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Randomised search approaches
Introduction

Randomised search approaches

Combine methods that utilise random variables to guide
search for optimum search point
Not necessarily designed for a specific problem
Find search point that is considered the optimum regarding a
scoring function (fitness function)
Problem specific modelling of search space not necessarily
required
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Randomised search approaches
Introduction

Classical approach to solve an optimisation problem:
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Randomised search approaches
Introduction

Random approach to solve an optimisation problem:
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Randomised search approaches
Introduction

We distinguish between

A search space (Genotype)
A feature space (Phenotype)
A Genotype-Phenotype-Mapping
A scoring function (Fitness function)

Example

Genotype (binary string): 0110010
Phenotype (Real valued): 12
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Randomised search approaches
Black-box optimisation

Black-box optimisation:

Genotype-Phenotype-Mapping not known
Method to obtain Phenotype-outputs from Genotype-inputs
(the black box) available
Algorithm iteratively requests Phenotype outputs for Genotype
values
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Randomised search approaches
Optimisation problem

Problem formulation either maximisation or minimisation
(here max):

Problem to solve: maxx{F (x)|x ∈ Rn}
Column vector at optimum position required:
(X ∗1 , x

∗
2 , . . . , x

∗
n )T

As well as Optimum value F ∗ = F (x∗)
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Randomised search approaches
Optima

Optima

Let f : G → P be a real valued fitness function. x∗ ∈ G is an
optimum point of for ε > 0 with |x − x∗| < ε the inequality
f (x∗) ≥ f (x) (f (x∗) ≤ f (x)) holds.

Global optimum An optimum point x∗ is called global optimum, if
f (x∗) ≥ f (x) (f (x∗) ≤ f (x)) for all x ∈ G .

Local optimum An optimum point which is not globally optimal is
called local optimum.
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Randomised search approaches
Various types of optima

Various types of minima (maxima) can be distinguished
between:

Local
Global
Weak
Strong
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Randomised search approaches
Local maximum

Local maximum

For a local maximum the following conditions hold:

F (x∗) ≥ F (x)

0 ≤ ||x − x∗|| =

√√√√ n∑
i=1

(xi − x∗i )2 ≤ ε

x ∈ Rn
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Randomised search approaches
Local maximum

The Maximum is called strong, if F (x∗) < F (x) for x 6= x∗.

If the objective function has only one maximum it is called
unimodal

The highest local maximum of an objective function is called
the global maximum.
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Randomised search approaches
One-dimensional search problem

Local maxima/minima: a, b, d, e, f, g, h

Saddle point: c

Weak local maxima: d, e

Global maximum: g

Stephan Sigg Collaborative transmission in wireless sensor networks 15/131



Randomised search approaches
Multi-dimensional search problem
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Randomised search approaches
Multi-dimensional search problem

The curse of dimensionality

When the dimension of the search space increases linearly,
The number of possible solutions increases exponentially.
A sequential program has therefore a WC-Runtime of O(cn)

The constant c depends on the accuracy required
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Randomised search approaches
Multi-dimensional search problem

Pareto optimality

Let −→x = (x1, . . . , xn)T be a search point in a multi-dimensional
search problem and Fi : R→ R,∀i the objective functions for the
respective dimensions. A search point −→x is said to be Pareto

optimal with respect to a set of search points
−→
x ′ ∈ S , if for at

least one objective function Fi the equation
Fi (xi ) > Fi (x

′
i ), ∀x ′ ∈ S holds.
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Randomised search approaches
Multimodality and unimodality

Multimodality and Unimodality

A function f is called unimodal when only one global optimum
exists. Otherwise it is called multimodal.
An unimodal or multimodal function f with no local optima is
called strong multimodal (unimodal). Otherwise it is called weak
multimodal (unimodal).

Stephan Sigg Collaborative transmission in wireless sensor networks 19/131



Randomised search approaches
Local random search heuristics

Hillclimber

Metropolis algorithm

Simulated annealing

Tabu search
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Local random search heuristics
Local random search

Local random search strategies

Intuitive way to climb a mountain (by a sightless climber)

Most frequently applied in engineering design

Assumptions to state extrema are not fulfilled (e.g.
unfriendly/unknown conditions)
Difficulties to carry out necessary differentiations
Solution to the equations describing all conditions does not
always lead to optimum point in the search space
Equations to describe conditions are not immediately solvable
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Local random search heuristics
Local random search

Local random search

For every point x in a search space S , a non-empty neighbourhood
N(x) ⊆ S is defined. The local random search approach iteratively
draws one sample x ′ ∈ N(x). When the fitness of the new value is
better than the old one (F (x) < F (x ′)), the new value is utilised
as the new best search point. Otherwise it is discarded.
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Local random search heuristics
Local random search

In principle, N(x) = x or N(x) = S is valid, but the original
idea is that N(x) is a relatively small set of search points.

