Algorithms for context prediction in Ubiquitous Systems

Exact sequence Matching

Stephan Sigg

Institute of Distributed and Ubiquitous Systems
Technische Universität Braunschweig

November 18, 2008
Overview and Structure

- Introduction to context aware computing
- Basics of probability theory
- Algorithms
 - Simple prediction approaches: ONISI and IPAM
 - Markov prediction approaches
 - The State predictor
 - Alignment prediction
 - Prediction with self organising maps
 - Stochastic prediction approaches: ARMA and Kalman filter
 - Alternative prediction approaches
 - Dempster shafer
 - Evolutionary algorithms
 - Neural networks
 - Simulated annealing
Overview and Structure

- Introduction to context aware computing
- Basics of probability theory
- **Algorithms**
 - Simple prediction approaches: ONISI and IPAM
 - Markov prediction approaches
 - The State predictor
 - Alignment prediction
 - Prediction with self organising maps
 - Stochastic prediction approaches: ARMA and Kalman filter
 - Alternative prediction approaches
 - Dempster shafer
 - Evolutionary algorithms
 - Neural networks
 - Simulated annealing
Outline

Simple prediction approaches: ONISI and IPAM

1. Important aspects of context prediction algorithms
2. Exact sequence matching
3. Algorithm: IPAM
4. Algorithm: ONISI
Aspects of prediction algorithms

In Ubiquitous Computing

- Prediction accuracy
- High prediction horizon
- Adaptability
- Memory and processing load
- Multi-dimensional time series
- Iterative prediction
- Prediction of context durations
- Relaxation of typical behaviour patterns
- Context data types
- Pre-processing of time series data
Aspects of prediction algorithms

Prediction accuracy

• Context prediction is an optimisation problem
 • Prediction errors have to be minimised
 • Low error probability desired
Aspects of prediction algorithms
High prediction horizon

- A prediction algorithm shall provide a high prediction horizon
- At the same time: low error probability
- Prediction accuracy decreases with increasing prediction horizon
 - Low degradation speed desired
Aspects of prediction algorithms
Adaptability

- Learning is essential in Ubiquitous Environments
 - Environment is subject to changes
 - typically slow changes
 - Behaviour patterns of persons might change due to external influences
 - Relocation
 - New Job
 - Vacancy
 - New semester and time schedule
- Without learning, prediction accuracy will decrease over time
Aspects of prediction algorithms

Memory and processing load

- Devices for ubiquitous computing typically small scale and mobile
 - Low processing power
 - Restricted memory and storage size
Aspects of prediction algorithms
Multi-dimensional time series

- Typically several context sources attached to a device
- The time series observed is therefore multi-dimensional
- Algorithms that are only applicable to one-dimensional input unsuited in many scenarios
 - Solution: Model multi-dimensional TS by several one-dimensional TS
 - Problem: Inter-relation between time series not modelled
Aspects of prediction algorithms

Multi-dimensional time series

- Ideallised: Context data sources synchronised
 - Very unlikely

Diagram:

- Context source A
- Context source B
- Context source C

Time instances: t_1, t_2, t_3, t_4, t_5, t_6

Data points for each context source at each time instance.
Aspects of prediction algorithms
Multi-dimensional time series

- Realistic scenario: No synchronisation between context sources
 - Context sources push information when specific events occur
 - Duty cycling (time differs between context sources)
Aspects of prediction algorithms
Multi-dimensional time series

- Question: Which context values for a given time interval?
 - Interpolation of context values?
 - Last value measured?

![Diagram of multi-dimensional time series with data from different context sources]

Stephan Sigg
Algorithms for context prediction in Ubiquitous Systems
Aspects of prediction algorithms
Multi-dimensional time series

Proposal/Idea: Context reasoning by DAG¹

- Design processing sequence that the algorithm shall follow/respect?
- Designed for context reasoning – Also applicable for context prediction
- Problems: How to design this processing graph on-line and autonomously?

