Winter '19/20

Algorithms Group Departement of Computer Science - IBR TU Braunschweig

Prof. Dr. Sándor P. Fekete Phillip Keldenich Dominik Krupke

Approximation Algorithms Exercise 3

27. November 2019

Hand in your solutions until December 11, 11:30 am. You can hand in your solutions at the beginning of the tutorial or via the homework box in front of room IZ337. Please put your name on all pages.

Exercise 1 (Greedy Maximum k-Cut):

In the Maximum k-Cut Problem, we are given an unweighted graph G=(V,E). Our goal is to find a partition of V into $k \geq 2$ subsets V_1, \ldots, V_k such that the number of cut edges is maximized. An edge $e=v_iv_j$ is a cut edge if v_i and v_j are in different components $V_k \neq V_\ell$ of our partition.

Show that there is a simple greedy algorithm achieving an approximation factor of $1 - \frac{1}{k}$. Is this approximation factor tight? (15 P.)

Exercise 2 (Maximum Directed Cut):

In the Maximum Directed Cut Problem, we are given a directed graph G = (V, E) with non-negative edge weights $w : E \to \mathbb{R}$. The goal is to find a maximum directed cut, i.e., a set $S \subset V$ such that the weight of the outgoing edges of S, i.e.,

$$\sum_{s \in S, t \notin S, st \in E} w(st),$$

is maximized. Give a $\frac{1}{4}$ -approximation algorithm for this problem. (20 P.)

Exercise 3 (Graph Coloring):

In the Graph Coloring Problem, we are given an undirected graph G = (V, E). Our goal is to find a k-coloring $c: V \to \{1, \ldots, k\}$ of G's vertices such that no two adjacent vertices have the same color, i.e., $c(v) \neq c(w)$ if $vw \in E$; we want to minimize the number of colors k.

- a) Let Δ be the maximum degree of a vertex in G. Give a greedy algorithm coloring G with $\Delta + 1$ colors.
- b) Let G be 3-colorable. Give an algorithm coloring G with $\mathcal{O}(\sqrt{n})$ colors. **Hint:** Let N(v) be the (open) neighborhood of a vertex, i.e., all vertices adjacent to v (not including v itself). If G is 3-colorable, the induced subgraph G[N(v)] is bipartite. Use this to remove all vertices of degree $\geq \sqrt{n}$ from G, then continue with the algorithm from a).

(5+10 P.)

Remarks

• These exercises are taken from Vazirani, Vijay V. Approximation algorithms. Springer Science & Business Media, 2013.