The points x ′ ∈ N(x) are expected to be nearer to x than
those points x ′′ 6∈ N(x)

Typically, x ∈ N(x)
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Local random search heuristics
Local random search

Example: S = {0, 1}n and Nd (x) are all points y with
Hamming distance smaller than d (H(x , y) ≤ d)

|Nd (x)| =

(
n
d

)
+

(
n

d − 1

)
+ · · ·+

(
n
1

)
+

(
n
0

)

For constant d we obtain: |Nd (x)| = Θ(nd )� |S | = 2n
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Local random search heuristics
Local random search

Local search belongs to the class of hill climbing search
methods since the next search point is never chosen to
decrease the fitness function.

For deterministic local search:

x ′ = maxχ(N(x))
This implies that always the highest slope is propagated
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Local random search heuristics
Local random search

Problems with local search heuristics:

When neighbourhood too small, easy conversion to local
optima
When neighbourhood too big, method approximates random
search
Therefore: Beneficial to change neighbourhood radius during
optimisation

Initially, big neighbourhood to allow huge steps
Later, decrease neighbourhood size
Challenging: Not to decrease neighbourhood size too fast
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Local random search heuristics
Local random search

Alternative to avoid local optima: Multistart strategies

Local search approach applied t times on the problem domain
Probability amplification results in respectable search result
also when single success probability is low.

Assume a success probability of δ > 0 for one iteration of the
algorithm
When the algorithm is applied t times, the overall probability
of success is 1− (1− δ)t

Small polynomial success probabilities are enough for the
multistart strategy to obtain very good overall success
probabilities
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Local random search heuristics
Metropolis algorithms

For the local random search heuristic, only multistart
strategies are able to avoid the termination in local optima.

A Metropolis approach allows to accept also new search
points that decrease the fitness value

If F (x ′) < F (x) the search point x ′ is discarded only with
probability

1− 1

e(F (x)−F (x ′))/T
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Local random search heuristics
Metropolis algorithms

Probability to accept search points with decreasing fitness
value dependent on degree by which fitness decreased

For T → 0 the Metropolis approach becomes a random search

For T →∞ the Metropolis approach becomes an
uncontrolled local search

Choice of T impacts the performance

Knowledge on the problem or the fitness function might
impact the choice of T
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Local random search heuristics
Simulated annealing

Choice of optimal T not easy: Change parameter in the pace
of the optimisation

Initially: T should allow to ’jump’ to other regions of the
search space with increased fitness value

Finally: Process should gradually ’freeze’ until local search
approach propagates the local optimum in the neighbourhood.

Name chosen in analogy to natural cooling processes in the
creation of crystals

In this process, the temperature is gradually decreased so that
Molecules that could move freely at the beginning are slowly
put into their place
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Local random search heuristics
Simulated annealing

Optimal choice of the cooling schedule for T?

Non-Adaptive approaches

Fixed temperature function T (t)
Every few steps the original value is multiplied with a factor
α < 1

Adaptive approaches

React on the optimisation process
Probably dependent on the frequency of accepted iterations.
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Random search heuristics
Simulated annealing

Problem: No natural problem known for which it has been
proved that Simulated Annealing is sufficiently more effective
than the Metropolis algorithm with optimum stationary
temperature.

However, artificially constructed problems exist, for which it
could be shown that Simulated Annealing is superior to the
Metropolis algorithm
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Random search heuristics
Tabu search

The algorithms discussed so far only store the actual search
point

For Simulated Annealing and the Metropolis algorithm, also
the search point with the best fitness value achieved so far is
stored typically.

However, knowledge about all other points is typically lost

The algorithms might therefore access suboptimal points in
the search space several times

This increases the optimisation time
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Random search heuristics
Tabu search

Tabu-search approaches also store a list of search points that
have recently been accessed.

Due to memory restrictions the list is typically of finite length

When the size of the list is as least of the size of the
neighbourhood N(x) the method can terminate when the
best point in the neighbourhood has been found.
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Evolutionary algorithms
Introduction

Several researchers have studied the use of evolutionary
approaches for optimisation purposes

To-date, evolutionary algorithms combine these different
approaches so that no clear distinction can be made

An overview on various approaches is given in the following
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Evolutionary algorithms
Introduction
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Evolutionary algorithms
Genetic algorithms

Proposed by John Holland 1

Binary discrete search spaces: {0, 1}n

Fitnessproportional selection

For m individuals x1, . . . , xm the probability to choose xi is
f (xi )

f (x1)+···+f (xm) .

