Abteilung Algorithmik
Institut für Betriebssysteme
und Rechnerverbund
WS 11/12
TU Braunschweig
Prof. Dr. Sándor Fekete
Dr. Christiane Schmidt

Computational Geometry Homework Set 3, 05. 12. 2011

Solutions are due Wednesday, December 21th, 2011, until 11:25 in the cupboard for handing in practice sheets. Please put your name on all pages!

Exercise 1 (Monotonicity): Show:
a) For every $n \in \mathbb{N}$ there is a polygon with at least n vertices that is monotone with respect to any line.
b) There is a polygon with 10 or more vertices that is not monotone with respect to any line.

Exercise 2 (Doubly-Connected Edge Lists (DCELs)):

Show how a DCEL can be used to visit all edges incident to a vertex v in cyclic order.
(5 points)
Exercise 3 (Triangulation):
a) Triangulate the polygon shown in Figure 1 using the algorithms from the lecture.
b) Give an algorithm that triangulates a polygon with holes in $O(n \log n)$.

Figure 1: A Polygon.
(10+10 points)

Exercise 4 (Monotonicity II.):

a) Given a simple polygon P and a line g.

Give an algorithm that tests in $O(n)$ steps whether P is monotone with respect to g.
You may assume P to be given either as a Doubly-Connected Edge List (DCEL) or simply as a list of vertices and edges.
Hint: You may assume that no edge of the polygon is perpendicular to g.
b) Given a simple polygon P.

Give an algorithm that decides in $O(n)$ steps whether there exists a line g, such that P is monotone with respect to g.
Hint: Consider the interior angles at potential saddle points.
Of course it is possible/allowed to present an algorithm that solves both problems.

$$
(10+10 \text { points })
$$

