Technische Universitit Braunschweig E/

Institut fiir Betriebssysteme und Rechnerverbund

Kommunikation und Multimedia

Prof. Dr.-Ing. Lars Wolf

Praktikum Computernetze im WS0910

- Task Description -

Betreuer: Felix Biisching, Tobias Pogel

Aufgabe: Network Simulator Programming-OSPF Routing Protocol

1. Objective

This task/assignment is about implementing the basic routing operations performed by OSPF
routers. The scope of this task is limited to, the initialization of link state databases inside routers,
the exchange of link state information among routers and finally the calculation of shortest paths
and routes as per OSPF specifications. In order to keep the task simple, the simulator provided for
this task simulates a very limited version of OSPF routing protocol (explained in the next
section).

We have eliminated some of the functions from the simulator source such as, sharing link state
information and, calculation of shortest paths and routes from the simulator. Students are required
to re-write these functions so that the simulator eventually works according to the OSPF
specifications. While writing these missing functions, a very limited access will be provided to
the rest of the components of the simulator.

2. OSPF features supported/not-supported by the
simulator

The simulator provided in this assignment supports very limited but core functionality of the
OSPF routing protocol. Most of the optional and more technical components are eliminated from
the scope of this assignment to keep it simple for the students. Following are the OSPF features
which are not available in this simulator:

o Division of topology into Areas. The topology is considered as one single area in this
simulator. Consequently, all the features which are based on the concept of multiple areas are
also not present. For example, individual Link State Database and Shortest Path Tree for
each area are not available; every router has only one instance of these. Similarly, in OSPF

packets and Link State Advertisements, wherever there is an option to mention Area ID, it
is hard coded and user has been provided no control/access to it. Link State Advertisements
of type Network, Summary and AS-External are not implemented.

Transit Networks. In OSPF, a network attached to more than one routers is called transit
network. This simulator doesn’t support existence of such nodes in the topology. As a result,
the related concepts of Neighbor Router and Designated Router are also not provided.

Hello Protocol. This part of OSPF functionality is responsible for identifying Neighbor
Routers and then electing Designated Router. As there is no support for Neighbor and
Designated routers in this simulator, the Hello Protocol and Hello Packet are also
missing.

Bringing up Adjacencies. During this operation, Neighbor Routers share Database
Description Packets with each other to get initial information about their links and
synchronize their Link State Databases. Since the concept of Neighbor Routers is not
present in our simulator, the process of Bringing up Adjacencies and the related items such
as Database Description Packets, Link State Request Packets etc. are also not provided.
However, the initialize method is provided in Routers to identify their link status and
initialize their Link State Databases before they start flooding.

Transmission Error, Acknowledgements, Checksums, Type of Service, Timers,
Aging, Sequence Numbers, all these concepts are eliminated to reduce the complications.
Link State Acknowledgment Packets are not required any more. The verification of age
and validity at different processes is also not required.

The supported OSPF features and operations which our simulator performs on behalf of the user
are following:

3.

Reading the topology from file and initialize simulator data structures. This operation is
performed in response to “load filename” command.

Verification of ambiguities in the topology. This process is performed as a first step in
response to “run” command so that there shouldn’t be any complications/errors in the later
operations.

Initialization of Router data structures. This is the first step of OSPF functionality (executed
after verification). Routers are provided references to their links. A call is made to the
initialize method of every router so that necessary steps can be performed.

The OSPF flooding. Repeated calls to the flood method of routers are performed. After every
call, simulator looks for any available OSPF packets to exchange. The flood method is not
called anymore if there are no packets to exchange.

Data structures for OSPF packet header, Link State Update Packet, LSA header,
Router LSA, Routing Table, Shortest Path Tree, and Link State Database are
implemented in the simulator.

This simulator also supports equal cost multiple paths feature of OSPF.

Simulator Structure

The OSPF simulator is designed solely in C++ under Linux environment; a windows as well as
OS/X version is also available. It contains classes for different components to simulate an OSPF

instance inside a single router as well as to integrate these router instances so that they can
exchange OSPF related information with each other.

