding to/31 (resp./32) and let Tx (resp. T2) be canonical submaps 
for the 3-edge polygonal curve a'lalblb' 1 (resp. a'2a2b2b'2). We obtain $1 and $2 by 
application of Lemma 4.1, while T1 and T 2 are computed directly (tilting the edges 
alb I and a2b2 symbolically to keep the merging algorithm from complaining later). 

~ 

Fig. 4.1 
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We are now ready to merge S~ with T 1, then merge the resulting submap with $2, 
and finally merge the result with T 2. Note that we treat the edges alb 1 and a2b2 
as part of the input curve although they are not part of P. As a result, ceasing 
(temporarily) to be chords, these edges cannot be removed during the merges. 
Since we add at most a constant number of new edges to the input curve, all the 
oracle machinery needed for the merges is still available, i.e., the new edges create 
only constant-time multiplicative overhead. Although the final submap is con- 
formal it might no longer be so if we now reinterpret alb~ and a2b 2 as chords, 
which we do once the last round of merges is completed. To remedy this we apply 
the conformality-restoring procedure of Section 3.2 to each region that might have 
more than four chords with this new interpretation. Again, it is immediate to see 
that all the required oracles are still available. 

The time taken by this last round of merges is dominated by the cost of the 
earlier merges, so computing the 2roraalkgranular conformal submap of all the 
V(R*)'s takes time at most proportional to 

2t22(log 2)2a~a(4#/3- 1/3) 

We can now extract the relevant information, i.e., the exit chords falling entirely 
within each region R. This involves checking the exit chords of the computed 
submap of V(R*) and keeping only those both of whose endpoints lie on the arcs 
(in the double boundary sense) of the region R. This leads to a new map S* of 
V(C) which is a refinement of S: all its arcs originate from the previous merges, 
therefore S* is a 2rara~ll-semigranular conformal submap of V(C). We can only 
speak of semigranularity because some of the chords connecting the R*'s might 
be removable now. We can check each of the exit chords directly, which as we 
saw in Section 3.3, takes a total amount of time linear in the number of exit chords 
in S*. 

Now that we have a 2rarPall-granular conformal submap of V(C) at our disposal 
we observe that [f12] < 2 - 1  for 2 large enough, so that we can apply the 
induction hypothesis and derive V(C) in time at most ( c -  1/(2 - 1))2k Putting 
everything together, the total running time for the construction of V(C) is at most 

1 )2  l a2t22(log 2)2#~(4a/3 -1/3) + c 2 - 1 

for some constant a > 0. With the setting fl = �89 this is no more than 

a2t22(log 2)2 -;`/375 + (c 2 

for 2 large enough. [] 

During the up-phase we built a normal-form 2rPpl-granular conformal submap 
of V(P) in linear time. By Lemma 4.2, therefore, V(P) can be obtained also in 
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linear time. As demonstrated in [6] and [11], a triangulation can be easily derived 
from the visibility map in linear time, so our main goal has been reached. 

Theorem 4.3. It  is possible to compute the visibility map of  a simple polygonal 
curve, and, hence, a triangulation of  a simple polygon, in linear time. 

5. Some Applications and Open Problems 

There are many uses for a fast triangulation algorithm. We mention only two of 
them and refer the reader to [1], [13], [14], [16], [20], [24], [26], and [28] for 
some pointers to other applications. Kirkpatrick [19] and Edelsbrunner et al. [9] 
have given optimal planar point-location algorithms which require linear pre- 
processing time provided that the planar subdivision has triangulated or monotone 
faces. With our algorithm the preprocessing can be made linear as long as the 
graph is connected. 

