Collaborative transmission in wireless sensor networks

Alternative algorithmic approaches

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

December 6, 2010

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Collaborative transmission in wireless sensor networks

Alternative algorithmic approaches

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

December 6, 2010

3/65

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Outline

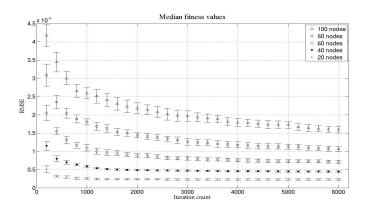
Alternative beamforming approaches

- Hierarchical clustering
- 2 Local random search
- An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Hierarchical clustering

- For feedback based distributed adaptive transmit beamforming:
 - RSS_{sum} changes linear with the network size n.
 - Bound on the synchronisation time is more than linear in n

Hierarchical clustering



$$E[T_{\mathcal{P}}] = \Theta(n \cdot k \cdot \log(n))$$

Hierarchical clustering

- Hierarchical clustering
 - Determine clusters
 - Synchronise clusters successively (with possibly increased transmit power for nodes)
 - Build and synchronise overlay-cluster of representative nodes from all clusters.
 - Nodes alter carrier phase by phase offset experienced by representative node:

$$oldsymbol{\circ} \zeta_i = \Re\left(extit{m}(t) \mathsf{RSS}_i e^{j2\pi f_c t(\gamma_i + \phi_i + \psi_i)}
ight)$$
 (before)

•
$$\zeta_i' = \Re\left(m(t) \mathsf{RSS}_i e^{j2\pi f_c t(\gamma_i' + \phi_i + \psi_i)}\right)$$
 (after)

Node h from same cluster alters carrier signal

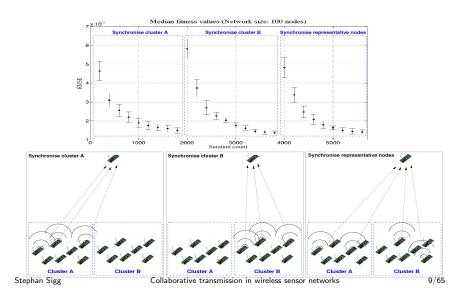
$$ullet$$
 $\zeta_h=\Re\left(m(t)\mathsf{RSS}_h e^{j2\pi f_c t(\gamma_h+\phi_h+\psi_h)}
ight)$ to

•
$$\zeta_h' = \Re\left(m(t) \mathsf{RSS}_h e^{j2\pi f_c t(\gamma_h + \phi_h + \psi_h + \gamma_i - \gamma_i')}\right)$$

Ideal conditions: All nodes should now in phase

Final synchronisation among all nodes

Hierarchical clustering



Hierarchical clustering

Potential problem: Phase noise

- Only one cluster synchronised at a time
- Due to practical properties of oscillators, phases of nodes in the inactive clusters experience phase noise and start drifting out of phase
- Sufficient synchronisation possible in the order of milliseconds

Positive:

No inter-node communication required

Open Issue:

- More than one hierarchy stage might be optimal
- for optimisation time
- for energy consumption
- Optimum hierarchy depth and cluster size derived by integer programming in time $\mathcal{O}(n^2)$

Hierarchical clustering

Determine optimum cluster size and hierarchy depth:

- Expected optimisation time:
 - $E[T_{\mathcal{P}n}] = c \cdot k \cdot n \cdot \log(n)$
- Expected energy consumption:

 $E[\mathcal{E}_{\mathcal{P}n}] = c \cdot k \cdot n \cdot \log(n) \cdot \overline{\mathcal{E}_{\mathcal{P}n}}$

Hierarchy and cluster structure that minimises these formulae optimal

Hierarchical clustering

Opt. cluster size and hierarchy depth (integer programming) :

• For a cluster size of m:

$$E[T_{\mathcal{P}n}] = E[T_{\mathcal{P}\frac{n}{m}}] \cdot \frac{n}{m} \cdot E[T_{\mathcal{P}m}]$$
$$E[\mathcal{E}_{\mathcal{P}n}] = E[\mathcal{E}_{\mathcal{P}\frac{n}{m}}] \cdot \frac{n}{m} \cdot E[\mathcal{E}_{\mathcal{P}m}].$$