Aspects of prediction algorithms

Iterative prediction

- Prediction horizon can be extended by iterative prediction
 - Utilise predicted contexts as input
- Problem: Less accurate
 - Predicted contexts more error prone than measured values
Aspects of prediction algorithms
Prediction of context durations

- Context durations make a difference
 - Different duration of contexts might also indicate other situations/Contexts
 - It is more difficult to predict a context together with its occurrence time instead of simply a context sequence
 - Duration can be modelled by repeatedly occurring contexts in a context sequence
Aspects of prediction algorithms
Relaxation of typical behaviour patterns

- Exact pattern matching not suited in most ubiquitous scenarios
 - Behaviour patterns do not reoccur ‘exactly’ but approximately
 - E.g. the route and time to some location will differ slightly for several times the route is taken.

- Approximate matching is more difficult:
 - Where to draw the line?
 - When are two time series considered as approximately matching and when not
 - Inherently dependent on given scenario
 - Typically solved by heuristic approach/metric
Aspects of prediction algorithms

Relaxation of typical behaviour patterns

- Exact sequence matching
Aspects of prediction algorithms

Context data types

- Context can have various data types
 - Nominal
 - Ordinal
 - Hierarchical
 - Numerical

- In multi-dimensional time series also multi-type contexts possible

- Most algorithms can only process some of these data types
 - Not applicable in scenarios where other data types are measured
Aspects of prediction algorithms

Context data types

Nominal contexts

- =
- ≠
Aspects of prediction algorithms

Context data types

- Ordinal contexts
 - <
 - >
 - =

- Cold
- Warm
- Hot
Aspects of prediction algorithms

Context data types

- Hierarchical contexts
 - Sub-contexts and parent contexts
 - Contexts might be contained in others
Aspects of prediction algorithms

Context data types

- Numerical contexts
 - Real valued, integer valued contexts
 - Complex mathematical operations possible
 - Best suited for context processing
Aspects of prediction algorithms

Context data types

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Ordinal contexts</th>
<th>Nominal contexts</th>
<th>Hierarchical contexts</th>
<th>Numerical contexts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SVM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>KM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>MM</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NN</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NNS</td>
<td>-</td>
<td>(+)⁷</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>SOM</td>
<td>-</td>
<td>(+)⁷</td>
<td>(+)⁷</td>
<td>+</td>
</tr>
<tr>
<td>PM</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>AP</td>
<td>(+)⁷</td>
<td>(+)⁷</td>
<td>(+)⁷</td>
<td>+</td>
</tr>
<tr>
<td>ARMA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Kalman filters</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Aspects of prediction algorithms
Pre-processing of time series data

For context prediction, preprocessing of context data is often applied
- Identify typical context patterns
- Derive occurrence probability of contexts
- Derive context transition probabilities

Distinguish between on-line and off-line processing

Problem: Increased processing load
Aspects of prediction algorithms

Summary

<table>
<thead>
<tr>
<th>Aspect</th>
<th>IPAM</th>
<th>ONISI</th>
<th>Markov</th>
<th>CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Contexts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-numeric Contexts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning ability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-dim. TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable length patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-type TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context durations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aspects of prediction algorithms

Summary

<table>
<thead>
<tr>
<th></th>
<th>PCA</th>
<th>SPM</th>
<th>Align</th>
<th>SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Contexts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-numeric Contexts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning ability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-dim. TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable length patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-type TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context durations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aspects of prediction algorithms

Summary

<table>
<thead>
<tr>
<th>Aspect</th>
<th>ARMA</th>
<th>Kalman</th>
<th>SVM</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Contexts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-numeric Contexts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning ability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-dim. TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable length patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-type TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context durations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aspects of prediction algorithms

Summary

<table>
<thead>
<tr>
<th>EAs</th>
<th>NN</th>
<th>Sim. Anneal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Contexts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-numeric Contexts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning ability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate matching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-dim. TS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable length patterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-type TS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context durations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

Simple prediction approaches: ONISI and IPAM

1. Important aspects of context prediction algorithms
2. Exact sequence matching
3. Algorithm: IPAM
4. Algorithm: ONISI
Exact sequence matching

Introduction

- File a given sequence for the exact occurrence of a sub-sequence
- ‘Pattern Matching’ or ‘String Matching’
- Easily extended to context prediction:
 - Prediction \equiv continuation of matched sequence

Stephan Sigg

Algorithms for context prediction in Ubiquitous Systems
Exact sequence matching

Notation

Strings and patterns

A string is a sequence of letters such as 'AGCTTTCAATC'. Context patterns can be represented as strings when each context is assigned a letter.