Main evolution operator is crossover

Originally One-point crossover

The main goal was not optimisation but the adaptation of an
environment

1
J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.

Stephan Sigg Collaborative transmission in wireless sensor networks 38/131



Evolutionary algorithms
Genetic algorithms

The hope associated with genetic algorithms was that they
are able to solve some functions especially well

Separable function

A function is called separable, if the input variables can be divided
into disjoint sets X1, . . . ,Xk with f (x) = f1(X1) + · · ·+ fk (Xk )

Since genetic algorithms utilise crossover, it was expected
that they are therefore well suited to quickly find the
optimum on separable functions
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Evolutionary algorithms
Genetic algorithms

Royal road functions

k blocks of variables of length l are formed. On each block Xl the
identical function fl is implemented with

fl (Xl ) =

{
1 All variables in Xl equal 1
0 else.

(1)

It was shown that genetic algorithms do NOT perform well on
these functions.2

The reason is that it is highly unlikely to perform crossover
exactly at the border of the variable blocks.

It is better to optimise the single blocks on their own
separately by mutation.

2
T. Jansen and I. Wegener, Real royal road functions – where crossover provably is essential, Discrete applied

mathematics, Vol. 149, Issue 1-3, 2005.
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Evolutionary algorithms
Evolution strategies

Proposed by Bienert, Rechenberg and Schwefel3 4

At first only steady search spaces as Rn

No Crossover

Only mutation

First mutation operator: Each component xi is replaced by
xi + σZi (Zi normally distributed, σ2 Variance)

3
I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen

Evolution, 1973.
4

H.P. Schwefel, Evolution and optimum seeking, 1993
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Evolutionary algorithms
Evolution strategies

1/5 rule

After 10n iterations, the variance is adopted every n iterations.
When the number of accepted mutations in the last 10n steps is
greater than 1/5, σ is divided by 0.85 and else multiplied by 0.85.

This heuristic is based on an analysis of the fitness function
x2

1 , . . . , x
2
n – the sphere model.
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Evolutionary algorithms
Evolutionary programming

The approach was proposed by Lawrence J. Fogel56

Various similarities to evolution strategies

Search Space: Space of deterministic finite automata that
well adapt to their environment.

5
L.J. Fogel, Autonomous automata, Industrial Research, Vol. 4, 1962.

6
L.J. Fogel Biotechnology: Concepts and Applications, Prentice-Hall, 1963
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Evolutionary algorithms
Genetic programming

Proposed by John Koza7

Search space: Syntactically correct programs

Crossover more important than mutation

7
John Koza Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT

Press, 1992
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Evolutionary algorithms
Hybrid approaches

Since evolutionary approaches are typically slow to initially
find a search point with a reasonable fitness value,

Approaches are combined with fast heuristics that initially
search for a good starting point.

Afterwards the evolutionary approach is applied
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Evolutionary algorithms
Modules
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Evolutionary algorithms
Modules

Initialisation

Initialise µ individuals from the search
space S

Typically uniformly at random

Typical search spaces: S = Rn or
S = Bn

Achieve sufficient coverage:

Distance measure d
distance ≥ d

Improve optimisation time and quality
of solution:

fast heuristics for individual
population
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Evolutionary algorithms
Modules

Fitness weighting of the population

Individuals of population weighted for
their fitness value.

Fitness function f : S → R

Monotonous function
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Evolutionary algorithms
Modules

Selection for reproduction

Dependent on fitness values reached
by individuals

individuals chosen to produce offspring
population

Intuition:

Individuals with good fitness value:
Higher probability to produce
high-rated individuals for offspring
population
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Evolutionary algorithms
Modules

Variation

Offspring population created by
mutation and/or crossover.

Mutation is typically local search
operator

Crossover allows to find search points
in currently not populated regions

Adaptive implementations possible
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Evolutionary algorithms
Modules

Mutation

Produces individuals that differ only slightly from the
parent-individuals.

One parent individual produces one offspring individual

Mutation operators differ between search spaces.
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Evolutionary algorithms
Modules

Crossover

Crossover is a variation technique that produces one or more
offspring individuals from two or more parent individuals
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Evolutionary algorithms
Modules

All newly generated offspring
individuals are weighted by a fitness
function f .

Structure of f impacts performance of
random search approach

Weak multimodal vs. strong
multimodal
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Evolutionary algorithms
Modules

Selection for substitution

Population size increased due to
variation

Reduce population size to µ

Typically: Individuals with higher
fitness values more probable
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Evolutionary algorithms
Modules

+ and , strageties

(µ+ λ) strategies: Offspring population chosen from µ old
individuals ’+’ λ offspring individuals

(µ, λ) strategies: µ individuals drawn from λ offspring individuals
while µ old individuals are discarded

Comma-strageties try to avoid local optima
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Evolutionary algorithms
Modules

Since global optimum not known, stop
criteria required
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Restrictions of evolutionary approaches
The No-free-lunch theorem

In the early days of evolutionary algorithm it has been argued
that

Problem specific algorithms are better than evolutionary
algorithms on a very small subset of problems
Evolutionary algorithms perform better on average over all
problems

Therefore, evolutionary algorithms have been proposed as a
good choice for a general purpose optimisation scheme
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Restrictions of evolutionary approaches
The No-free-lunch theorem
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Restrictions of evolutionary approaches
The No-free-lunch theorem

Can an algorithm be suited for ’all’ problems?

