
 1

Technische Universität Braunschweig

Institut für Betriebssysteme und Rechnerverbund

Kommunikation und Multimedia

Prof. Dr. L. Wolf

Praktikum Computernetze im WS0910

– Task Description –

Betreuer: Felix Büsching, Tobias Pögel

Aufgabe: Network Simulator Programming-ARQ Protocols

1. Objective

The purpose of this task/assignment is to code/implement the ARQ protocols: Stop-and-Wait,

Go-Back-N, and Selective Repeat. Students are required to code/implement any two of these

protocols. They have to implement these protocols inside an existing simulator. This

simulator provides the basic infrastructure to share messages between a source node and a

sink node.

We have eliminated those functions from the simulator that generate messages and perform

necessary actions before the transmission of the messages and after their reception. Students

are required to re-write these functions according to the above mentioned ARQ protocols, run

simulations with different input values and compare their results with the theoretical

performance of the protocols.

2. Features supported/not-supported by the simulator

The simulator provided in this assignment supports the necessary features to share messages

between two nodes: a source and a sink. Following is an overview of these features:

• Reading the simulation settings from a file. This operation is performed in response to

“load filename” command.

• Verification of simulation settings. This process is performed as a first step in response to

“run” command so that there shouldn’t be any complications in the later operations.

• Message sharing. This is the next step in response to “run” command. Simulator looks for

any messages ready to transmit at the source or the sink and transfer them to the

appropriate destination. It also invokes the relevant functions in these nodes so that they

can take necessary actions such as message generation, response generation etc.

• The simulator also provides a central clock mechanism which keeps track of simulation

time and events. One tick of this clock is equivalent to one nanosecond; therefore, all time

calculations in the simulator are performed in nanoseconds.

 2

3. Simulator Structure

The ARQP simulator is designed solely in C++ under Linux environment. It contains classes

for different components to simulate ARQ functionality.

Node

Class

Fields

ackSize : double

arqMethod : char

bitRate : double

dataOverhead : double

dataPacketSize : double

duration : double

IncomingPacketQueue : PacketQueue

OutgoingPacketQueue : PacketQueue

PacketBuffer : PacketQueue

packetRate : double

processingDelay : double

propagationDelay : double

sequenceNumber : int

type : char

Methods

~Node()

generatePackets() : int

getACKSize() : double

getARQMethod() : char

getBitRate() : double

getDataOverhead() : double

getDataPacketSize() : double

getDuration() : double

getPacketRate() : double

getProcessingDelay() : double

getPropagationDelay() : double

getType() : char

Node()

sendPackets() : int

setACKSize() : void

setARQMethod() : void

setBitRate() : void

setDataOverhead() : void

setDataPacketSize() : void

setDuration() : void

setPacketRate() : void

setProcessingDelay() : void

setPropagationDelay() : void

setType() : void

Packet

Class

Fields

creationTime : double

destination : char

overhead : double

readyToSendTime : double

sequenceNumber : int

size : double

source : char

transmissionStatus : char

type : char

Methods

~Packet()

getCreationTime() : double

getDestination() : char

getOverhead() : double

getReadyToSendTime() : double

getSequenceNumber() : int

getSize() : double

getSource() : char

getTransmissionStatus() : char

getType() : char

Packet()

setCreationTime() : void

setDestination() : void

setOverhead() : void

setReadyToSendTime() : void

setSequenceNumber() : void

setSize() : void

setSource() : void

setTransmissionStatus() : void

setType() : void

PacketQueue

Class

Fields

length : int

Packets : Packet**

Methods

~PacketQueue()

dequeuePacket() : Packet*

enqueuePacket() : void

getCreationTime() : double

getLength() : int

getReadyToSendTime() : double

getSize() : double

PacketQueue()

setTransmissionStatus() : void

Simulator

Class

Fields

ackSize : double*

arqMethod : char

bitRate : double*

dataOverhead : double*

dataPacketSize : double*

duration : double

processingDelay : double

propagationDelay : double

settingsFile : char[256]

simulationSetSize : int

Sink : Node

Source : Node

Methods

~Simulator()

readSettings() : int

run() : int

simulate() : int

Simulator()

verify() : int

1 *

1
 *

* 1

Fig 1: Simulator Structure: class diagram

 3

These classes are described in different header files (.h) provided in the simulator source

code. The class diagram (Fig. 1) shows how these classes are interrelated in the simulator. All

these classes are briefly described here while a detailed description of these classes is

independently given in the document “PCn-ARQP-class-description.pdf”:

main (main.h, main.cpp)

These two files contain the main function and some other global functions and variables.