Define recursion by

$$\begin{aligned} E_{\mathsf{opt}}[T_{\mathcal{P}n}] &= \min_{m} \left[E_{\mathsf{opt}}[T_{\mathcal{P}\frac{n}{m}}] \cdot \frac{n}{m} \cdot E_{\mathsf{opt}}[T_{\mathcal{P}m}] \right] \\ E_{\mathsf{opt}}[\mathcal{E}_{\mathcal{P}n}] &= \min_{m} \left[E_{\mathsf{opt}}[\mathcal{E}_{\mathcal{P}\frac{n}{m}}] \cdot \frac{n}{m} \cdot E_{\mathsf{opt}}[\mathcal{E}_{\mathcal{P}m}] \right] \end{aligned}$$

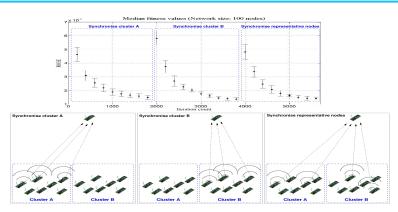
- Start of recursion (η min feasible cluster size):
 - $E_{\mathsf{opt}}[T_{\mathcal{P}\eta}]$
 - $E_{\mathsf{opt}}[\mathcal{E}_{\mathcal{P}\eta}]$

Hierarchical clustering

Opt. cluster size and hierarchy depth (integer programming):

- Time required for calculation is quadratic.
 - With a network of n nodes, at most n^2 distinct terms
 - $E_{opt}[T_{Pi}]$
 - $E_{\mathsf{opt}}[\mathcal{E}_{\mathcal{P}_i}]$
- Start calculation at
 - $E_{\text{opt}}[\mathcal{E}_{\mathcal{P}_n}]$
 - $E_{\text{opt}}[T_{\mathcal{P}\eta}]$
- All other values by table loop-up in time $\mathcal{O}(n^2)$ according to
 - $E_{\text{opt}}[T_{\mathcal{P}n}]$
 - $E_{\text{opt}}[\mathcal{E}_{\mathcal{P}n}]$ in time $\mathcal{O}(n^2)$

Hierarchical clustering



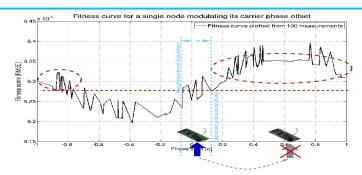
- Reduction of synchronisation time and transmission power
- Calculation of optimum cluster size and depth in $\mathcal{O}(n^2)$

Outline

Alternative beamforming approaches

- Hierarchical clustering
- 2 Local random search
- An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Local random search



- Global random search:
 - Synchronisation performance might deteriorate when the optimum is near
- With small local search space:
 - Majority of worse points excluded

An upper bound on the synchronisation performance

Assumptions:

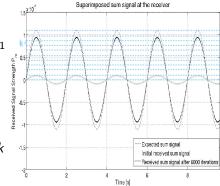
Mutation probability: n^{-1} Uniform phase alteration

Initial distance to the optimum:

 $\geq \frac{n \cdot \log(k)}{2}$ (Chernoff)

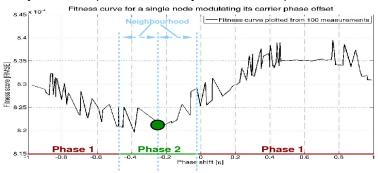
Technical assumption:

Fitness space divided in *k* slices of identical width



An upper bound on the synchronisation performance

Analysis in two phases for the synchronisation process



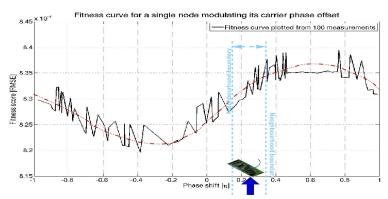
Phase 1: Optimum outside search neighbourhood for at least one node

Phase 2: Optimum within search neighbourhood for all nodes

An upper bound on the synchronisation performance

Phase 1: Optimum is outside the neighbourhood

• Reach search point with improved fitness: $\geq \frac{1}{2}$



An upper bound on the synchronisation performance

When *i* signals synchronised:

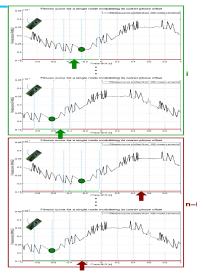
- Improve n-i non-optimal signals
- i already optimal ones unchanged:

$$= \frac{(n-i) \cdot \frac{1}{n} \cdot \frac{1}{2} \cdot \left(1 - \frac{1}{n}\right)^{i}}{\frac{n-i}{2n} \cdot \left(1 - \frac{1}{n}\right)^{i}}$$

• since $(1 - \frac{1}{n})^n < e < (1 - \frac{1}{n})^{n-1}$

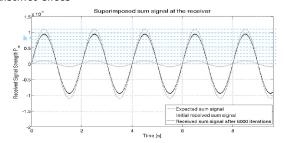
$$s_i \geq \frac{n-i}{2en}$$

• Expected number of mutations to increase fitness bounded by s_i^{-1} .



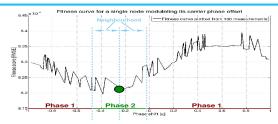
An upper bound on the synchronisation performance

- Time until optimum is within the neighbourhood?
 - Constant time to leave slice
 - k distinct slices



$$E[T_{\mathcal{P}}] \le c \cdot \sum_{i=0}^{k} \frac{2en}{n-i} = 2cen \cdot \sum_{i=1}^{k+1} i^{-1}$$
 $< 2cen \cdot \ln(k+1) = \mathcal{O}(n \cdot \log(k))$

An upper bound on the synchronisation performance



Phase 2: Optimum within search neighbourhood

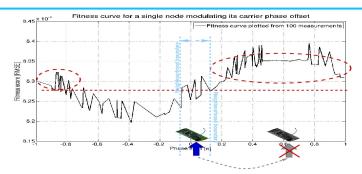
- Worst case: Increase fitness with probability $\frac{1}{N}$
- Similar to consideration above:

$$\mathcal{O}(N \cdot n \cdot \log(k))$$

Overall synchronisation time:

$$\mathcal{O}(N \cdot n \cdot \log(k))$$
.

Local random search



A lower bound on the synchronisation time:

- Method of the expected progress
- Similar to estimation for global random search
- Basically: Substitute network size n by neighbourhood size N

Local random search

A lower bound on the synchronisation time:

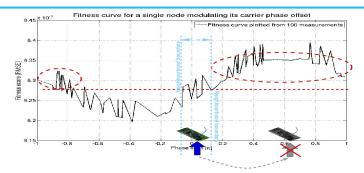
- Method of the expected progress
- Similar to estimation for global random search
- Basically: Substitute network size n by neighbourhood size N
 - Probability to alter individual bit

$$\frac{1}{N \cdot \log(k)}$$

Instead of

$$\frac{1}{n \cdot \log(k)}$$

Local random search



A lower bound on the synchronisation time:

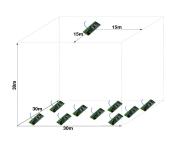
 With similar arguments as for global random search, lower bound

$$\Omega(N \cdot \log(k) \cdot \Delta)$$

Mathematical simulation environment

Impact of the node choice

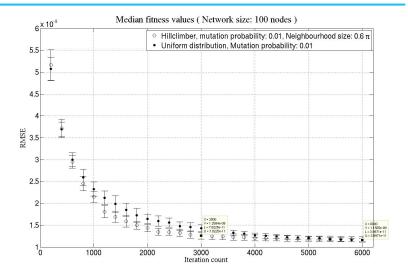
Property	Value
Node distribution area	$30m \times 30m$
Location of the receiver	(15m, 15m, 30m)
Mobility	stationary nodes
Base band frequency	$f_{base} = 2.4 \text{ GHz}$
Transmission power of nodes	$P_{tx} = 1 \text{ mW}$
Gain of the transmit antenna	$G_{tx} = 0 \text{ dB}$
Gain of the receive antenna	$G_{rx} = 0 \text{ dB}$
Iterations per simulations	6000
Identical simulation runs	10
Random noise power [46]	-103 dBm
Pathloss calculation (P_{rx})	$P_{tx} \left(\frac{\lambda}{2\pi d} \right)^2 G_{tx} G_r$