Distinct coding of the search space
Various fitness functions

What does ’all problems’ mean?

For all possible representations and sizes of the search space
All possible fitness functions on the feature space
For a given search space and feature space, all possible fitness
functions
Every single point in the search space is the optimum point in
several of these problems

Can one algorithm be better on average than another
algorithm on ’all’ problems?
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Restrictions of evolutionary approaches
The No-free-lunch theorem

To understand this scenario, Wolpert and Macready
formalised the assertion8

Assumptions:

The set of all functions f : S →W considered is given by F
S and W are finite (as every computation on physical
computers can only have finite resources)
The fitness function is evaluated only once for each search
point
A(f ) is the number of search points requested until the
optimum is found

8
D.H. Wolpert and W.G. Macready, No Free Lunch Theorems for Optimisation, IEEE Transactions on

Evolutionary Computation 1, 67, 1997.

Stephan Sigg Collaborative transmission in wireless sensor networks 61/131



Restrictions of evolutionary approaches
The No-free-lunch theorem

No free lunch theorem

Assume that the average performance of an algorithm in the No
Free Lunch Scenario for S and W is given by AS,W , the average
over all A(f ), f ∈ F . Given two algorithms A and A′, we obtain
AS ,W = A′S,W

This means that two arbitrary algorithms perform equally well
on average on all problems
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Restrictions of evolutionary approaches
The No-free-lunch theorem

Proof of the No Free Lunch Theorem

Proof by induction over s := |S |.
W.l.o.g.: W = {1, . . . ,N}
We consider sets Fs,i ,N of all functions f on a search space of
non-visited search points of size s with at least one x with f (x) > i
Observe that for every function f and every permutation π also fπ
belongs to Fs,i ,N

Stephan Sigg Collaborative transmission in wireless sensor networks 63/131



Restrictions of evolutionary approaches
The No-free-lunch theorem

Proof of the No Free Lunch Theorem

Induction start: s = 1
Every algorithm has to choose the single optimum search point
with its first request.
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Restrictions of evolutionary approaches
The No-free-lunch theorem

Proof of the No Free Lunch Theorem

Induction: s − 1→ s
We define a function a : S → N so that for every x ∈ S the share
of functions with f (x) = j is exactly a(j).
This is independent of x , since all permutations fπ of a function f
also belong to Fs,i ,N ,
a(j) is therefore the probability to choose a search point with
fitness value j – Independent of the concrete algorithm A
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Restrictions of evolutionary approaches
The No-free-lunch theorem

Proof of the No Free Lunch Theorem

Induction: s − 1→ s
With probability a(j) an algorithm A finds a search point with
fitness value j .
If j > i , the number of functions f (x) = j is equal to the number
of functions fπ(y) = j , since all permutations of f are also in Fs,i ,N .
The probability to achieve a fitness value j > i is therefore
independent of the algorithm.
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Restrictions of evolutionary approaches
The No-free-lunch theorem

Proof of the No Free Lunch Theorem

Induction: s − 1→ s
With probability a(j) an algorithm A finds a search point with
fitness value j .
If j ≤ i , x is not optimal in scenario Fs,i ,N and the new scenario is
Fs−1,i ,N
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Restrictions of evolutionary approaches
The No-free-lunch theorem

Proof of the No Free Lunch Theorem

Summary – in other words:
For any two algorithms we can state a suitable permutation of the
Problem-function for one problem (i.e. state another problem), so
that both algorithms in each iteration request identical search
points.

Especially, since every search point could be optimal, there
are always algorithms that request the optimal search point
right from the start.
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Restrictions of evolutionary approaches
An almost-no-free-lunch-theorem

The NFL is possible, since ALL algorithms and ALL problems
are considered

It is a reasonable question if an NFL is also valid in smaller,
more realistic scenarios.

In 9 is was proved, that a similar theorem can be stated also
for more realistic problem scenarios.

9
S. Droste, T. Jansen and I. Wegener, Perhaps not a free lunch but at least a free appetizer, Proceedings of

the 1st Genetic and Evolutionary Computation Conference, 1999.
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Design aspects of evolutionary algorithms
Overview
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Design aspects of evolutionary algorithms
Search space

Design of search space has great impact on the performance
of an algorithm

Which parameters impact the fitness by what amount

Parameters might depend on each other so that not all have
to be modelled
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Design aspects of evolutionary algorithms
Search space

Often natural to represent search points as vectors

Components of the same set (R,Z,N, {0, 1})
Leads to search spaces of the type S = X n

Also vectors with components of distinct type possible
(multi-type)

Mutation and crossover operators have to respect these
properties of the search space.