None of these are really important in this assignment. In the main function, an instance of

Simulator is created and a command prompt is displayed to accept input from the user. The

relevant functions of Simulator are called to fulfill user commands. A complete list of

available commands is provided in “PCn-ARQP-class-description.pdf”.

Simulator (Simulator.{h/cpp})

This class represents the simulator instance. A simulator instance contains two Node

instances: Source and Sink. These two represent the source and the sink node.

Node (Node.{h/cpp})

This class represents a node either Source or Sink. It contains all necessary components of a

node to implement an ARQ protocol.

Packet (Packet.{h/cpp})
This class describes a message or packet that can be shared between the source and the sink.

PacketQueue (Packet.{h/cpp})
The purpose of this class is to provide a packet queue structure and related functionality

wherever there is a need to store one or more messages or packets. For example, both Source

and Sink contain three PacketQueue instances: PacketBuffer, OutgoingPacketQueue,

and IncomingPacketQueue. The IncomingPacketQueue contains packets sent by other

nodes, the OutgoingPacketQueue contains packets being sent by this node (in

transmission), while the PacketBuffer contains packet generated by this node but are not yet

sent. Whenever, a node generates a message/packet, it is first placed in PacketBuffer. Then,

after processing delay it is moved to the OutgoingPacketQueue. Simulator iteratively

looks for the messages in the OutgoingPacketQueue of the two nodes and transfers them to

the IncomingPacketQueue of the destination node after propagation delay +

transmission time.

Time (Time.{h/cpp})
This is a utility class which provides necessary features to keep track of simulation time and

execute different events accordingly. The simulation clock tick is one nanosecond; hence, all

time measurements are in terms of nanoseconds.

4. How it works

This section will describe the sequence of operations inside the simulator to provide an

understanding about its working. A sequence diagram about the main operations of the

simulator is also given below to enhance the understanding.

The simulator executable is named arqp.o and when invoked it displays a command prompt

as following:

ARQ Protocols Simulator Command Line>>

An instance of Simulator named ARQ_PS is created to perform further operations. Inside

ARQ_PS, two instances of Node named Source and Sink are created as well. A complete

list of available simulator commands and their output is given in the document “PCn-ARQP-

class-description.pdf”. The two commands “load” and “run” are important as these provide

 4

the core functionality of this simulator. The sequence of operations performed by simulator in

response to these two commands is as follows:

load filename

This command directs the simulator to load the simulation settings from the file “filename”.

In response, the name of this file is assigned to the settingsFile member of the Simulator

instance and readSettings method is invoked. This method reads the settings from the file

and set the relevant Simulator and Node members.

User

main()

ARQ_PS : Simulator

Source : Node

Sink : Node

Simulator is started: main

Creates an instance of Simulator: Simulator()

Creates the source node: Node()

Creates the sink node: Node()

Displays command prompt: getCommand

load settingsFile: getCommand

loads simulation parameters:=readSettings()

setPacketRate
setPacketRate

invokes simulation: run

simulating the specified simulation settings:=run()

setPropagationDelay()
setPropagationDelay()

setProcessingDelay()
setProcessingDelay()

setDuration()
setDuration()

{while the
specified

ARQ methods}

setARQMethod()
setARQMethod()

{while the

simulation

set}

setACKSize()
setACKSize()

setBitRate()
setBitRate()

setDataPacketSize()
setDataPacketSize()

setDataOverhead()
setDataOverhead()

verifies settings for the current simulation run:=verify()

executes the current simulation run:=simulate()

generate packets and place in PacketBuffer:=generatePackets()

Transfer ready to send packets to OutgoingPacketQueue:=sendPackets()

Transfer ready to send packets to OutgoingPacketQueue:=sendPackets()

Packets are
transmitted/transfered

Fig 2: Sequence diagram showing sequence of operations inside “load” and “run” command

 5

run
This command invokes the sequence of operations to simulate ARQ protocol behavior as per

the settings loaded previously.

First, the verify method of Simulator instance is called to verify any ambiguities in the

settings. It mainly verifies that none of the simulation parameters should be zero or less.

Then, the simulate method, which simulates the ARQ events, is invoked. In this method, first

the simulation clock is started by calling Time::start(). Then, a loop is started which

continues until the simulation duration is over. Inside this loop, the generatePackets method

of Source, the sendPackets method of Source, and the sendPackets method of Sink are

called in sequence. Afterwards, the simulator checks the OutgoingPacketQueue of Source

and Sink, and start transmitting packets if there are any.