Fitness measure:

$$RMSE = \sqrt{\sum_{t=0}^{\tau} \frac{\left(\sum_{i=1}^{n} s_i + s_{noise}(i) - s^*\right)^2}{n}}.$$

Local random search



Outline

Alternative beamforming approaches

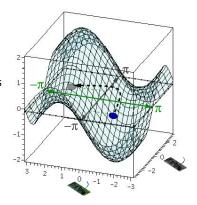
- Hierarchical clustering
- 2 Local random search
- An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Received sum signal

- Reduce the amount of randomness in the optimisation
- Improve the synchronisation performance
- Improve the synchronisation quality

Search space

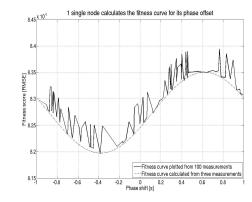
- Search space:
 - Spanned by all Configurations of carrier phase offsets γ_i
- Search point / Configuration:
 - One possible configuration of carrier phase offsets



Received sum signal

- Fitness function observed by single node
- Constant carrier phase offset for n-1 nodes
- Fitness function:

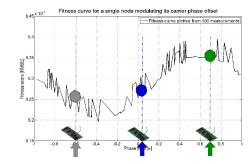
$$\mathcal{F}(\Phi_i) = A\sin(\Phi_i + \phi) + c$$



Received sum signal

Approach:

- Measure feedback at 3 points
- Solve multivariable equations
- Apply optimum phase offset calculated

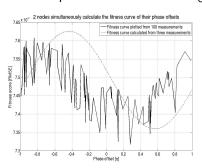


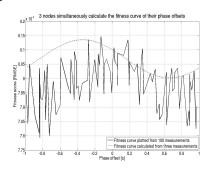
$$\mathcal{F}(\Phi_i) = A\sin(\Phi_i + \phi) + c$$

Received sum signal

Problem:

 Calculation not accurate when two or more nodes alter the phase of their transmit signals





Solution

An active node will:

- Transmit with three distinct phase offsets $\gamma_1 \neq \gamma_2 \neq \gamma_3$ and measure feedback.
- ② From these three feedback values and phase offsets, estimate feedback function and optimum phase offset γ_i^* .
- **1** Transmit a fourth time with $\gamma_4 = \gamma_i^*$.
- If the deviation is less than 1% save γ_i^* as optimal phase offset, otherwise discard it.

A passive node will:

• Transmit 4 times with identical phase offset γ_i .

Solution

- Node estimates the quality of the function estimation itself
- Transmit with optimum phase offset and measure channel again
- When Expected fitness deviates significantly from measured fitness, discard altered phase offset
- Deviation:

1 node: $\approx 0.6\%$ 2 nodes: $\approx 1.5\%$ 3 nodes: > 3%

Synchronisation process

- Transmit with phase offsets $\gamma_1 \neq \gamma_2 \neq \gamma_3$; measure feedback
- ② Estimate feedback function and calculate γ_i^*
- Transmit with $\gamma_4 = \gamma_i^*$
- If deviation smaller 1% finished, otherwise discard γ_i^*

Received sum signal

Asymptotic synchronisation time:

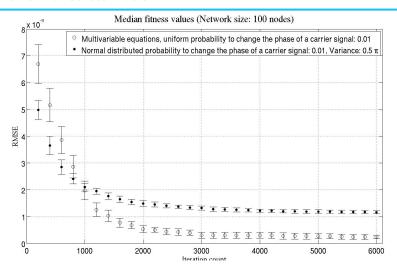
$$\mathcal{O}(n)$$

Classic approach:¹

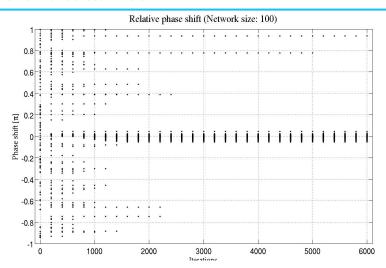
$$\Theta(n \cdot k \cdot \log(n))$$

¹Sigg, El Masri and Beigl, A sharp asymptotic bound for feedback based closed-loop distributed adaptive beamforming in wireless sensor networks (submitted to Transactions on Mobile Computing)