Substring

Any contiguous string that is part of another string is called a substring. For example, 'GCT' is a substring of 'AGCTTTCAATC'.
Exact sequence matching

Notation

String matching

Given two Strings x and y, string matching is the problem to determine whether x is a substring of y and, if so, where it appears.

Edit distance

Given two strings x and y, the edit distance describes the minimum number of basic operations – character insertions, deletions and exchanges – needed to transform x into y.
Exact sequence matching

Example

Suppose we have a large text such as Herman Melville’s Moby Dick and want to classify it as relevant to the topic of fish or to the topic of hunting.

- Keywords for the fish topic
 - might include 'salmon', 'whale', 'fishing', 'ocean'

- Keywords for hunting
 - might include 'gun', 'bullet', 'shoot'.

String matching would determine the number of occurrences of such keywords in the text.

A simple count of keyword occurrences could then be used to classify the text according to topic.
Exact sequence matching

String matching

Task

Determine whether a candidate string \(x \) is a substring of \(y \).

- Typically: \(x \ll y \)
- Each character in \(x \) and \(y \) is taken from an alphabet \(\Sigma \)
 - DNA bases,
 - Binary sequences (\(\Sigma = \{0, 1\} \))
 - Alphanumeric sequences (\(\Sigma = \{0, \ldots, 9, a, \ldots, z, A, \ldots, Z\} \))
 - Context sequences – Each character represents a context
Exact sequence matching

String matching

Basic string matching problem

For two strings \(x \) and \(y \), determine whether a shift \(s \) at which the string \(x \) is perfectly matching with each character of \(y \) beginning at position \(s + 1 \).
Exact sequence matching
String matching

Straightforward approach
Subsequently test each possible shift \(s \)

Example

```plaintext
1 begin initialise \( \Sigma \), \( x, y, n = \text{length}[y] \), \( m = \text{length}[x] \)
2 \( s \leftarrow 0 \)
3 while \( s \leq n - m \)
4 if \( x[1..m] = y[s + 1 \ldots s + m] \)
5 then print ‘pattern occurs at shift’ \( s \)
6 \( s \leftarrow s + 1 \)
7 return
8 end
```
Exact sequence matching

String matching

- The straightforward algorithm is, however, far from optimal
- Worst case runtime:
 - $\Theta((n - m + 1)m)$
- Problem: Information known from one candidate shift s is not exploited for the subsequent candidate shift
Exact sequence matching

String matching

Boyer-Moore string matching

1 begin initialise Σ x, y, n=length[y], m=length[x]
2 \(F(x) \leftarrow \) last-occurrence function
3 \(G(x) \leftarrow \) good-suffic function
4 \(s \leftarrow 0 \)
5 while \(s \leq n - m \)
6 \hspace{1em} do \(j \leftarrow m \)
7 \hspace{2em} while \(j > 0 \) and \(x[j] = y[s+j] \)
8 \hspace{3em} do \(j \leftarrow j - 1 \)
9 \hspace{2em} if \(j = 0 \)
10 \hspace{3em} then print 'pattern occurs at shift' \(s \)
11 \hspace{2em} \hspace{1em} \(s \leftarrow s + G(0) \)
12 \hspace{3em} else \(s \leftarrow s + \max[G(j), j - F(y[s+j])] \)
13 return
14 end
Exact sequence matching
Boyer-Moore string matching algorithm

- The Boyer-Moore algorithm utilises information known from recent candidate shifts
- Character compositions are done in reverse order
- Increment to a new shift need not be 1
- Benefits from two heuristics:
 - Good suffix heuristic
 - Bad character heuristic
Exact sequence matching
Bad character heuristic and good suffix heuristic

Stephan Sigg
Algorithms for context prediction in Ubiquitous Systems

41/94
Exact sequence matching
Bad character heuristic and good suffix heuristic

- **Bad character heuristic**
 - Since character comparisons proceed from right to left, bad character is found as efficiently as possible.
 - Since current shift s is invalid, no additional character comparisons are required.
 - Proposes incrementing the shift by an amount to align the rightmost occurrence of the bad character in x with the bad character identified in y.
 - No valid shifts have been dropped.

