Collaborative transmission in wireless sensor networks

Introduction to wireless communications

Stephan Sigg

Institute of Distributed and Ubiquitous Systems Technische Universität Braunschweig

November 9, 2009

1/50

Overview and Structure

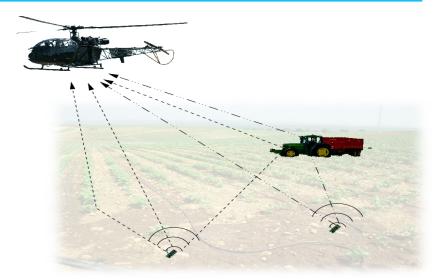
- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Evolutionary algorithms
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Algorithmic improvements
 - Alternative Optimisation environments
 - A numeric approach for synchronisation
 - Consideration of node mobility

Overview and Structure

- Introduction to context aware computing
- Wireless sensor networks
- Wireless communications
- Basics of probability theory
- Evolutionary algorithms
- Cooperative transmission schemes
- Distributed adaptive beamforming
 - Feedback based approaches
 - Asymptotic bounds on the synchronisation time
 - Algorithmic improvements
 - Alternative Optimisation environments
 - A numeric approach for synchronisation
 - Consideration of node mobility

Outline

Wireless communications


- Introduction
- Aspects of the mobile radio channel
- MIMO
- Centralised beamforming

4/50

Introduction

- Wireless communication
 - Utilisation of shared medium
 - Electromagnetic waveform transmitted between communication partners
 - Information modulated on top of a signal wave

Introduction

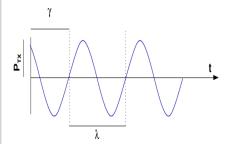
Outline

- Introduction
- Aspects of the mobile radio channel
- MIMO
- Centralised beamforming

Wireless communications

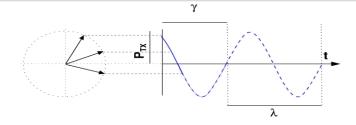
RF transmission

- Electromagnetic signals
- Transmitted in wave-Form
- Omnidirectional transmission
- Speed of light


•
$$c = 3 \cdot 10^8 \frac{m}{s}$$

Wireless communications

RF signal


- Transmission power:
 - $\circ P_{TX}[W]$
- Frequency:
 - $f\left[\frac{1}{sec}\right]$
- Phase offset:
 - γ[π]
- Wavelength:
 - $\lambda = \frac{c}{f}[m]$

Wireless communications

RF signal

- Real part of rotating vector
 - $\zeta = \Re\left(e^{j(ft+\gamma)}\right)$
- Instantaneous signal stength:
 - cos(ζ)
- Rotation Speed: Frequency f

Wireless communications

Noise

- In every realistic setting, noise can be observed on the wireless channel
- Tpyical noise power:^a

$$P_N = -103dBm$$

Value observed by measurements

^a3GPP: 3rd generation partnership project; technical specification group radio access networks; 3g home nodeb study item technical report (release 8). Technical Report 3GPP TR 25.820 V8.0.0 (2008-03) (March)

Wireless communications

Noise

• Thermal noise can also be estimated analytically as

$$P_N = \kappa \cdot T \cdot B$$

- $\kappa = 1.3807 \cdot 10^{-23} \frac{J}{\kappa}$: Boltzmann constant
- T: Temperature in Kalvin
- B: Bandwidth of the signal.