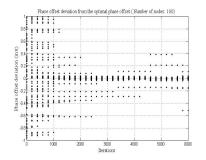
Performance estimation

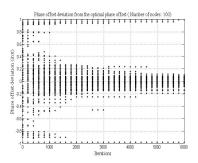


Performance estimation



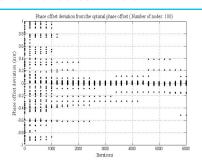
Performance estimation

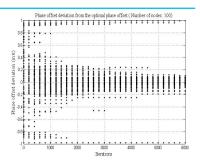




• Phase offset of distinct nodes is within $+/-0.05\pi$ for up to 99% of all nodes.

Performance estimation





- Asymptotically optimal synchronisation time
- Simulations: $\approx 12n$
- Further improvement:
 - 3 iterations per turn
 - Utilise last transmission from previous iteration

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Feedback based distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments

Outline

Environmental changes

- Hierarchical clustering
- 2 Local random search
- An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Introduction

- Velocity of nodes
- Multiple receiver nodes
- Increased population size
- Receive beamforming

Outline

Alternative beamforming approaches

- Hierarchical clustering
- 2 Local random search
- An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Velocity of nodes

Moving receiver:

- Straight line
- Random walk

Moving transmitter:

Straight line

Random walk

Velocity of nodes

Moving receiver:

- Straight line
- Random walk

Aspects:

Only one moving node

Simple case

Also applicable when all transmitters move identically

Velocity of nodes

Moving transmit nodes :

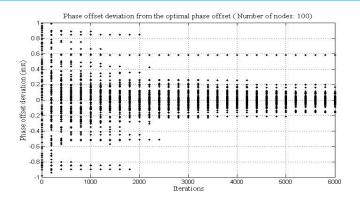
- Straight line
- Random walk

Aspects:

Multiple nodes moving

Hard case

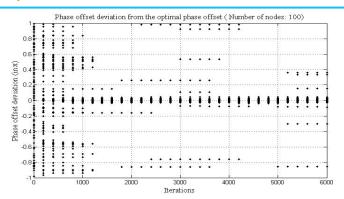
Velocity of nodes



Random walk - receiver:

Maximum velocity for classic algorithm: 5m/sec

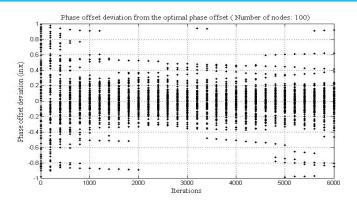
Velocity of nodes



Random walk - receiver:

 Max. velocity for Multivariable equations: 5m/sec easily supported

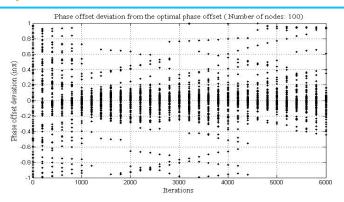
Velocity of nodes



Random walk - transmitter :

• Maximum velocity for classic algorithm: 2m/sec

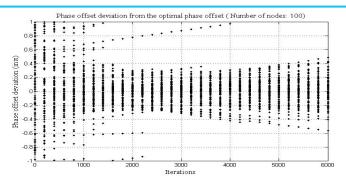
Velocity of nodes



Random walk - transmitter:

 Max. velocity for Multivariable equations: 5m/sec supported

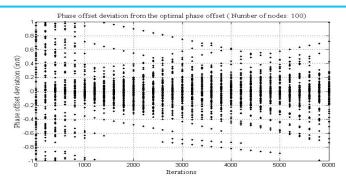
Velocity of nodes



straight line - maximum relative speed :

- Maximum velocity for classic algorithm: 30m/sec
- Regardless if transmitter or receiver move

Velocity of nodes



straight line - maximum relative speed :