The second application follows from the observation that the triangulation 
algorithm can be adapted to check whether a polygonal curve is simple. We briefly 
outline the method. We begin by computing the visibility map. In all likelihood 
the program will crash if the polygonal curve is not simple. But if it does not, then 
we are handed over a would-be visibility map with its corresponding visibility 
tree. In linear time we can verify that the map is locally sound by checking that 
all regions and adjacencies are topologically and geometrically satisfactory. If the 
curve has a self-intersection p, then two regions must strictly overlap around that 
point, but this can be shown to contradict the local soundness of the map. Indeed, 
draw a line connecting p to any point q that provably belongs to only one region 
(if an arbitrary choice of q does not work, then obviously the curve is not simple). 
By a continuity argument, the segment pq must cross an edge at a point where 
the number of overlapping regions differs locally around that point. But, occurring 
on an edge, this must be detected by the local tests. So, to summarize, a linear 
number of local geometric tests suffice for testing simplicity, once the output of 
the visibility algorithm is available. 

From this we easily derive a new result: testing whether two simple polygons 
intersect in linear time. The reduction of this problem to simplicity-testing was 
observed by Dobkin et al. [8]. Slightly simplified, their method consists of taking 
the highest points of both polygons and shoot horizontally from the lower point 
p toward the other polygon in both directions. If there is no hit, then no 
intersection can occur. Otherwise, we can immediately infer from the local 
orientation of the hits whether p lies inside or outside the polygon. In the first 
case we conclude with a positive answer, else we connect the two polygonal 
boundaries into a single one by adding one of the connecting segments and 
duplicating it, thus reducing the problem to that of testing simplicity. 

It is interesting to notice that our algorithm can be used to perform Jordan 
sorting in linear time. This provides a completely different alternative to Hoffman 
et al.'s algorithm [18]. Recall that the problem is to sort a sequence of numbers 
al . . . . .  a,, which correspond to the intersection points of a Jordan curve with the 



522 B. Chazelle 

x-axis. Assuming that we do not know anything else about the curve, we construct 
the polygon P with vertices A~, B~, A 2, B2 . . . . .  A,, B,, where Ai = (ai, 0) and 

Bi=(a i+a~+l (_1)~ a~+l-a~ ) 
2 ' 2- ' 

with a,+l = al. It is immediate that P is simple and that its visibility map gives 
us the ai's in sorted order. (Recall that to have many vertices with the same 
y-coordinate is not a serious problem.) It is instructive to compare the two 
methods: Hoffman et al's algorithm is on-line and corresponds to an asymptotic- 
ally optimal search scheme for Jordan permutations. Our method works off-line 
and uses divide-and-conquer. It is an intriguing open question whether triangula- 
tion can be done on-line in a manner similar to [18]. Tarjan and Van Wyk's 
method (almost) falls in that category but it is not optimal. Can their algorithm 
be made optimal? More generally, is it possible to maintain the visibility map 
optimally under on-line insertion of new edges? Obviously not in an explicit 
fashion, since a new edge can cut through a linear number of diagonals, hence 
creating a quadratic blowup. Even implicitly, however, it can be trivially 
shown that identifying the order types of the visibility maps of all the prefixes of 
a simple n-vertex polygonal curve requires | log n) bits, which is bad news. Thus, 
something with less information content should be maintained by an optimal 
on-line algorithm. But what? This question might seem rhetorical in light of our 
linear-time algorithm, but the underlying issue is whether a fundamentally different 
optimal algorithm exists, in particular, one that works on-line. A close look at the 
up-phase of our visibility algorithm shows that constructing the computation tree 
in symmetric order is tantamount to inserting the edges one at a time along the 
boundary and maintaining a small collection of distinct visibility submaps. Since 
these maps provide ,only partial visibility information this can be looked at as a 
partial answer to our question. 

Also, we might wonder whether there exists a simple optimal probabilistic 
triangulation algorithm, say, one as straightforward as Clarkson et al.'s I17] or 
Seidel's [25]? Our algorithm can be modified by replacing the planar separator 
step by a randomized construction, but whether the resulting algorithm is really 
simpler is debatable. We close by mentioning what is probably the most interesting 
open question left on the subject of polygonal curves. This is the problem, 
previously posed by Tarjan and Van Wyk [-27], of computing all the self- 
intersections of a nonsimple polygon in time linear in the sum of the input and 
output sizes. 
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