Wireless communications

Example

- GSM system with 200kHz bands
- Average temperature: 300K
- Estimated noise power:

$$P_N = \kappa \cdot T \cdot B$$

$$= 1.3807 \cdot 10^{-23} \frac{J}{K} \cdot 300K \cdot 200kHz$$

$$P_N = -120.82dBm$$

Wireless communications

Path-loss

- Signal strength decreases while propagating over a wireless channel
- Order of decay varies in different environments
- Impact higher for higher frequencies
- Can be reduced by antenna gain (e.g. directed)

Location	Mean Path loss exponent	Shadowing variance σ^2 (dB)
Apartment Hallway	2.0	8.0
Parking structure	3.0	7.9
One-sided corridor	1.9	8.0
One-sided patio	3.2	3.7
Concrete Canyon	2.7	10.2
Plant fence	4.9	9.4
Small boulders	3.5	12.8
Sandy flat beach	4.2	4.0
Dense bamboo	5.0	11.6
Dry tall underbrush	3.6	8.4

Wireless communications

Path-loss

- For analytic consideration: Path-loss approximated
- Friis free-space equation:

$$P_{TX} \cdot \left(\frac{\lambda}{2\pi d}\right)^2 \cdot G_{TX} \cdot G_{RX}$$

Wireless communications

Path-loss

$$P_{RX} = P_{TX} \cdot \left(\frac{\lambda}{2\pi d}\right)^2 \cdot G_{TX} \cdot G_{RX}$$

- Utilised in outdoor scenarios
 - Direct line of sight
 - No multipath propagation
- d impacts the RSS quadratically
- Other values for the path-loss exponent α possible.
- Path-loss:

$$PL^{FS}(\zeta_i) = \frac{P_{TX}(\zeta_i)}{P_{RX}(\zeta_i)}$$

Wireless communications

Path-loss (Log-distance model)

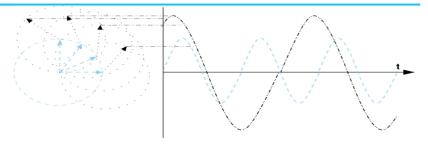
• Path-loss model suited in buildings or densely populated areas:

$$PL^{LD}(\zeta_i) = rac{P_{TX}(\zeta_i)}{P_{RX}(\zeta_i)} = 10^{rac{L_0}{10}} \cdot d^{lpha} \cdot 10^{rac{\mathsf{x}_{\mathsf{g}}}{10}}$$

o in dB:

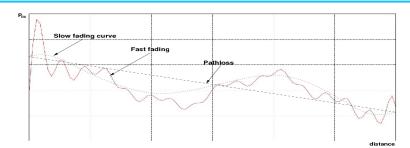
$$PL^{LD}(\zeta_i) = P_{TX}(\zeta_i) - P_{RX}(\zeta_i)$$
$$= L_0 + 10 \cdot \alpha \cdot \log_{10} \left(\frac{d}{d_0}\right) + X_g[dB]$$

- L₀: Path-loss at reference distance d₀
- X_g : Attenuation due to fading (random with zero mean)


Wireless communications

Superimposition of RF signals

- Broadcast channel
- Multipath transmission
 - Reflection
 - Diffraction
 - Different path lengths
 - Signal components arrive at different times
- Interference


Wireless communications

Superimposition of RF signals

- At a receiver, all incoming signals add up to one superimposed sum signal
- Constructive and destructive interference
- Normally: Heavily distorted sum singal

Wireless communications

Fading

- Signal quality fluctuating with location and time
- Slow fading
- Fast fading

Wireless communications

Slow fading

- Result of environmental changes
- Temporary blocking of signal paths
- Changing reflection angles
- Movement in the environment
 - Trees
 - Cars
 - Opening/closing doors
- Amplitude changes can be modelled by log-normal distribution

Wireless communications

Fast fading

- Signal components of multiple paths
- Cancelation of signal components
- ullet Fading incursions expected in the distance of ${\lambda\over2}$
- Channel quality changes drastically over short distances
- Example: Low radio reception of a car standing in front of a headlight is corrected by small movement
- Stochastic models are utilised to model the probability of fading incursions
 - Rice
 - Rayleigh

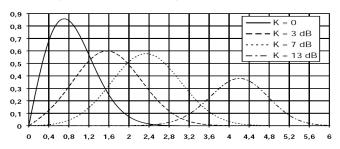
Wireless communications

Fast fading

- Fast fading weakened when direct signal component observed
- Modelled by Rice distribution:

$$f(A) = \frac{A}{\sigma^2} e^{-\frac{A^2 + s^2}{2\sigma^2}} I_0\left(\frac{As}{\sigma^2}\right)$$

