Algorithms Group
 Departement of Computer Science - IBR
 TU Braunschweig

Winter ' $19 / 20$

Prof. Dr. Sándor P. Fekete
Phillip Keldenich
Dominik Krupke

Approximation Algorithms Exercise 1

30. Oktober 2019

Hand in your solutions until November 13, 11:30 am . You can hand in your solutions at the beginning of the tutorial or via the homework box in front of room IZ337. Please put your name on all pages.

Exercise 1 (Independent Set):

Let $G=(V, E)$ be a graph. A set of vertices $I \subseteq V$ is called independent if for all $u, v \in I:\{u, v\} \notin E$. The Independent Set Problem (IS) asks for an independent set of maximum cardinality.
a) Show that C is a vertex cover of G if and only if $I=V \backslash C$ is an independent set.
b) Prove that it is NP-complete to decide whether a given graph G has an independent set of a given size $k \in \mathbb{N}$.


```
Algorithm 1: Greedy 1
    Data: Graph \(G=(V, E)\)
    Result: Vertex cover \(C \subseteq V\)
    \(C \leftarrow \emptyset ;\)
    while \(E \neq \emptyset\) do
        Choose an edge \(e \in E\) and choose a vertex \(v\) of \(e\);
        \(C \leftarrow C \cup\{v\} ;\)
        \(E \leftarrow E \backslash\{e \in E \mid v \in e\} ;\)
    return C;
```

```
Algorithm 2: Greedy 2
    Data: Graph \(G=(V, E)\)
    Result: Vertex cover \(C \subseteq V\)
    \(C \leftarrow \emptyset\);
    while \(E \neq \emptyset\) do
        Choose a vertex \(v\) with maximal degree in the current graph \((V, E)\);
        \(C \leftarrow C \cup\{v\} ;\)
        \(E \leftarrow E \backslash\{e \in E \mid v \in e\} ;\)
    return C;
```


Exercise 4 (Diameter of Sets of Points):

Let P be a set of n points in \mathbb{R}^{d} (assume d is constant). The diameter Λ of P is a pair of points $p, q \in P$ that realizes the maximum distance between any two points of P. Assuming that the distance between points can be computed in $O(1)$, the diameter of P can trivially be computed in $O\left(|P|^{2}\right)$ time. However, show that in $O(|P|)$ time, we can compute a 2-approximation Λ^{\prime} of the diameter with $\Lambda^{\prime} \leq \Lambda \leq 2 \cdot \Lambda^{\prime}$.
Provide a better factor for the special case of $d=2$.
($10+5$ P.)