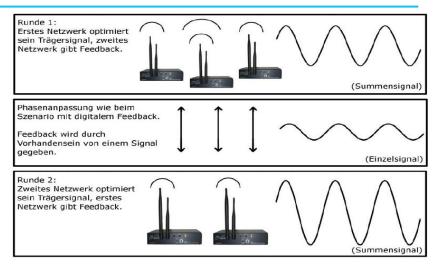
- Maximum velocity for Multivariable equations algorithm: 60m/sec
- Regardless if transmitter or receiver move

Outline

Environmental changes

- Hierarchical clustering
- 2 Local random search
- An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Multiple receiver nodes



Multiple receiver nodes

3m

Knoten	n ()	n1	n2	m()	m1
Gain zur Anfangsamplitude (Median) [dB]	0,96	2,39	1,40	1,46	1,10
Gain zu einem Knoten (Median) [dB]	2,33	2,32	2,37	3,50	4,05
Anzahl letztes Feedback	5/11	3/11	3/11	8/11	7/11
Amplitude nach Synchronisation [%]	92,4	51,4	65,3	91,0	90,7

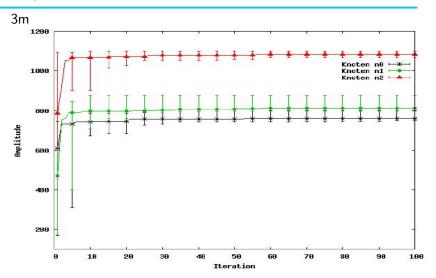
12m

Knoten	n_0	n1	n2	m()	m1
Gain zur Anfangsamplitude (Median) [dB]	1,24	0,63	1,39	2,06	1,47
Gain zu einem Knoten (Median) [dB]	2,53	1,09	2,00	2,74	4,18
Anzahl letztes Feedback	2/10	4/10	4/10	5/10	5/10
Amplitude nach Synchronisation [%]	57,1	92,0	86,5	86,4	86,6

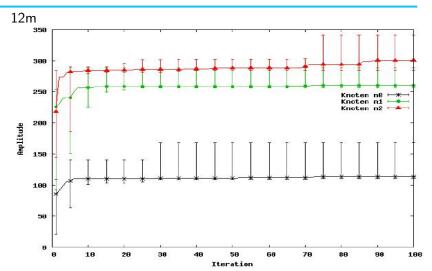
24m

Knoten	n()	n1	n2	m()	m1
Gain zur Anfangsamplitude (Median) [dB]	1,12	2,33	2,76	3,61	1,67
Gain zu einem Knoten (Median) [dB]	1,2	2,54	2,03	5,15	3,76
Anzahl letztes Feedback	4/5	0/5	1/5	4/5	3/5
Amplitude nach Synchronisation [%]	94,2	8(),()	61,4	95,8	97,9

Multiple receiver nodes



Multiple receiver nodes



Multiple receiver nodes

Multiple receiver nodes – issues :

- Only binary feedback value
 - Therefore only classic optimisation approach
- Distance between transmit and receive nodes relative to spatial diversity of nodes in one network
 - Better synchronisation when nodes in one network in spatial proximity
 - When nodes in one network communicate: No issue

Outline

Environmental changes

- Hierarchical clustering
- 2 Local random search
- An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Increased population size

Increased population size - Discussion:

How to achieve population size greater than one?

- Separate transmit times
- WCDMA
- Distinct frequencies simultaneously

Only separate transmit times feasible for WSN

More time for each iteration

- Initial solution: Random search
- Not clear if performance improvement possible by crossover

Outline

Environmental changes

- Hierarchical clustering
- 2 Local random search
- An asymptotically optimal algorithm
- Environmental changes
 - Velocity of nodes
 - Multiple receiver nodes
 - Increased population size
 - Receive beamforming

Receive beamforming

Receive beamforming - Discussion:

- Transmit node transmits only once
- Receiver nodes combine received signal fragments in the network
- Tradeoff:
 - Transmission power for in-network communication
 - Transmission over several iterations with receiver node
- More complex computation of transmit nodes

Questions?

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Randomised search approaches
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Alternative algorithmic approaches
 - Alternative Optimisation environments