Mutation and crossover often assume that neighbouring
search points are related to each other.

Important to choose a representation that well reflects the
characteristics of the problem at hand.
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Design aspects of evolutionary algorithms
Search space

Hamming cliff

The hamming distance between 2n and 2n + 1 is 1

The hamming distance between 2n and 2n − 1 is n + 1 !!!

A possible solution are Gray Codes

The hamming distance between neighbouring numbers is
always one
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Design aspects of evolutionary algorithms
Search space

Gray codes

For the numbers 0 and 1, the representation is 0 and 1

When 0, . . . , 2n − 1 are correctly represented by the bitvectors
a0, . . . aN−1 with N = 2n

Represent 0, . . . , 2n+1 − 1 by 0a0, . . . , 0aN−1, 1aN−1, . . . , 1a0

The hamming distance of neighbouring numbers is then 1

The drawback of this approach is that numbers with greater
numerical distance have also to distance 1

0a0 and 1a0 also have hamming distance 1
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Design aspects of evolutionary algorithms
Selection principles

Selection principles rule which individuals are the basis for the
next generation.

The selection is based on the fitness function

Often: Survival of the fittest
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Design aspects of evolutionary algorithms
Selection principles

Selection strategies
Try to optimise the overall fitness of individuals

Assume: Individuals with similar fitness values are neighbours
in the search space

Try to prevail diversity in the search space

Both strategies are contradictory
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Design aspects of evolutionary algorithms
Selection principles

Uniform selection

Individuals chosen uniformly at random

Deterministic selection

Deterministically choose the highest rated individuals for the
selection

Threshold selection

Candidates for offspring population drawn uniformly at random
from the t highest rated individuals
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Design aspects of evolutionary algorithms
Selection principles

Fitnessproportional selection

For population xi , . . . , xn individual xi chosen with

p(xi ) =
f (xi )

f (x1) + · · ·+ f (xn)

Draw random variable u from [0, 1] and consider xi if

p(x1) + · · ·+ p(xi−1) < u ≤ p(x1) + · · ·+ p(xi )

Frequently applied for evolutionary approaches
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Design aspects of evolutionary algorithms
Selection principles

Problems with Fitnessproportional selection

Linear modification of the fitness function (f → f + c) results
in different behaviour
When fitness values sufficiently separated, selection is nearly
deterministic
When deviation in fitness values is small relative to absolute
values, similar to uniform selection
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Design aspects of evolutionary algorithms
Selection principles

Tournament selection

A tournament size of q ∈ {1, . . . , n} is defined.

A set of q individuals is then drawn uniformly at random from
the population

The best individual from this set is considered for the
offspring population.

For q = 1 the tournament selection is a random selection

For q = n it implements a deterministic choice

Also individuals with non-optimal fitness values are considered
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Design aspects of evolutionary algorithms
Selection principles

SUS – Stochastic Universal Sampling

Uniformly distributed variable u in
[0, 1/λ)

xi ordered according to
p(xi ) = f (xi )

f (x1)+···+f (xn)

Control variable s = p(xi ) with i = 1

When u < s, select xi and increase u
by 1/λ

When u ≥ s, increase s by p(xi+1)
and i by 1.

SUS especially proposed for evolutionary algorithms

λ candidates for the offspring population are created
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Design aspects of evolutionary algorithms
Selection principles

Some selection approaches have problems with the scaling of
the fitness function (e.g. fitness proportional selection)

Also: Threshold selection
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Design aspects of evolutionary algorithms
Selection principles

Lifetime of individuals

Some strategies define a maximum lifetime of individuals
An individual is then replaced when its maximum lifetime is
reached

Most approaches implement unlimited lifetime

For comma strategies the lifetime is 1 for every individual
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Design aspects of evolutionary algorithms
Selection principles

Since a great number of distinct selection strategies exists, a
quality measure for selection strategies is desired.
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Design aspects of evolutionary algorithms
Selection principles

Quality measure – Takeover time

The takeover time is the count of generations until an algorithm
that exclusively relies on selection (no mutation or crossover) has
replaced all individuals in the population by the best individual

Very short or very long takeover times are not good

Algorithm then either not converges or converges in local
optima

But even when the takeover time is known it is still not clear
how to interpret the data
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Design aspects of evolutionary algorithms
Selection principles

Quality measure – Selection intensity

To calculate selection intensity, the variance σ2 of the fitness
values in the population and the mean fitness value is measured
before (f ) and after (fsel ) the selection.
The selection intensity is then defined as

I =
(fsel − f )

σ

Measure depends on the variance of the fitness values

Variance of fitness values dependent on selection method

Quality measure therefore depends on selection method that is
to be quantified.