- s: Dominant component of received signal
- σ : Standard deviation
- Modified Bessel function with order 0:


$$I_0(x) = \frac{1}{2\pi} \int_0^{2\pi} e^{x\cos(\Psi)} d\Psi$$

Wireless communications

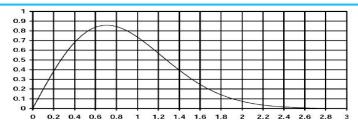
Ricean factor:

$$K = \frac{s^2}{2\sigma^2}$$

- Impacts probability density function of Rice distribution
- Most probable outcome impacted

Wireless communications

• For K = 0, Rice distribution migrates to Rayleigh distribution:


$$\lim_{K \to 0} f(A) = \lim_{K \to 0} \frac{A}{\sigma^2} e^{-\frac{A^2}{2\sigma^2} - K} I_0 \left(\frac{A\sqrt{2K}}{\sigma} \right)$$

$$= \lim_{K \to 0} \frac{A}{\sigma^2} e^{-\frac{A^2}{2\sigma^2} - K} \frac{1}{2\pi} \int_0^{2\pi} e^{\frac{A\sqrt{2K}}{\sigma} \cos(\Psi)} d\Psi$$

$$= \frac{A}{\sigma^2} e^{-\frac{A^2}{2\sigma^2} - 0} \frac{1}{2\pi} \int_0^{2\pi} e^{\frac{A\sqrt{2\cdot 0}}{\sigma} \cos(\Psi)} d\Psi$$

$$= \frac{A}{\sigma^2} e^{-\frac{A^2}{2\sigma^2}}$$

Wireless communications

Rayleigh distribution

- Probability density function of received sum singal for $n \gg 1$
- Assumption:
 - No direct signal component exists
 - Received signal components of approximately equal strength
- Example: Urban scenarios with dense house blocks

Wireless communications

• With large K, Rice distribution evolves to Gauss distr.:

$$I_{0}(x) \rightarrow_{x\gg 1} \rightarrow \frac{e^{x}}{\sqrt{2\pi}}$$

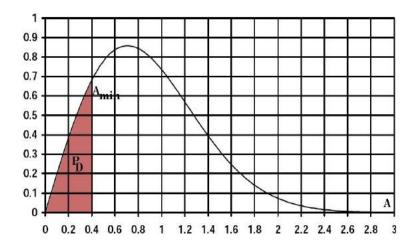
$$\Rightarrow f(A) \rightarrow_{x\gg 1} \rightarrow \frac{A}{\sigma^{2}} e^{-\frac{A^{2}}{2\sigma^{2}} - K} \frac{e^{\frac{A\sqrt{2K}}{\sigma}}}{\sqrt{2\pi} \frac{A\sqrt{2K}}{\sigma}}$$

$$f(A) = \frac{A}{\sigma^{2} \sqrt{\frac{2\pi}{\sigma}} \sqrt{A\sqrt{2K}}} e^{-\frac{A^{2}}{2\sigma^{2}} - \frac{s^{2}}{2\sigma^{2}}} e^{\frac{A\sqrt{2K}}{\sigma}}$$

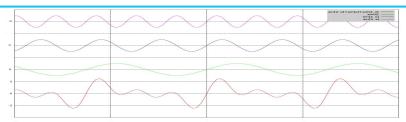
$$= \frac{A}{\sigma^{2} \sqrt{\frac{2\pi}{\sigma}} \sqrt{A\sqrt{2K}}} e^{-\frac{A^{2}+s^{2}-2As}{2\sigma^{2}}}$$

$$= \sqrt{\frac{A}{s}} \frac{1}{\sigma^{2\pi}} e^{-\frac{1}{2} \left(\frac{A-s}{\sigma}\right)^{2}}$$

Wireless communications


The term

$$\sqrt{\frac{A}{s}} \frac{1}{\sigma^2 \pi} e^{-\frac{1}{2} \left(\frac{A-s}{\sigma}\right)^2}$$


