WS 11/12

Abteilung Algorithmik Institut für Betriebssysteme und Rechnerverbund TU Braunschweig

Prof. Dr. Sándor Fekete Dr. Christiane Schmidt

Computational Geometry Homework Set 2, 21. 11. 2011

Solutions are due Wednesday, December 7th, 2011, until 11:25 in the cupboard for handing in practice sheets. Please put your name on all pages!

Exercise 1 (Monotonicity and Interior Cusps):

We define an *interior cusp* of a polygon as a reflex vertex v whose adjacent vertices either both have not larger or both have not smaller y-coordinates than v. Prove the following theorem:

If a polygon P has no interior cusp, then it is monotone with respect to the y-axis.

(Remember: A polygon is monotone if it can be partitioned into two chains monotone with respect to the same line. A chain p_1, \ldots, p_k is called monotone with respect to a line L, if the projections of p_1, \ldots, p_k onto L are ordered the same as in the chain.)

(15 points)

Exercise 2 (Triangulation of monotone Polygons):

Use the algorithm of Garey, Johnson, Preparata and Tarjan to triangulate the polygon P in Figure 1. For each iteration give the stack and diagonals that are drawn. Give the final triangulation of P.

Figure 1: Polygon P.

(15 points)

Exercise 3 (Scissors Congruence):

A dissection of a polygon P cuts P into a finite number of smaller polygons. Triangulations can be viewed as a constrained form of dissections. Given a dissection of a polygon P, we can rearrange its smaller polygonal pieces to create a new polygon Q of the same area. We say two polygons Pand Q are scissors congruent if P can be cut into polygons P_1, \ldots, P_n which then can be reassembled by rotations and translations to obtain Q.

- a) Is the Greek cross from Figure 2 scissors congruent to a square?
- b) Prove: Every triangle is scissors congruent with some rectangle.
- c) Prove: Any two rectangles of the same area are scissors congruent.

Figure 2: The Greek cross.

(10+10+10 points)