Interpretation of this measure is therefore not trivial

Stephan Sigg Collaborative transmission in wireless sensor networks 86/131



Design aspects of evolutionary algorithms
Mutation

A mutation creates one offspring individual from one given
individual

Mutation operators are designed for specific search spaces

Mutation shall apply only few modifications of individuals on
average

Individuals that are closer to the original individual (regarding
the neighbourhood function) shall have a greater probability
than those that are farther away
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Design aspects of evolutionary algorithms
Mutation

Search spaces in {0, 1}n

Common mutation operator chooses mutation probability p for
each bit
To obtain a search point with hamming distance i the
probability is pi (1− p)n−i

p = 1
2 is random search

To assure that individuals that are farther away have decreased
probability to be constructed, p ≤ 1

2
The expectation on the number of bits mutated is np and the
variance is np(1− p)
Unlikely to obtain individual far away in the search space
A standard choice is p = 1

n

Stephan Sigg Collaborative transmission in wireless sensor networks 88/131



Evolutionary algorithms
Modules

Mutation operators for individuals from Bn:

Standard bit mutation

Offspring individual created bit-wise from parent individual

Every bit ’flipped’ with probability pm

Common choice: pm = 1
n

1 bit mutation

Offspring individual identical in all but one bit.

This bit chosen uniformly at random from all n bits
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Design aspects of evolutionary algorithms
Mutation

Search spaces A1 × · · · × An

A similar approach as for {0, 1} search spaces can be taken
With probability p one of |Ai | possible values is taken
uniformly at random for position i
The probability that position i is not mutated is therefore

(1− p) + p · 1

|Ai |
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Design aspects of evolutionary algorithms
Mutation

Search space Rn

For mutation purposes, a probability vector is typically added
to the actual search point
The expectation of the vector should be 0 so that no direction
is preferred
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Evolutionary algorithms
Modules

Mutation operators for Rn:

Offspring individual generated by adding a vector m ∈ Rn to
parent individual

Restricted mutation :
Vector in restricted interval: vi ∈ [−a, a]

Unrestricted mutation :
vi ∈ R

Stephan Sigg Collaborative transmission in wireless sensor networks 92/131



Design aspects of evolutionary algorithms
Mutation

Permutations on the search space
Example: TSP – k-opting

Order of places is unravelled at k positions
These k blocks are then again connected randomly

Another approach is to change the order of nodes in some
blocks
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Design aspects of evolutionary algorithms
Mutation

Mutations of syntax trees (Genetic programming)

One of four possible mutation operators is chosen uniformly at
random

Grow Choose a leaf and replace this by random
syntax tree

Shrink Choose an inner node and replace this by a leaf
with random value

Switch Choose random inner node and exchange the
position of two randomly chosen children

Cycle Choose a node at random and change its
labelling/value

It has to be taken care that the resulting syntax tree remains
syntactically correct
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Design aspects of evolutionary algorithms
Recombination

Recombination typically takes two individuals and results in
one or two offspring individuals

Also recombination of more than two individuals possible
Often generalisations of the two-individual case

Distinct recombination methods for various search spaces

Crossover parameter pc specifies the probability with which
crossover (and not mutation) is applied for one selected
individual

In some cases (e.g. binary coded numbers) not all positions in
the individual string are allowed to apply crossover on
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Design aspects of evolutionary algorithms
Recombination in {0, 1}n

One-point crossover

k-point crossover

Uniform crossover
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Evolutionary algorithms
Modules

Crossover operators for Bn:

One-point crossover: Individual x ′′ from two individuals x and x ′

according to uniformly determined crossover position:

x ′′j =

{
xj if j ≤ i
x ′j if j > i

(2)
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Evolutionary algorithms
Modules

Crossover operators for Bn:

k-point crossover: Choose k ≤ n positions uniformly at random:

x1 = x11, x1,2, . . . , x1,k1 |x1k1+1, . . . , x1k2 |x1k2+1, . . . , x1n

x2 = x21, x2,2, . . . , x2,k1 |x2k1+1, . . . , x2k2 |x2k2+1, . . . , x2n

y1 = x11, x1,2, . . . , x1,k1 |x2k1+1, . . . , x2k2 |x1k2+1, . . . , x1n

y2 = x21, x2,2, . . . , x2,k1 |x1k1+1, . . . , x1k2 |x2k2+1, . . . , x2n
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Evolutionary algorithms
Modules

Crossover operators for Bn:

Uniform crossover: Each bit chosen with uniform probability from
one of the parent individuals
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Design aspects of evolutionary algorithms
Recombination in {0, 1}n

Shuffle crossover

Parent-individuals are randomly permutated with π

Crossover operation is applied

Resulting individuals are re-permutated with π−1

For shuffle crossover, neighbouring bits have not a higher
probability to have their origin in the same parent individual
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Design aspects of evolutionary algorithms
Recombination in {0, 1}n