• differs from the Gauss distribution in $\sqrt{\frac{A}{s}}$:

$$f_{Gauss}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{A-s}{\sigma}\right)^2}$$

• With $\sqrt{\frac{A}{s}} \approx 1$, Rice distribution can be approximated by Gauss distribution

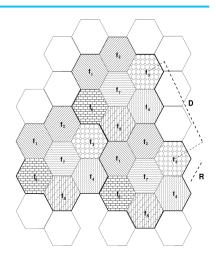
Wireless communications

Interference

- Signal components arrive from more than one transmitter
- Neighbouring nodes generate interference:

$$\zeta_{\mathsf{sum}} = \sum_{i=1}^{\iota} \Re\left(e^{j(f_i t + \gamma_i)}\right)$$

Wireless communications


Interference

 A radio system typically requires a specific minimum signal power over interference and noise level:

$$SINR = \frac{P_{\text{signal}}}{P_{\text{noise}} + P_{\text{interference}}}$$

- Concepts to reduce interference:
 - Clustering (cellular networks)
 - Spread spectrum techniques (Code divisioning)

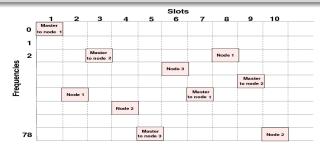
- Clustering
 - Cells with identical frequencies separated
 - Interference in one frequency band reduced

Wireless communications

Clustering

- Further reduction of interference by sectioning antennas
- Typically not implemented in WSNs
 - Relative locations of sensors unknown
 - Organisation of cluster structure problematic

Wireless communications

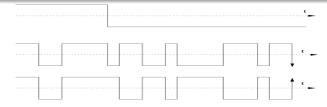

Spread spectrum system

- Utilise a very wide bandwidth for transmission
- Interference in a small frequency band has reduced impact on the overall transmission

Wireless communications

Spread spectrum system – Frequency hopping

- E.g. Bluetooth
 - 79 sub-frequency bands
 - Hop 1600 times per second
 - Pseudo random hop sequence
 - Master node controls hopping sequence



- Spread spectrum system Frequency hopping
 - Not well suited for WSNs
 - Processing required for frequency hopping would surcharge processing capabilities of sensor nodes

Wireless communications

Spread spectrum system - Code divisioning

- Spread transmit signal over whole frequency band
- Add redundancy to the signal
- Combination of the transmit symbols with pseudo-random code sequence
- Interference in limited frequency band with low effect
- Transmitters simultaneously utilise identical frequency

Wireless communications

Spread spectrum system - Code divisioning

- Transmitters share the same frequency
- Unique, orthogonal pseudo noise sequences
- Decoding possible: Pseudo noise sequence linked to transmitter
- Transmission below noise level possible
- Creation of pseudo noise sequences: E.g. OVSF

Wireless communications

Orthogonal Variable Spreading Factor (OVSF)

• Root spreading code:

$$c_{i,j} \in \{0,1\}^i; i,j \in \mathbb{N}$$

Create

$$c_{2i,2j-1} = (c_{i,j}c_{i,j})$$
$$c_{2i,2j} = (c_{i,j}\overline{c_{i,j}})$$

11	1111	11111111	11111111111111111
			1111111100000000
		11110000	1111000011110000
			1111000000001111
	1100	11001100	1100110011001100
			1100110000110011
		11000011	1100001111000011
			1100001100111100
10	1010	10101010	1010101010101010
			1010101001010101
		10100101	1010010110100101
			1010010101011010
	1001	10011001	1001100110011001
			1001100101100110
		10010110	1001011010010110
			1001011001101001

- Spread spectrum system Code divisioning
 - Utilised also in WSNs
 - E.g. CDMA
 - Number of code sequences of a given length restricted

Outline

- Introduction
- Aspects of the mobile radio channel
- MIMO
- 4 Centralised beamforming

