Abteilung Algorithmik
Institut für Betriebssysteme
und Rechnerverbund
WS 11/12
TU Braunschweig
Prof. Dr. Sándor Fekete
Dr. Christiane Schmidt

Computational Geometry Homework Set 1, 07. 11. 2011

Solutions are due Wednesday, November 23rd, 2011, until 11:25 in the cupboard for handing in practice sheets. Please put your name on all pages!

Exercise 1 (Number of Triangulations): Find the number of distinct triangulations for the polygon in Figure 1.

Figure 1: A polygon.
(10 points)
Exercise 2 (Number of Triangles): Prove theorem 1.5 from the lecture: Every polygon with n vertices and h holes may be triangulated. The triangulation has $n+2 h-2$ triangles.
(15 points)

Exercise 3 (Number of Reflex Vertices): Prove the following theorem: In an orthogonal polygon of n vertices, r of which are reflex, $n=2 r+4$. Advice: First, show that the sum of the interior angles of a polygon is $(n-2) \pi$. (10 points)

Exercise 4 (Third Vertex): Construct a polygon with $n=3 k$ vertices such that placing a guard at every third vertex fails to protect the gallery.
(10 points)

Exercise 5 (Exterior Point Guards): Prove the following statement: $\left\lceil\frac{n+1}{3}\right\rceil$ point guards suffice to cover the exterior of an n-vertex polygon P.
(15 points)