Random respectful recombination

All information that is identical in both parent individuals is
copied to the child-individual

For all other positions, the value is chosen uniformly at
random
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Evolutionary algorithms
Modules

Crossover operators for Rn:

1-point crossover: Analogous to 1-point crossover in Bn

k-point crossover: Analogous to k-point crossover in Bn

Uniform crossover: Analogous to uniform crossover in Bn

Arithmetic crossover: Individual I ∈ Rn weighted sum from k
parents x1, . . . , xk :

I =
k∑

i=1

αixi ; with
k∑

i=1

αi = 1
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Design aspects of evolutionary algorithms
Recombination in Rn

Alternative recombination approaches in Rn

When parent individuals have values xi and yi at position i

We can choose position i for the child as

xi + µi (yi − xi ) (3)

µi is drawn uniformly at random from [0, 1]
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Design aspects of evolutionary algorithms
Recombination for permutations

Order crossover

Variant of two-point crossover that is suitable for
permutations

Values between both crossover positions are taken from the
first individual

All missing values are filled in the order they occurred in the
second individual (beginning from the second crossover
position)

Parent 1 12 3456 789
Parent 2 84 1593 627
Child ?? 3456 ???

Child 19 3456 278
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Design aspects of evolutionary algorithms
Recombination for permutations

Partially mapped crossover (PMX)

Variant of two-point crossover that is suitable for
permutations

Values between both crossover positions are taken from the
first individual

Missing values are included at the same position the value is
found in the second individual.

If this position is already occupied by value xi , the position of
individual xi is chosen instead (and so on)

Parent 1 12 3456 789
Parent 2 84 1593 627
Child ?? 3456 ???

Child 89 3456 127
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Design aspects of evolutionary algorithms
Recombination for permutations

Order crossover II

k positions are randomly marked

All other positions are taken over from the second parent in
their occurrence order

Assume that the positions 2,4,6,8 are marked.

Parent 1 12 3456 789
Parent 2 84 1593 627
Child 82 1394 657
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Design aspects of evolutionary algorithms
Structures of populations

The structure of the population has also an impact on the
performance of the algorithm

Consideration of duplicate individuals
Diversity
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Design aspects of evolutionary algorithms
Structures of populations

Creation of niche in the population

In order to keep isolated individuals with respectable fitness
value
The number of individuals in the neighbourhood is also
considered for the fitness-based selection

f ′(x) =
f (x)

d(x ,P)
(4)
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Design aspects of evolutionary algorithms
Structures of populations

Consideration of sub-populations

Similar individuals are grouped together for optimisation
Recombination not over the whole population but between
individuals of a sub population
Idea:

Individuals of distinct sub-populations have good fitness.
By crossover operation, an individual in between is created
that has typically worse fitness value

Selection applied on the overall population
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Design aspects of evolutionary algorithms
Dynamic and adaptive approaches

As parameter choices impact the performance of an
evolutionary algorithm, adaptation of parameters during
simulation might also be beneficial

Similar approach as for the ’mutation’ probability of simulated
annealing

Feasible also for Crossover, mutation, fitness function,
population structure
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Design aspects of evolutionary algorithms
Comments on the implementation of evolutionary algorithms

Evolutionary algorithms are easy to implement when
compared to some complex specialised approaches

However, Evolutionary algorithms are computationally
complex

It is therefore beneficial to implement efficient variants to the
distinct methods
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Design aspects of evolutionary algorithms
comments on the implementation of evolutionary algorithms

Generation of pseudo random bits is important for many of
the theoretic results for evolutionary algorithms to hold

It is, however possible to reduce the number of random
experiments

It is more efficient to calculate the next flipping bit in a
mutation instead of doing the calculation for every bit
independently
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Design aspects of evolutionary algorithms
comments on the implementation of evolutionary algorithms

Most of the computational time is typically consumed by the
fitness calculation

One approach to reduce complexity is to prevent
re-calculation of fitness for individuals

Dynamic data structures that support search and insert
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Asymptotic bounds and approximation techniques
A simple upper bound

Method of the fitness based partition

Simple method to provide an upper bound on the expected
optimisation time

Applicable to random search schemes with ’plus’ selection

Exemplarily for the (1 + 1)-EA
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Asymptotic bounds and approximation techniques
A simple upper bound

Fitness-based partition

Let f : Bn → R be a fitness function. A partition
L0, L1, . . . , Lk ⊆ Bn with Bn = L0 ∪ L1 ∪ · · · ∪ Lk is a fitness based
partition of f when

1 ∀i , j ∈ {0, . . . , k},∀x ∈ Li , y ∈ Lj : (i < j ⇒ f (x) < f (y))
and

2 Lk = {x ∈ Bn|f (x) = max {f (y)|y ∈ Bn}}
hold.
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Asymptotic bounds and approximation techniques
A simple upper bound