- **Good suffix heuristic**
 - A suffix of x is a substring of x that contains the final character in x.
 - At shift s the rightmost contiguous characters in y that match those in x are called the good suffix.
 - Character comparisons are made from right to left and are therefore optimal.
Exact sequence matching

Last occurrence function

- Table containing every letter in the alphabet
- Plus position of its rightmost occurrence in \(x \)
- Example:
 - A, 4
 - B, 5
 - C, 3
- Computation only once
 - Does not significantly impact the runtime
Exact sequence matching

Good suffix function

- Creates table that for each suffix gives location of second right-most occurrence in x
- Example:
 - B, 2
 - AB, 1
 - CAB, -
 - $BCAB$, -
 - $ABCAB$, -
- Computation only once
 - Does not significantly impact the runtime
Exact sequence matching
Boyer-Moore algorithm

- Computational complexity
 - Homework / Exercise ;-)

Asymptotic computation time

$O(k) \longrightarrow$ computation time not larger than $c \cdot k$ for a suitable constant c and k large.
Exact sequence matching

Problems

Problems with exact string matching approaches in Ubiquitous Computing

- Data might be distorted by noise
 - In Ubicomp scenarios we even expect noisy input data
 - Exact pattern matching not feasible then
Exact sequence matching
Approximate matching approaches

- Edit distance
- Nearest neighbour approaches
Exact sequence matching

Approximate matching approaches

- Nearest neighbour approaches
 - Strings are identified as vectors in a coordinate system
 - Since these vectors are numerical, distance/similarity between vectors can be computed by common metrics

- We will consider these approaches later in the lecture
Exact sequence matching

Approximate matching approaches

- Edit distance
 - Task: Compute the difference
 - Problem: What is the similarity/distance between string sequences?
 - Example: is 'abbccc' closer to 'aabbcc' or to 'abbcccb'?

- We will consider these approaches later in the lecture
Outline

Simple prediction approaches: ONISI and IPAM

1. Important aspects of context prediction algorithms
2. Exact sequence matching
3. Algorithm: IPAM
4. Algorithm: ONISI
Algorithm: IPAM

Introduction and scenario

Scenario

Predict the next command in a series of command line inputs to a UNIX shell

Prediction of next command on a UNIX shell\(^a\)

\(^a\)B.D. Davison and H. Hirsh, *Predicting sequences of user actions*. In: AAAI/ICML Workshop on predicting the future: AI approaches to time-series analysis. 1998
Algorithm: IPAM

Introduction and scenario

- It was observed that recently issued commands had the greatest impact on the follow-up command
- Idea: Standard learning algorithms ignore rare but possibly important events in a time series
 - IPAM was designed to improve this

Example

Predict hardware failures in routing networks. Typically every packet is routed as expected and no error occurs. In some, very rare cases, a hardware router might collapse. Likely result: packet losses, congestion, re-calculation of routing tables or a disconnected part of the network.

The event is rare but serious.
Requirements of an optimal on-line learning algorithm

- Have predictive accuracy at least as good as the best known resource-unlimited methods
- Operate incrementally (Modifying existing model rather than building a new one as new data is obtained)
- Be affected by all events (remembering uncommon, but useful, events regardless of how much time has passed)
- Do not necessarily retain a copy of all events observed
- Output a list of predictions sorted by confidence
- Adapt to changes to the target concept
- Be fast enough for interactive use
- Learn by passive observation
- Apply even by absence of domain knowledge
Algorithm: IPAM

Algorithmic approach

- IPAM (Incremental Probabilistic Action Modeling)
 - on-line learning algorithm
 - Utilises last few events issued in order to predict the next event in a sequence of events
 - Prediction horizon: 1
 - Interative prediction possible
 - Impact of empiric factor: α
Algorithm: IPAM