These classes are described in different header files (.h) provided in the source code package. The
class diagrams in this document show how these classes are interrelated in the simulator. All
these classes are briefly described in this document; a detailed description of these classes is
independently given in the document “PCn-OSPF-class-description.pdf”:

Simulator Router
Flinks : Limk* -id : P
Fretworks © Network® Hinks : Link™
Frum_Links : int Hsdb : LSDatabase
Frum_Networks : int |spft | SPF_Trea
Fnum_Routers : int HnQ : OSPF_Packet_Queue
Frouters : Router® -outC) | OSPF_Packet_Cueue
+topologyFile : char[256] FFrum_Links : int
+Simulator]) Fnumber : int
+~Simulator() FroutingTableSize : int
FaddLinkEnd|Ps() - int [t : Routing Tabla®
FaddRouterLinks() - int +Router()
dispLSDB(In routerndex - char) +~Routern()
+dispRTBL(inout routerindex : char*) +addLink(in link : Link*) : int
+dispRouter(in index : char®) +setMumLinks(in count : int) - int
+dispTopology(} -calculateRoutingTable() : int
FexisiLink(in id : int) : int loalculateSPFT() :int
FaxistMetwork(in rum : int) @ int +getPackeis ToSandCount() : int
FenistMetwerk(inout ospfid @ char*) @ int +dizplay(in outFile : FILE®) : void
FexistRouter(in num : int) : it +Hlood() - int
FaxisiRouter(inout ospfid : char®) @ int +getiDf) : IP&
FgetMetworkindex(in networkMumber @ int) - int +oetPacketToSend() | OSPF_Packet”
FaetLinklndax(in linkMumber : IP) @ int +packetRecaived(in packet : OSPF_Packet™) : int
FaetRouterdndexi{in routerMumber @ int) @ int +oethumber() @ int
tinitializel) ; int +initializel) - int
+read_Topologyl) - int +set{in num ;int, inout ospfid : char®) ©int
Fset_Links{in index : int, inid © int, in typ : char, inidd ;int, in id2 :int, in cost ; unsigned shord) @ int +dispLSDB{in outFile : FILE™) : woid
Feet Metworks(in index © int, in num : int, inout id : char®, inout mask : char*) @ int +dispRTEL(in cutFile : FILE*) : vaoid
lset_Routers(in index : int, in number @ int, inout id : char®) @ int
+simulate() : int
Hunload_Topalogyl) © int - 1
Hwarify) ©int
[Hrout() @ int
FcountRouterLinks() @ int

1 1 1 ?

Network Lk
Fid : IP ~cost ; unsigned short
Fmask : P Hid - int
Frumber @ int Fend2Mask © [P
+Network() Lend2 ! int
+~Metwork() ~end1IP 1P
+getl D) : IP& ~endl cint
+gathask() : P& Htype : char
+oetMumber() © int rend2|P ; IP
+set{in num : int, inout nid - char®, inout nmask : char*) : int +Link()
+—Link(}
+getCosi() : unsigned short
+getlDn) - int

getEnd2Mask() | IPE

HgetEnd2() : IP&

HgetEnd1() : IP&

HgatRouter() : int

getType() @ char

#setiin ownlD :int, in typ @ char, inid1 :int, inid2 @ int, in KCost @ unsigned short) @ void
H+setEnds(in el : 1P, ine2: IP, ine3: IP): void

+getMel Router() : int

=setEnds(in el : 1P, in a2 IP): vaoid

Fig 1: Basic Simulator Structure

main (main.{h | cpp})
These two files contain the main function and some other global functions and variables. None
of these is really important in this assignment. In the main function, an instance of Simulator is

created and a command prompt is displayed to accept input from the user. The relevant functions
of Simulator are called to fulfill user commands. A complete list of available commands is
provided in “PCn-OSPF-class-description.pdf”.

Simulator (Simulator.{h | cpp})

This class represents the simulator instance. A simulator instance contains routers, links and
networks in the topology. Data members of a simulator instance are populated in response to user
commands. For example, “load filename” assigns topology file name to the topologyFile
member. Details of routers, links and networks are loaded into the members such as routers,
links, networks etc., from the topology file in response to “run’ command.

Router (Router.{h | cpp})

This class represents an OSPF router. It contains all necessary components of an OSPF router like
Link State Database, Shortest Path Tree, Routing table and queues for incoming and outgoing
OSPF packets. As this implementation of OSPF doesn’t contain the concept of areas, each router
has only one Link State Database. Similarly, there is only one instance of Shortest Path Tree in
each router. A router instance also contains references to its links. During the execution of run
command, before starting core OSPF operations, simulator instance passes the references of
every router’s links to its instance.

Network (Network.{h | cpp})
This class represents a network. Only OSPF “stub networks” are implemented in this simulator.