5. Your task

The simulator provided for this assignment is fully functional. However, we have eliminated

the code from generatePackets and sendPackets methods of Node class. Students have to

implement these methods according to the specifications of the ARQ protocols. As mentioned

earlier, students are required to implement any two of the three ARQ protocols. These two

implemented protocols should be submitted independently. During this implementation,

students also have to take care for the following rules:

• Following header files are provided only:

main.h, Simulator.h, Node.h, Time.h, Packet.h

The respective cpp files containing the implementation are provided in compiled (.o) form.

However, Node.o does not have the implementation of generatePackets and sendPackets.

The blank definitions of these functions will be provided in an independent file arqp.cpp.

• Students have to write the code for these two methods in the arqp.cpp file. They can add

any functions or data members to any of the classes if required.

• The purpose of generatePackets method is to generate packets and place these packets in

PacketBuffer. This method is invoked for Source only. Hence, in this method, students

have to write the code to generate data packets as per the data rate mentioned in the

settings file.

• The packets in PacketBuffer are required to be moved to OutgoingPacketQueue after

the processing delay and set the transmissionStatus flag. This job should be performed

in sendPackets (or in generatePackets as per student’s approach). However, while

shifting these packets they have to take care of the underlying ARQ protocol. Furthermore,

as this method works for both Source and Sink (generatePackets is also common but it

is not invoked for Sink), they have to differentiate the functionality of Source and Sink.

Once a packet is in OutgoingPacketQueue, simulator will start transmitting it to the

destination and they need not to do any further operations on it.

• Students have to perform packet log operations as per their implementation logic,

simulator does not provide any log of packet generation, reception, or transmission etc.

• For compiling the simulator code with their additions, a script file compile-arqp is also

provided. They have to simply run the command ./compile-arqp from OS/X command

prompt. This will generate an executable with name arqp.

• Once the code is complete and working, they have to run simulations with different data

packet size (nf), data overhead size (no), and bit rate (R) values given in the table

below:

 6

Table 1: Simulation Parameters

Test Data Overhead Size (no) Packet Size (nf) Bit Rate (R) ACK Size (na)

A 26 Bytes Use any 5

different values

from 72 Bytes to

1526 Bytes

Use any 5

different

values from

1Mpbs to

1Gbps

14 Bytes

B 34 Bytes Use any 5

different values

from 34 Bytes to

2346 Bytes

Use any 5

different

values from

1Mpbs to

1Gbps

14 Bytes

C Use any 5 different values

between 20 Bytes and 60

Bytes

For every value

of no, use any 5

different values

between no Bytes

and 65535 Bytes

Use any 5

different

values from

1Mpbs to

1Gbps

40 Bytes

D Use any 5 different values

between 20 Bytes and 60

Bytes

For every value

of no, use any 5

different values

between no Bytes

and 65535 Bytes

Use any 5

different

values from

1Mpbs to

1Gbps

40 Bytes

• The propagation delay (tprop) and the processing delay (tproc) both are fixed for these

simulations and their value is one microsecond each.

• The features such as transmission error rate, channel error, timeout and channel busy are

not considered/implemented in this assignment. This implies that every packet reaches the

destination successfully and their can be more than one packets in transit.

• The above mentioned parameter values are provided to the simulator through simulation

settings file. The format of this file is a given in the document “PCn-ARQP-class-

description.pdf”, while a sample settings file is provided with the code. Multiple values for

these simulation parameters can be provide in one single file and the simulator performs

all the simulations at a time. Students have to take care that how they can have

independent log for each simulation run.

• The value of simulation duration and packet rate should be selected in such a way that

sufficient number of messages should be exchanged between the source and the sink.

• Students have to submit their version of arqp.cpp and any other changed header files.

• Furthermore, they have to present their simulation results in the form of graphs and

compare their results with the efficiency equations given in Table 5.2 (of Communication

Networks-Fundamentals, Concepts and Key Architecture by Alberto Leon-Garcia and

Indra Widjaja).

• Warning: Please perform the memory handling operations carefully.

 7

6. Reading Material helpful in this assignment

• The main reading source for this assignment is the section 5.2 of Communication

Networks-Fundamentals, Concepts and Key Architecture by Alberto Leon-Garcia and

Indra Widjaja.