Algorithmic approach

- Algorithmic operation
 - While observing sequence: matrix of prediction probabilities is maintained.
 - Columns: all possible events,
 - Rows: added and modified as events occur.
 - First event c_i: New row is added
 - Each column in this row holds probability that event observed after c_i was observed.
 - Row initialised with uniform probabilities $\frac{1}{n}$
 - Next event c_{i+1}: New row added and initialised with uniform probabilities.
 - Preceding row, every column multiplied with $0 \leq \alpha \leq 1$ and column c_i increased by $(1 - \alpha)$.
 - Probability to predict event sequences that have not been observed for some time diminishes
Algorithm: IPAM

Algorithmic approach - operation principle

Step 1:

<table>
<thead>
<tr>
<th></th>
<th>\cdots</th>
<th>c_i</th>
<th>\cdots</th>
<th>c_{i+1}</th>
<th>\cdots</th>
</tr>
</thead>
</table>

Step 2:

<table>
<thead>
<tr>
<th></th>
<th>\cdots</th>
<th>c_i</th>
<th>\cdots</th>
<th>c_{i+1}</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_i</td>
<td>$\frac{1}{n}$</td>
<td>$\frac{1}{n}$</td>
<td>$\frac{1}{n}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 3:

<table>
<thead>
<tr>
<th></th>
<th>\cdots</th>
<th>c_i</th>
<th>\cdots</th>
<th>c_{i+1}</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_i</td>
<td>$\frac{1}{n} \cdot \alpha + (1 - \alpha)$</td>
<td>$\frac{1}{n} \cdot \alpha$</td>
<td>$\frac{1}{n} \cdot \alpha$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_{i+1}</td>
<td>$\frac{1}{n}$</td>
<td>$\frac{1}{n}$</td>
<td>$\frac{1}{n}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Algorithm: IPAM

Results and figures

- Collected command histories of 77 users (mostly undergraduate students)
- Over 168,000 commands executed
- During a period of 2-6 months
- Average user over 2000 command instances
- 77 distinct commands per user on average
- 8.4% of the commands were new and had not been logged previously
- Users repeated the last command 20% of the time
Algorithm: IPAM

Results and figures
Algorithm: IPAM

Results and figures

![Graph showing accuracy (%) against the number of commands suggested, comparing IPAM, Bayes, and MRC algorithms.](image-url)
Algorithm: IPAM
Prediction accuracy

![Graph showing accuracy (%) vs number of characters to match for IPAM and Bayes top1 to top3 models. The graph illustrates the prediction accuracy for different character matches using IPAM and Bayes models.]
Algorithm: IPAM

Adaptability

- The IPAM algorithm has only restricted ability to adapt to changing environments
 - It can learn new context sequences
 - The importance of the occurrence of context sequences can change
 - No support for newly observed contexts
 - When new contexts occur in an environment, the algorithm can not make use of this
Algorithm: IPAM

Memory and processing load

- **Memory load**
 - IPAM keeps a table in memory of size $O(k^2)$
 - $k = \text{number of distinct commands}$

- **Processing load**
 - Predictions performed in constant time
 - Updates require time $O(k)$
Algorithm: IPAM

Multi-dimensional time series

- The IPAM algorithm is not well suited for multi-dimensional time series
 - It was designed for one-dimensional command-line input
 - In scenarios with more than one context source the approach is not feasible
 - Possible: Aggregation of multi-dimensional time series to one-dimensional time series.
Algorithm: IPAM
Iterative prediction

- Iterative Prediction possible
 - Steep decrease in prediction accuracy expected since prediction horizon is only 1
Algorithm: IPAM
Prediction of context durations

- Prediction of context duration not possible
 - Algorithm was designed to predict the occurrence of the next event.
 - Event durations are not considered by the algorithm
 - Only simple sequence of occurring events possible
Algorithm: IPAM

