WS 11/12

Abteilung Algorithmik Institut für Betriebssysteme und Rechnerverbund TU Braunschweig

Prof. Dr. Sándor Fekete Dr. Christiane Schmidt

Computational Geometry Homework Set 3, 05. 12. 2011

Solutions are due Wednesday, December 21th, 2011, until 11:25 in the cupboard for handing in practice sheets. Please put your name on all pages!

Exercise 1 (Monotonicity): Show:

- a) For every $n \in \mathbb{N}$ there is a polygon with at least n vertices that is monotone with respect to any line.
- b) There is a polygon with 10 or more vertices that is not monotone with respect to any line.

(5+10 points)

Exercise 2 (Doubly-Connected Edge Lists (DCELs)):

Show how a DCEL can be used to visit all edges incident to a vertex v in cyclic order.

(5 points)

Exercise 3 (Triangulation):

- a) Triangulate the polygon shown in Figure 1 using the algorithms from the lecture.
- b) Give an algorithm that triangulates a polygon with holes in $O(n \log n)$.

Figure 1: A Polygon.

(10+10 points)

Exercise 4 (Monotonicity II.):

a) Given a simple polygon P and a line g.

Give an algorithm that tests in O(n) steps whether P is monotone with respect to g.

You may assume P to be given either as a Doubly-Connected Edge List (DCEL) or simply as a list of vertices and edges.

Hint: You may assume that no edge of the polygon is perpendicular to g.

b) Given a simple polygon P.

Give an algorithm that decides in O(n) steps whether there exists a line g, such that P is monotone with respect to g.

Hint: Consider the interior angles at potential saddle points.

Of course it is possible/allowed to present an algorithm that solves both problems.

(10+10 points)