Link (Link.{h | cpp})
This class represents a link. Only two types of OSPF links i.e., “Point to Point” and “Stub
Network” are implemented.

LSDatabase (LSDatabase.{h | cpp})
This class represents a Link State Database. Since only Router LSAs are implemented in this
simulator, every instance of LSDatabase contains only Router LSAs.

SP_Tree (SP_Tree.h)

This class represents an OSPF shortest path tree. In OSPF, a router has an independent shortest
path tree for every area, but this simulator doesn’t support multiple areas; therefore, there will be
only one instance of SP_Tree in every router. Furthermore, this class is provided blank to the
students in this praktikum. This implies that the students are free to design this class according to
their choice and ease.

Routing_Table (Routing_Table.{h | cpp})

This class describes the Routing Table of each router. Entries are defined as a structure (rtEntry)
and every instance of this class contains multiple instances of this structure. As OSPF supports
multiple paths, therefore every entry contains more than one path (struct path).

OSPF_Packet_Queue (OSPF_Packet_Queue.{h | cpp})

Every router exchanges routing information with its neighbors through OSPF packets. For this
purpose, two queues are implemented in each router. The inQ contains packets sent by the other
routers to this router, while the outQ) contains packets to be sent by this router. During the
execution of OSPF functionality, simulator takes packets from the outQs of every router and put
them in the inQs of relevant routers.

OSPF_Header (OSPF_Header.{h | cpp})
All types of OSPF packets carry a similar header. This class describes this header and related
functionality.

OSPF_Packet_Queue
~gLength - int
-packets | OSPF_Packet**
+OSPF_Packet_Queue()
+~0SPF_Packet Cueus()
+getlengthi) : int
+engueuelin packet - OSPF_Packet™) -
+dequeue() : OSPF_Packet”

nt

2

Raouter

Hid : IP

Hirks @ Link**

Hsdb : L3Database

Fspt: SP_Tree

FinC : OSPF_Packet Cueue
FoutQ : OSPF_Packet Queus
Frum_Links : int

Fnumber - int

+rt : Routing_Table

HRouter()

+~Router)

+addLink{in link @ Link™) - int
+setMumLinks{in count : int) : int
FealoulateRoutingTakde() : int
FealculateSPT() ¢ int
+getPacketsToSendCount() @ int
+display(in outFile : FILE*) : void

+Hilood() : int

+oetlD{) : IP&

HgetPacketToSend() | OSPF_Packet”
+packetReceived|(in packet : OSPF_Packet®) : int
+getMumber() : int

+initialize() : int

+setfin num ;int, inout ospfid : char®) : int
HdispLSDB(in outFile : FILEY) - void
+dispRTBL(in cutFile : FILE*) @ void

Link

Fcost | unsigned short
Fid :int

Fend2Mask - IP
Fand2 :int

tend1lP @ IP

Fendl :int

Ftype : char

rendz2IP ; |P

FLink()
~Link()

. HgetCost() : unsigned short
HgetlD() : int
HgetEnd2Mask() @ IP&
tgetEnd2() : IP&
HgetEnd1(): IP&
HgetRouter() : int
HgetType() : char

#setEnds(in el : IP, ine2 : IP, in &3 : IP) : woid
tgethet_Router() - int
HsetEnds(in el : IP, in e2 : IF) : void

sat(in ownlD @ int, in typ : char, in id1 :int, in id2 : int, in ICost | unsigned short) : void

Routing_Table

-entries : rtEntny*
-size | int

+Routing_Tabbe()
+~Routing_Table()
+getAM(in dID : IP) : IP
+getDID{in index : int) : IP

[+gelDTypelin diD : IF) : char

+oatMNH{in index : int, in diD: IP) - IP

+getPathType(in index : int, in dID : IP) : char

+addRoute{in AT : char, in dID - IP, in aM : IP) : int
+getCost(in index : int, in 4D - IF) : unsigned short
+addPathiin diD : IP, in cost : unsigned short, in next - IF) it
+aatSize() : Int

> +address Mask: IP

’ +getPathCount{in diD : [P} : int
1
1 1
LSDatabase
HrLSAS © int
Lrouter | SAs @ Router LSA*
+LSDatabase()
+addRLSALink(in 1s1D - 1P, in linklD : IP, in linkData : IP, in type : char, in cost : short)) 1

+addRouterLSA(In rsa : Router LSA) : int
+display(in outFile : FILE*) : void
+getnRLSAJ) @ int

