Algorithms Group
 Departement of Computer Science - IBR
 TU Braunschweig

Winter ' $19 / 20$

Prof. Dr. Sándor P. Fekete
Phillip Keldenich
Dominik Krupke

Approximation Algorithms Exercise 3

27. November 2019

Hand in your solutions until December 11, 11:30 am. You can hand in your solutions at the beginning of the tutorial or via the homework box in front of room IZ337. Please put your name on all pages.

Exercise 1 (Greedy Maximum k-Cut):
In the Maximum k-Cut Problem, we are given an unweighted graph $G=(V, E)$. Our goal is to find a partition of V into $k \geq 2$ subsets V_{1}, \ldots, V_{k} such that the number of cut edges is maximized. An edge $e=v_{i} v_{j}$ is a cut edge if v_{i} and v_{j} are in different components $V_{k} \neq V_{\ell}$ of our partition.
Show that there is a simple greedy algorithm achieving an approximation factor of $1-\frac{1}{k}$. Is this approximation factor tight?

Exercise 2 (Maximum Directed Cut):

In the Maximum Directed Cut Problem, we are given a directed graph $G=(V, E)$ with non-negative edge weights $w: E \rightarrow \mathbb{R}$. The goal is to find a maximum directed cut, i.e., a set $S \subset V$ such that the weight of the outgoing edges of S, i.e.,

$$
\sum_{s \in S, t \notin S, s t \in E} w(s t)
$$

is maximized. Give a $\frac{1}{4}$-approximation algorithm for this problem.

Exercise 3 (Graph Coloring):

In the Graph Coloring Problem, we are given an undirected graph $G=(V, E)$. Our goal is to find a k-coloring $c: V \rightarrow\{1, \ldots, k\}$ of G 's vertices such that no two adjacent vertices have the same color, i.e., $c(v) \neq c(w)$ if $v w \in E$; we want to minimize the number of colors k.
a) Let Δ be the maximum degree of a vertex in G. Give a greedy algorithm coloring G with $\Delta+1$ colors.
b) Let G be 3 -colorable. Give an algorithm coloring G with $\mathcal{O}(\sqrt{n})$ colors.

Hint: Let $N(v)$ be the (open) neighborhood of a vertex, i.e., all vertices adjacent to v (not including v itself). If G is 3-colorable, the induced subgraph $G[N(v)]$ is bipartite. Use this to remove all vertices of degree $\geq \sqrt{n}$ from G, then continue with the algorithm from a).
(5+10 P.)

Remarks

- These exercises are taken from Vazirani, Vijay V. Approximation algorithms. Springer Science \& Business Media, 2013.