- Wireless communication
 - Typically one transmitter and one receiver
 - SISO
 - Capacity increased by diversity schemes as
 - Time diversity
 - Frequency diversity
 - Code divisioning

- Spatial diversity
 - Clustering
 - Multiple transmit or receive antennas for a single communication link
 - SIMO
 - MISO
 - MIMO
 - Spatially separated antennas
 - Independent communication channels
 - Fading characteristics for these channels different
 - Probability of inferior reception on all channels simultaneously low

Wireless communications

Vector-Matrix of a MIMO-System:

$$\overrightarrow{\zeta^{RX}} = \begin{bmatrix} \zeta_1^{RX} \\ \zeta_2^{RX} \\ \vdots \\ \zeta_M^{RX} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1L} \\ h_{21} & \ddots & & h_{2L} \\ \vdots & & \ddots & \vdots \\ h_{M1} & h_{M2} & \cdots & h_{ML} \end{bmatrix} \begin{bmatrix} \zeta_1^{TX} \\ \zeta_2^{TX} \\ \vdots \\ \zeta_L^{TX} \end{bmatrix} + \begin{bmatrix} \zeta_1^{\text{noise}} \\ \zeta_2^{\text{noise}} \\ \vdots \\ \zeta_M^{\text{noise}} \end{bmatrix}$$

Wireless communications

$$\overrightarrow{\zeta^{RX}} = \begin{bmatrix} \zeta_1^{RX} \\ \zeta_2^{RX} \\ \vdots \\ \zeta_M^{RX} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1L} \\ h_{21} & \ddots & & h_{2L} \\ \vdots & & \ddots & \vdots \\ h_{M1} & h_{M2} & \cdots & h_{ML} \end{bmatrix} \begin{bmatrix} \zeta_1^{TX} \\ \zeta_2^{TX} \\ \vdots \\ \zeta_L^{TX} \end{bmatrix} + \begin{bmatrix} \zeta_1^{\text{noise}} \\ \zeta_2^{\text{noise}} \\ \vdots \\ \zeta_M^{\text{noise}} \end{bmatrix}$$

Vector of received signal components:

$$\overrightarrow{\zeta^{RX}} = (\zeta_1^{RX}, \zeta_2^{RX}, \dots, \zeta_M^{RX})^T$$

Vector of noise signals:

$$\overrightarrow{\zeta^{\mathsf{noise}}} = (\zeta_1^{\mathsf{noise}}, \zeta_2^{\mathsf{noise}}, \dots, \zeta_M^{\mathsf{noise}})^T$$

Channel Matrix H describes connection of inputs and outputs.

- Potential gain of a MIMO system
 - Improve communication speed
 - Parallel transmission over all channels.
 - Improve robustness of communication
 - Transmit redundant information over all channels

Wireless communications

- MIMO for WSNs?
 - Not probable since antennas have to be sufficiently separated
 - Typical estimation: $\frac{\lambda}{2}$
 - With 2.4GHz:

$$\frac{3 \cdot 10^8 \frac{m}{sec}}{2.4 * 10^9 \frac{1}{sec}} = 12.5 cm$$

• Typical sensor nodes smaller in size

Outline

- Introduction
- Aspects of the mobile radio channel
- MIMO
- Centralised beamforming

Centralised beamforming

Wireless communications

Centralised beamforming

- Create an antenna beam of synchronised transmissions that is focused on a restricted area
- Signal components form transmit antennas coherently overlaid
- Constructive interference at the receiver
- Outside the restricted area, signal components vanish in the noise signal
 - Reduced interference to neighbouring receivers

Centralised beamforming

Wireless communications

Centralised beamforming

- Fixed antenna Array
 - Exact relative location of all antennas known
 - All antenna elements tightly synchronised
 - Signals from each antenna element suitably weighted
- Focus and control transmission beam
- Received sum signal:

$$\sum_{i=1}^n \Re(e^{j(2\pi f_i t + \gamma_i)})$$

- When all signal components are in phase,
 - signal strength increases linear to count of signal components