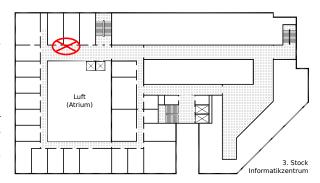
Abteilung Algorithmik Winter 2015/16 Institut für Betriebssysteme und Rechnerverbund TU Braunschweig

Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Jan-Marc Reinhardt

Algorithmen und Datenstrukturen Übung 1 vom 11.11.2015

Abgabe der Lösungen bis zum Mittwoch, den 25.11.2015 um 13:00 im Hausaufgabenrückgabeschrank.

Bitte die Blätter zusammenheften und vorne deutlich mit eigenem Namen, Matrikel- und Gruppennummer, sowie Studiengang versehen!



Aufgabe 1 (Eulertouren und Hamiltonkreise): Betrachte die Graphen P_1 und P_2 aus Abbildung 1. So viel sei verraten: Beide enthalten keinen Hamiltonkreis.

- a) Wie viele Knoten (einschließlich inzidenter Kanten) muss man mindestens aus P_2 entfernen, damit der resultierende Graph einen Hamiltonkreis enthält? Begründe deine Antwort!
- b) Enthält P_1 eine Eulertour? Falls ja, gib eine Eulertour in P_1 an. Andernfalls füge möglichst wenige Kanten zu P_1 hinzu, sodass der resultierende (einfache!) Graph P'_1 eine Eulertour enthält, und gib eine Eulertour in P'_1 an.

(5+10 Punkte)

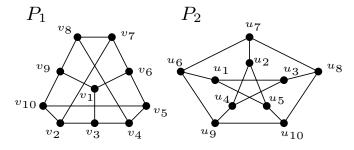


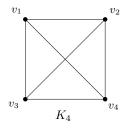
Abbildung 1: Die Graphen P_1 und P_2

Aufgabe 2 (Graphen und Einbettungen): Ein Graph heißt *planar*, falls man ihn so zeichnen kann, dass sich keine zwei Kanten kreuzen.¹

¹Formaler: falls er eine kreuzungsfreie Einbettung in die Ebene hat.

- a) Ist der Graph K_4 aus Abbildung 2 planar? Begründe deine Antwort!
- b) Der Graph K_5 aus Abbildung 2 ist bekannt dafür, nicht planar zu sein. Zeige: Entfernt man eine beliebige Kante e aus dem K_5 , so ist der resultierende Graph $K_5 \setminus \{e\}$ planar.

(5+10 Punkte)



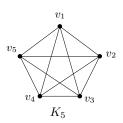


Abbildung 2: Die Graphen K_4 und K_5

Aufgabe 3 (Graphenisomorphie): Wir betrachten einen abgeschwächten Gleichheitsbegriff für Graphen, die Graphenisomorphie.² Zwei einfache Graphen $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$ sind *isomorph*, wenn es eine bijektive Abbildung $p: V_1 \to V_2$ gibt, die adjazenzerhaltend ist, d.h., $\{v_i, v_j\} \in E_1 \Leftrightarrow \{p(v_i), p(v_j)\} \in E_2$.

Die Knotengradfolge eines Graphen G = (V, E) ist eine sortierte Folge $\delta(v_{i_1}) \leq \delta(v_{i_2}) \leq \ldots \leq \delta(v_{i_n})$ mit $V = \{v_{i_1}, v_{i_2}, \ldots, v_{i_n}\}$ und |V| = n, wobei $\delta(v)$ der Grad eines Knotens v ist, d.h. die Anzahl seiner inzidenten Kanten.

- a) Zeige: Die Graphen P_1 und P_2 aus Abbildung 1 sind isomorph.
- b) Sind die Graphen G und H aus Abbildung 3 isomorph? Begründe deine Antwort!
- c) Zeige: Haben zwei Graphen G_1 und G_2 eine unterschiedliche Knotengradfolge, dann sind sie nicht isomorph.
- d) Vervollständige die Zeilen 3, 4 und 7 in Algorithmus 1, der bestimmt, ob zwei Knotengradfolgen identisch sind. Dabei kannst du auf den i-ten Knotengrad der ersten Folge mit v_i zugreifen und auf den i-ten Knotengrad der zweiten Folge mit u_i . Sind die Knotengradfolgen gleich, soll der Algorithmus true zurückgeben, sonst false. Du kannst davon ausgehen, dass beide Folgen die Länge n haben.

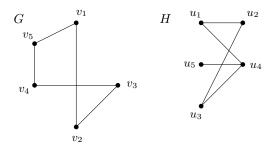


Abbildung 3: Die Graphen G und H

(10+5+10+5 Punkte)

²Auf die Definition der Graphenisomorphie wird in der 2. großen Übung am 19.11. näher eingegangen.

```
1: function GLEICHE_KNOTENGRADFOLGE([v], [u])
2: for i \leftarrow 1, \dots, n do
3: if then
4:
5: end if
6: end for
7:
8: end function
```

 ${\bf Algorithmus}$ 1: Algorithmus zum Vergleich zweier Knotengradfolgen