Approximate matching of patterns

- Exact pattern matching
 - The IPAM algorithm utilises exact pattern matching
 - Approximate matching was not implemented
 - Theoretically it is possible to implement approximate matching for the IPAM algorithm.
Algorithm: IPAM

Context data types

- All data types supported by IPAM
 - Categorical data utilised for prediction
 - IPAM considers typical context patterns for prediction
 - Numerical, fluctuating data will, however, blow up the memory requirement and decrease the prediction accuracy as exact pattern matching is applied.
 - Trends are not considered
Algorithm: IPAM

Pre-processing

- Pre-processing required but low computational complexity
- Algorithm designer has to specify all possible events/contexts
- Computational complexity to initialise the prediction matrix: $O(k)$
Algorithm: IPAM

Conclusion

- Low computational complexity
- Low memory requirements
- Categorical time series prediction
- Prediction of typical patterns – no trends considered
- Prediction history only of length 2 – Complex command sequences can thus not be distinguished
- All events known in advance: No adaptive operation when also occurring contexts might change.
- Not well suited for flexible, changing ubiquitous environments
Aspects of prediction algorithms

Summary

<table>
<thead>
<tr>
<th></th>
<th>IPAM</th>
<th>ONISI</th>
<th>Markov</th>
<th>CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Contexts</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-numeric Contexts</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td>$O(k)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning ability</td>
<td>(no)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate matching</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-dim. TS</td>
<td>(no)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete data</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable length patterns</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-type TS</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous data</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-processing</td>
<td>$O(k)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context durations</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous time</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

Simple prediction approaches: ONISI and IPAM

1. Important aspects of context prediction algorithms
2. Exact sequence matching
3. Algorithm: IPAM
4. Algorithm: ONISI
Algorithm: ONISI

Introduction and scenario

Scenario

The use of an unmodified application by a user shall be observed in order to build application and usage-models

- Observe user-interactions with the application interface
- From these observations a state-space is build which the user navigates
- Stochastic properties of state transitions are also modelled
- Task: Observe a user and model its decision process

Algorithm: ONISI

Introduction and scenario

- Challenges when recent results are to be applied to new application
 - Results often do not transfer easily
 - Implementation used in research uses modified application
 - Non-trivial to repeat modification
 - Time-consuming to repeat modification
 - Increases application complexity.
 - Hand-crafted application models required
 - Time consuming
Algorithm: ONISI

Introduction and scenario

Approach

Extract knowledge from a user’s interaction with the application

- No prior knowledge of the application
 - Purpose
 - Structure
- No modification to the application

- Predict future actions building on the usage-model extracted from an application
Algorithm: ONISI

Algorithmic approach

- **ONISI (ON-line Implicit State Identification)**
 - Assign probabilities to all possible actions in the currently observed interface state
 - Employs k nearest neighbours scheme
 - Metric: sequence match length
 - Java implementation
 - Wrapper to existing java applications
 - Able to record interfaces of java applications
 - No modification of application required
Algorithm: ONISI

Algorithmic approach

State of a user

A state of a user consists of a combination of the user’s internal state and the application’s interface state.

- Attempt: Try to determine the policy the user is employing from our observation of the user’s interaction history.
Algorithm: ONISI

Algorithmic approach

- Prediction: Search interaction history for behavioural patterns similar to current pattern
- Required:
 - Observed pattern to extract from the interaction history
 - Method to determine occurrence of pattern in history
 - Function that ranks possible actions
Algorithm: ONISI
Algorithmic approach – Extraction of observed pattern

- Length of patterns automatically varied
 - Longer patterns are deemed more important
 - Patterns are chosen to be longest sequences in history that match immediate history

Measure 1: Length

Sequences that prediction action \(a \) are computed by \(l_t(s, a) \)

Average of lengths of \(k \) longest sequences that end with action \(a \) in state \(s \) and match history sequence immediately prior to time \(t \)

- Possible actions are ranked according to \(l_t(s, a) \)
 \[
 \frac{l_t(s, a)}{\sum_i l_t(s, a_i)}
 \]
Algorithm: ONISI
Algorithmic approach – Extraction of observed pattern