+oetRouterLSA[In index : int) | Router_LSA,
+~LSDatabase()

+updateRouterlLSA(in rlza : Router LSA) : int
+getRouterlL SAfin IsID : IP} : Router_LSA

aslfucts

Hdestination_Type : char|
+destination_|ID : [P

+pathCount : int
Hpaths ; path”

[

wslructn
path
Hpath_Type : char
Hcost - unsigned short
H+next_Hop : IP

SP_Tree

[FSPF_Tree()
+~SPF_Tree()

+existRouterLSA(In IsID : 1P} int
[

Router_LSA

Llinks - Link_Data*
-num_Links : unsigned short
FoptionsFixed : char
FoptionsVEB : char

+Router_LSA()
H+~Router_LSA()

5 Hoperator=(inaut right : Router_LSA&) : Router_LSAS
+addLink(in id : IP, in data : IP, in type - char, in metric : unsignad shaort) : int

Hdisplay(in cutFile : FILE*) : void
Hgetlinkiin index : int) : Link_Data
+gethumbinks|) @ unsigned short

+Router_LSA(n IsiD : IP, in advRouter - IF)
+operator==(inout right : Router LSA&) : int

Fig 2: Router and related classes

OSPF_Packet_Base (OSPF_Packet_Base.{h | cpp})
OSPF has five types of packets for routing operations. Although this simulator implements only
one of them, but still parent-child class structure is provided for future extension. This class
contains the features common to all OSPF packet types such as header.

OSPF_Packet (OSPF_Packet_Queue.{h | cpp})

This structure describes an individual element in the OSPF_Packet_Queue.

Link_State_Update_Packet (Link_State_Update_Packet.{h | cpp})

This class describes the only OSPF packet type implemented in this simulator. Link State Update
packets are used by OSPF routers to advertise their link states to other routers. This class provides
all the relevant OSPF functionality.

OSPF_Header

larea ID: IP

Fau_Type : short

lFauthentication : int

lauthentication2 - int

-checksum @ short

packet Length : unsigned short

Frouter_|D - IP

Fype : char

Fvarsion @ char

+OSPF_Header{}

H+—=0SPF_Header()

+operator={inaut right : OSPF_Header&) : OSPF_Header&
Hgetlangthi) : unsigned short

+getRouter(} : IP

I+setlin typ : char, in length : unsigned short, in router : IP) : int
HsetlLength{in | : unsigned short) : int

I+set(in typ ;. char, in length : unsigned short) @ int
+getTypel) - char

astructs OSPF_Packet_Base
OSPF_Packet [Hospl_Header - OSPF_Header
Hpacket - OSPF_Packet_Basea® -

+OSPF_Packet Basa()

[HinklD : int 1 1 |+~OSPF_Packet_Base(}
+getTypel) : char
1
OSPF_Packet_Queue Link_State_Update_Packet

LgLength : int Frum_rLSA - int

Fpackets | OSPF_Packet*™ FLSAs @ Router LSA*

=OSPFE_Packet Queua() I+Link_State_Update_Packet()

—0SPF_Packet Queue() H=Link_State Update Packet()

bgetlangthi) - int Hoperator={inout right : Link_State Update_Packet&) : Link_State_LUpdate Packet&|

Fenqueuslin packet | OSPF_Facket®) © int| HFaddRLSA(IN dsa : Router_LSA) @ int

+dequauel) - OSPF_Packet™ HgetnRLSAL) - int
FgetRLSAIN index : int) - Router_LSA
HLink_State_Update Packet(in router : IP)

9

Router_LSA

Flinks : Link_Data*

Fnum_Links @ unsigned short

—optionsFixed © char

FoptionsWEB : char

Router_ LSA)

—Router LSAL)

+operator=({inout right : Router_ LSA&) : Router_LSA&
HaddLink(in id - IP, in data : IP, in typea : char, in matric : unsigned short) @ int
Hdisplay(in outFilke : FILE*) : woid

Hgetlink(in index @ int) - Link_Data

HgethumLinks() @ unsigned short

+Router_LSA(IN IsID : IP, in advRouwter - IF)
Hoperator==(inout right - Router LSA&) @ int

Fig 3: OSPF Packet hierarchy in the simulator

LSA_Header (LSA_Header.{h | cpp})

OSPF has four different types of Link State Advertisements (LSA). All these LSA types have a
similar header. This class describes that common header available in all those LSAs and the
required functionality.