Plus-selection:

Population follows the partitions in ascending order

How long does it take to leave one partition Li ?
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Asymptotic bounds and approximation techniques
A simple upper bound

Vacation probability

Let f : Bn → R be a fitness function and L0, . . . , Lk be a fitness
based partition of f . For a standard bit mutation probability of p
and i ∈ {0, 1, . . . , k − 1}

si := min
x∈Li

k∑
j=i+1

∑
y∈Lj

pH(x ,y)(1− p)n−H(x ,y)

defines the vacation probability of Li . In this formula, H(x , y)
describes the hamming distance from x to y .
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Asymptotic bounds and approximation techniques
A simple upper bound

Fix x for several y and sum up these probabilities

Result: probability to mutate from x to one of these y

Since for x ∈ Li summed up y of all Lj with i < j :

Result: probability to leave Li .

si : Lower bound for the probability to leave Li with one
mutation

Expected count of mutations until this happens bounded from
above by s−1

i .
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Asymptotic bounds and approximation techniques
A simple upper bound

A simple Upper bound

Let f : Bn → R be a fitness function and L0, . . . , Lk a fitness
based partition of f . The expected optimisation time of an
(1 + 1)-EA is then bounded from above by

E [TP ] ≤
k−1∑
i=0

s−1
i .
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Asymptotic bounds and approximation techniques
A simple lower bound

General bound for evolutionary algorithms

Requirements:

Only mutation as variation operator
Standard bit mutation
Mutation probability 1

n
Strong unimodal fitness function f : Bn → R
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Asymptotic bounds and approximation techniques
A simple lower bound

A simple lower bound

Let f : Bn → R be a function with exactly one global optimum x∗

and A an evolutionary algorithm that initialises its population
uniformly at random and utilises only standard bit mutation with
mutation probability p = 1

n . The expected optimisation time of
this algorithm is then

E [TP ] = Ω(n log(n))
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Asymptotic bounds and approximation techniques
A simple lower bound

Proof.

Let µ be the population size of A.

For µ = Ω(n log(n)) the algorithm requires already
Ω(n log(n)) evaluations of fitness values for search points
prior to finding x∗ for the random initialisation of the
population with probability 1− 2−Ω(n).

When µ = O(n log(n)), we can see by application of Chernoff
bounds that the probability that the hamming distance of a
search point x to the optimum x∗ is smaller than n

3 is

P(H(x , x∗) <
n

3
) = 2−Ω(n).
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Asymptotic bounds and approximation techniques
A simple lower bound

Proof.

We can therefore assume that at least n
3 bits have to be

flipped in order to reach the optimum.

The probability to flip one bit is p = 1
n .

The probability to not flip the bit in t mutations is

(1− 1
n )t ≥ e−

t
n−1 .

With t = (n − 1) ln(n) we obtain e−
t

n−1 = 1
n .
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Asymptotic bounds and approximation techniques
A simple lower bound

Proof.

The probability that from n
3 bits in t mutations at least one

not mutates is therefore at least 1− (1− 1
n )

n
3 ≥ 1− e−

1
3 .

This leads to

ETP = (1− 2−Ω(n)) · (1− e−
1
3 ) · (n − 1) ln(n) = Ω(n log(n)).
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Asymptotic bounds and approximation techniques
The method of the expected progress

For some problems the optimisation process is similar over
whole optimisation run

Algorithms often do not deviate much from expectation

Derive lower bound on the optimisation time
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Asymptotic bounds and approximation techniques
The method of the expected progress

The method of the expected progress

Identify steps that are required for the optimisation

Which are to be applied often on order to reach global
optimum

When we bound the probability to achieve such a step from
above, a lower bound can be derived

With Chernoff bounds bound probability to deviate from the
expected number of such steps from above
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Asymptotic bounds and approximation techniques
The method of the expected progress

The method of the expected progress

We denote the optimisation problem with P
Progress measure: F : Bm → R+

0

F(st) < ∆ means that global optimum not found in first t
iterations

TP : count of iterations required to reach an optimum

Stephan Sigg Collaborative transmission in wireless sensor networks 127/131



Asymptotic bounds and approximation techniques
The method of the expected progress

The method of the expected progress

For every t ∈ N we have

E [TP ] ≥ t · P[TP > t]

= t · P[F(st) < ∆]

= t · (1− P[F(st) ≥ ∆])

With the Markov-inequality: P[F(st) ≥ ∆] ≤ E [F(st )]
∆

Therefore: E [TP ] ≥ t ·
(

1− E [F(st )]
∆

)
Obtain lower bound on the optimisation time by providing
expected progress after t iterations
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Randomised search approaches
Questions, discussion, remarks

Questions?
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Overview and Structure
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