Abteilung Algorithmik
Institut für Betriebssysteme
und Rechnerverbund
WS 11/12
TU Braunschweig
Prof. Dr. Sándor Fekete
Dr. Christiane Schmidt

Computational Geometry Homework Set 2, 21. 11. 2011

Solutions are due Wednesday, December 7th, 2011, until 11:25 in the cupboard for handing in practice sheets. Please put your name on all pages!

Exercise 1 (Monotonicity and Interior Cusps):
We define an interior cusp of a polygon as a reflex vertex v whose adjacent vertices either both have not larger or both have not smaller y-coordinates than v. Prove the following theorem:
If a polygon P has no interior cusp, then it is monotone with respect to the y-axis.
(Remember: A polygon is monotone if it can be partitioned into two chains monotone with respect to the same line. A chain p_{1}, \ldots, p_{k} is called monotone with respect to a line L, if the projections of p_{1}, \ldots, p_{k} onto L are ordered the same as in the chain.)

Exercise 2 (Triangulation of monotone Polygons):
Use the algorithm of Garey, Johnson, Preparata and Tarjan to triangulate the polygon P in Figure 1. For each iteration give the stack and diagonals that are drawn. Give the final triangulation of P.

Figure 1: Polygon P.
(15 points)

Exercise 3 (Scissors Congruence):

A dissection of a polygon P cuts P into a finite number of smaller polygons. Triangulations can be viewed as a constrained form of dissections.
Given a dissection of a polygon P, we can rearrange its smaller polygonal pieces to create a new polygon Q of the same area. We say two polygons P and Q are scissors congruent if P can be cut into polygons P_{1}, \ldots, P_{n} which then can be reassembled by rotations and translations to obtain Q.
a) Is the Greek cross from Figure 2 scissors congruent to a square?
b) Prove: Every triangle is scissors congruent with some rectangle.
c) Prove: Any two rectangles of the same area are scissors congruent.

Figure 2: The Greek cross.
$(10+10+10$ points $)$