- Length of patterns automatically varied
 - More frequent patterns are deemed more important

Measure 2: Frequency
Sequences that prediction action a are computed by $f_t(s, a)$

Frequency at which a sequence is observed in history

- Possible actions are ranked according to $f_t(s, a)$

 $\frac{l_t(s, a)}{\sum_i l_t(s, a)}$
Algorithm: ONISI

Algorithmic operation

- Compare immediate history with state-action pair \((s, a)\)
 - Running backwards through recorded history
 - Find k longest sequences that match immediate history
- Average length of sequences: \(l_t(s, a)\)
- Count number of times a has occurred: \(f_t(s, a)\)
- Return ranking

\[
R_t(s, a) = \alpha \frac{l_t(s, a)}{\sum_i l_t(s, a_i)} + (1 - \alpha) \frac{f(s, a)}{\sum_i f(s, a_i)}
\]
(1)
Algorithm: ONISI

Algorithmic operation

- **Assume:**
 - $\alpha = 0.9$
 - All actions provide a sum $\sum_i l_t(s, a) = 5$
 - a_3 has occurred 50 times, s_3 has been visited 100 times
 - Set of maximum length sequences: $\{2, 1, 0\}$

- $l_t(s_3, a_3) = \frac{0 + 1 + 2}{3} = 1$ \hspace{1cm} (2)

- $R_t(s_3, a_3) = 0.9 \frac{1}{5} + 0.1 \frac{50}{100} = 0.18 + 0.05 = 0.23$ \hspace{1cm} (3)
Algorithm: ONISI
Results and figures – Performance at various parameter settings
Algorithm: ONISI
Prediction accuracy – Performance
Algorithm: ONISI
Prediction horizon

- Prediction horizon can be extended by iterative prediction
 - Utilise predicted contexts as input
- Problem: Less accurate
 - Predicted contexts more error prone than measured values
Algorithm: ONISI

Adaptability

- The ONISI is well adaptable to arbitrary Java applications
 - It can learn new context sequences
 - Also, new events can be observed
Algorithm: ONISI
Memory and processing load

Exercise ;-)
Algorithm: ONISI
Multi-dimensional time series

- The ONISI algorithm is not suited for multi-dimensional time series
 - It was designed for one-dimensional input
 - In scenarios with more than one context source the approach is not feasible
 - Possible: Aggregation of multi-dimensional time series to one-dimensional time series.
Algorithm: ONISI
Iterative prediction

- Iterative Prediction possible
 - Steep decrease in prediction accuracy expected since prediction horizon is only 1
Algorithm: ONISI
Prediction of context durations

- Prediction of context duration not possible
 - Algorithm was designed to predict the occurrence of the next event.
 - Event durations are not considered by the algorithm
 - Only simple sequence of occurring events possible
Algorithm: ONISI

Approximate matching of patterns

- Exact pattern matching
 - The ONISI algorithm utilises exact pattern matching
 - Approximate matching was not implemented
 - Theoretically it is possible to implement approximate matching for the algorithm.
Algorithm: ONISI

Context data types

- Only categorical time series data supported by ONISI
- ONISI considers typical context patterns for prediction
Algorithm: ONISI

Pre-processing

- No Pre-processing required
- On-line approach
Algorithm: ONISI

Conclusion

- Low computational complexity (?)
- Categorical time series prediction
- Prediction of typical patterns
- Prediction history or arbitrary length
- Frequency and length of patterns considered
- Not well suited for flexible, changing ubiquitous environments
Aspects of prediction algorithms

Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>IPAM</th>
<th>ONISI</th>
<th>Markov</th>
<th>CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Contexts</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Non-numeric Contexts</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Complexity</td>
<td>$O(k)$</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Learning ability</td>
<td>(no)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Approximate matching</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Multi-dim. TS</td>
<td>(no)</td>
<td>(no)</td>
<td>(no)</td>
<td>(no)</td>
</tr>
<tr>
<td>Discrete data</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Variable length patterns</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Multi-type TS</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Continuous data</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Pre-processing</td>
<td>$O(k)$</td>
<td>–</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Context durations</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Continuous time</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>