LSA_Base (LSA_Base.{h | cpp})

This simulator includes implementation of only one of the LSA types i.e., router LSAs, but still
parent-child class structure is provided for future extension. This class contains the features
common to all OSPF LSA types such as header.

LSA_Header
radwertising_Router : IP
Hink_State |D: IP
Hs_Age : unsigned short
FHs_CheackSum : short
F= Length © unsigned short
FH=_SequenceMumber : int
Hs_Twpe : char
Foptions. : char
HLSA_Header()
H~L5A_Header)
Foperator=(inout right : LSA_Header&) | LSA_Header&
Foperator==(inout right : LSA_Header&) : Int
rdisplay(in outFile : FILE*) : wvoid
oetLSID() : IP&
Foetlengthl) - unsigned short
Fset(in type : char, in IslD - IP, in adviRouter : IP) : int
Fsatlangthiin kength @ unsigned short) @ int
r=et(in type @ char) : int

4
1

LSA_Base
#sa_Header : LSA_Header

+LS5A_ Basel()
+~LSA_Base()
+dizplayHeader|{in outFile : FILE™®) : void)

+getLSID() : IP&

Router_LSA

Hliinks : Link_Data*

Fnium_Links : unsigned short

FoptionsFixed © char

FoptionsWER : char

Router_LSAL)

F~Router_LSA()

Hoperator=({inout right : Router_LSA&) | Router_LSA&
raddLink(in id - IP, in data : IP, in typa : char, in matric : unsigned short) @ int
Hdisplay(in cutFile : FILE*) : void

Hgetlink(in index : int) - Link_Data

FgethumLinks() @ unsigned short

HRouter_LSAIn IsID : 1P, in advRouter @ 1IF)
Foperator==(inout right : Router LSAS) . int

q

Link_Data

Flink_Data : IP

Hiink_ID : IF

Frnatric : unsigned short

FiosMumber @ char

Ftwpe : char

H+Link_Datal)

+~Link_Datal)

+operator=(imcut right - Link_Datas) : Link_Data&
+operator==(inout right : Link_DCata&) - int
FroetDatal) : 1P

FraetlD{) : IF

+gethetric() © unsigned short

+getTOS() : char

FaetTypel) : char

Hset(in id - IP, in data - IP. in tvp : char, in cost © unsigned short) © int)
Hdisplay(in outFile : FILE™) : waid

Fig 4: Link State Advertisement hierarchy in the simulator

Router_LSA (Router_LSA.{h/cpp})
OSPF routers share their link states in the form of router LSAs. Every router keeps its own router
LSAs and the router LSAs received from the other routers in its Link State Database. These LSAs

are packed into Link State Update Packet during the advertisement process. This class describes
an OSPF Link State Advertisement of type “Router LSA” and related functionality.

Link_Data (Link_Data.{h | cpp})

Every router LSA contains information about all the links of the originating router of this LSA.
This information is provided inside an instance of Router_LSA as multiple instances of
Link _Data class.

IP (IP.{h/cpp})
This is a utility class which basically represents an IP address and provides necessary operations
to work with an IP address.

4. How it works

This section will describe the sequence of operations inside the simulator to provide an
understanding about its working. A sequence diagram about the main operations of the simulator
is given below to enhance the clarity.

1 simulator is started -
1

creates an instance of Simulator

: i ospf - Simulator
:7 Displays command prompt

P I

load filenams

read_Topoclogy()

se.t__F{omets{]: sel)

routers]] - Router

sat Links(): sat()
|

| lin : Linl
run

1—__‘_‘—__‘—‘_'_‘———'——;

|
1
|
1
1
1
|
1
|
1
1
|
1
|
1
|
1
|
1
1
! sal_Metworks: sel()
1]

werifyl) networksl] @ Natwork

initialize{) !

addLinkEnd|Ps(): setEnds()

countRouterLinks(): setMumbLinksi)
I

addRouterLinks(}: addLink()
I

1

1

1

1 }
1 I
1 I
1 I
1 I
| I
1 1
1 | I
1 | I
1 | I
1 | 1
1 | I
1 | I
1 initizlizey) | 1
1 1 | I
1 | I
1 | 1
1 . | I
1 simulate(} 5 B | | 1
1 =l flood () J | |
1 | | 1
| . | I
1| While there lare : :
1 no more pagkets | 1
| to transfer grmong | I
1 routers. |]
1 1 | I
1 out() X | |]
1 1 displayl() 1 | I
1 1 | I
| | I
1 | 1
1 | I
1 L 7.5 I I 1
1 | I
1 | 1

