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Exercise 1 (Approximation Algorithm for Milling):
Given an orthogonal polygon P and a 1 × 1 square milling tool χ, the milling problem
asks for a shortest tour T such that moving the center of χ along T covers all points in
P without touching any point outside of P .

(a) Show that there is an efficient algorithm deciding whether a given orthogonal po-
lygon can be milled, i.e., whether such a tour T exists.

(b) Assuming that such a tour T exists, provide an efficient 5/2-approximation algorithm
for the milling problem.
Hint: Use a tour covering the boundary of P and a set of horizontal strips that cover
the interior of P , combining the two using the ideas from Christofides’ algorithm
presented in the lecture.

(5+15 P.)

Exercise 2 (Minimum Weight k-Matching):
Let G = (V,E) be a given undirected graph. A k-matching M of G is a subset of the edges
of G such that every vertex is incident to exactly k edges in M . Given a non-negative edge
cost function c(e) : E → R, the minimum cost k-matching problem asks for a k-matching
M of G with minimum possible cost

∑
e∈M c(e).

The minimum weight 1-matching problem can be solved in polynomial time by some
algorithm A. Show that A can be used to solve the minimum weight k-matching problem
in polynomial time for any k.
Hint: Replace every vertex v in G by 2 deg(v)− k vertices. (20 P.)



Exercise 3 (1-2-Graph TSP):
Let G = (V,E) be an undirected complete graph with non-negative edge costs c(e) with
c(e) ∈ {1, 2} for all edges e. Provide an efficient 4/3-approximation algorithm for the TSP
on G.
Hint: Begin with a minimum cost 2-matching, which covers G by a minimum weight set
of cycles. (20 P.)
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