Fig 5: Sequence diagram showing sequence of operations inside ‘“load” and “run” command

The simulator executable is named ospf.o and when invoked it displays a command prompt as
following:

OSPF Simulator Command Line>>

It also creates an instance of Simulator to perform further operations. A complete list of
available commands and their output is given in a later section. The two commands “load” and
“run’ are important as these provide the core functionality of OSPF. In this section, the sequence
of operations performed by simulator in response to these two commands will be described.

load filename

This command directs the simulator to load the network topology given in the file “filename”. In
response, the name of topology file is assigned to the topologyFile member of the Simulator
instance and read_Topology method is invoked. This method reads the file line by line and
identifies different parameters from the file. The class members such as routers, links and
networks are initiated, then descriptions of individual routers, links or networks are assigned to
the relevant instances after parsing (using sef_Routers or set_Links or set_Networks) and
values are assigned to routers, links and networks elements by calling sef methods of these
classes.

run
This command invokes the sequence of operations to simulate the OPSF behavior on the topology
loaded previously.

First of all, the verify method of the Simulator instance is called to verify any ambiguities in the
topology such as invalid or duplicate addresses etc.

In the second step, the initialize method is called. This method copies the IP addresses of link
ends to each Link instance (required in later operations) by calling addLinkEndIPs, which
eventually calls setEnds of each Link. Then, countRouterLinks is called which identifies the
links of each router; however, this function just sets the number of the links in each router by
calling setNumLinks. The link references are later passed by addRouterLinks to each Router
instance by calling its addLink method. Finally, the initialize of each Router instance is called.

In third phase, the OSPF flooding is performed multiple times. In every iteration, first the flood
method of every Router instance is called. After that, inQs of all the Router instances are
checked. If there are any packets, then these packets are transferred in the outQs of the relevant
Router instances. This process is not repeated anymore if all the inQs are found empty at the end
of the iteration, indicating that the routers do not have new information to share and the topology
is stable.

Finally, the out method is called. This method writes the status of all Router instances to a file
“Routing_Table.txt’. The out method calls display method of each Router instance which
writes Link State Database and routing table to the output file.

5. Your task

The simulator provided for this assignment is fully functional (as per exceptions mentioned
earlier). However, we eliminated the code from initialize, flood, calcualteSPT and
calcualteRoutingTable methods of the Router class. Furthermore, the SP_Tree class is
provided without implementation. Students have to implement these methods following the OSPF
protocol specifications (only for those features which are originally supported by the simulator).
However, during this implementation, they also have to take care for the following rules:

e They will be provided with following header files only:

main.h, Simulator.h, Router.h, Link.h, Network.h, IP.h, LSDatabase.h, SP_Tree.h,
Routing_Table.h, Link_Data.h, OSPF_Header.h, OSPF_Packet_Queue.h,
OSPF_Packet_Base.h, Link_State_Update_Packet.h, LSA_Base.h, LSA_Header.h,
Router LSA.h

The respective .cpp files containing the implementation of functions defined in these files will be
provided in compiled (.0) form. However, Router.o will not have the implementation of
initialize, flood, calcualteSPT and calcualteRoutingTable. The blank definitions of these
functions will be provided in an independent file ospf.cpp.

e Students have to write their code only in this ospf.cpp file. They cannot add any functions or
data members to any of the existing classes except the Router and the SP_Tree. They can
create additional classes if required.

e Few test topologies with their output on original simulator are provided so that students can
verify the correctness of their code. These files contain the output generated in response to
run command.

e For compiling the simulator code with their additions, a script file compile-ospf is also
provided. Students have to simply run the command ./compile-ospf from OS/X command
prompt. This will generate an executable with name ospf.

¢ Students have to submit their version of Router.h, SP_Tree.h and ospf.cpp.

6. Reading Material helpful in this assignment

e The main reading source for this assignment is the OSPF version 2 RFC 2328. A copy of this
RFC is provided on the course website. Required sections are already marked for convenience.
Few sections are beyond the scope of this assignment but are highlighted so that the student’s
can have enough background knowledge about the task requirements.

e Many major books on networking provide brief introduction on OSPF’s working. That can
also be helpful to have a basic understanding about it. One good option can be “Routing in
Internet” by Christian Huitema.

10

